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ABSTRACT

In this paper, we present an EFIE-based perturbation approxiniation for solving the
eigenmodes of N coupled microstrip lines. The eigenmode current of the isolated line
(which is obtained by a Galerkin's MoM solution to the isolated EFIE in an appropriate
Chebyshev polynomial series) is used as a zeroth-order perturbation approximation for
nearly degenerate eigenmode currents of the loosely-coupled system. In terms of this
approximate current, the EFIE's yield an N by N matrix equation which can be solved
numerically for the unknown propagation constant {. The matrix elements are found to
be much more efficient in numerical computation and a large reduction in computation
time is achieved.

For validation, the formulation is specialized for the case of two microstrip line
coupling. The results of the perturbation approximation are compared with those of the
MoM numerical solution, and the validity range of the perturbation approximation is
investigated. '
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EFIE-B_ased‘ Perturbation Analysis
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I. Introduction

The coupling between adjacent, parallel microstrip transmission lines in the
micro/mm-wave PC/IC environment was analyzed traditionally with various half-wave
and full-wave techniques. In our previous work [1,2], a full-wave electric field integral

equation (EFIE) formulation for the currents on N coupled microstrip transmission lines
was developed. The geometry of N coupled microstrip lines located in the cover layer at
the film/cover interface of a tri-layered conductor/film/cover environment has its EFIE
based upon the Sommerfeld-integral representation of an appropriate electric field
Green's dyad. Boundary conditions are incorporated in their full generality in the electric

Green's function.

To find the eigenmode propagation constants ¢ and the associated mode currents,

the EFIE was solved by a Galerkin's MoM technique [3,4] with appropriately weighted
Chebyshev polynomial basis functions. Though the approach is potentially exact, the
direct numerical solution is usually very time consuming. Consequently an approximate
but efficient coupled mode perturbation formulation is pursued.

The perturbational method is useful for calculating change in some quantity due to
small changes (or perturbations) in the problem [5]. Usually two problems are involved
in the procedure of perturbation analysis: the "unperturbed” problem, for which the
solution is known, and the "perturbed” problem, which is slightly different from the
unperturbed one. In this paper, we present an EFIE-based perturbation approximation to
solve for the system eigenmodes of N coupled microstrip lines.

The formulation uses the eigenmode propagation constant of the isolated microstrip
line of equal dimensions as a zeroth-order perturbation approximation for nearly-
degenerate eigenmode (by nearly-degenerate eigenmode we mean that the propagation

constants of the two individual microstrip modes are almost the same) currents of the

loosely-coupled (by "loosely coupled", we mean that a small perturbation is introduced
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into the coupled microstrips, so that the propagation constant is slightly different from
that of the isolated line of equal dimensions) system. In terms of this approximate

~ current, the EFIE's yield an N by N matrix equation which can be solved numerically for

the unknown propagation constant ¢. Since the matrix elements are far more efficient in

~ pumerical computation, a large reduction in computation time is achieved.

In Section II the mathematical formation is presented. For validation, the

' formulation is specialized for the analysis of two identical, thin coupled microstrip lines

in Section III. Example results in the form of propagation constants and investigation of
the validity range of the perturbation approximation are presented in Section IV. We
close in Section V with a discussion of further applicability of this technique in the
analysis of other coupled integrated waveguiding structures.

II. Formulation

y
. 0o X
cover region, g, /

un T

o0

Fig. 1 N coupled microstrip transmission lines.

As a first step of applying this technique to coupled microstrip problems, we write
the integral equation for natural modes of N coupled lines shown in Fig. 1 in a more
general form as [6]
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here J (P {) represents the current of p® propagation mode aiong the nth microstrip, where t,; (1) operator has been embedded in the testing operator.
w np

| For the case of loose, nearly-degenerate coupling, the propagation constant and the
d electric field Green's dyad defined by

and g°(P | P ©) is the transforme current distribution are close to those of the unperturbed case, and we can let

p gl 0= (k2 N GAVJ )[Ep (3'3" 0 +§r (3‘6'; Z;)] ) jnp(5)= anjf,(;,)(ﬁ), where a, is an unknown constént coefficient. Under this as-
g (PIP L= sumption Eq. (5) can be written as ' |
with € and g given as S 0 =2 | e ey 20 2 =
2. a f LRACHE f @150 J9@) de =0, Peln, m =1,..N.
oo =1
. E,(x x)e-Ply - y'l d n em £n 6)
w@iF0= | % ()
. 4np, It is seen that Eq. (6) has been simplified in evaluation with the known quantity
15103 (p") retained in the integral and the unknown constant a, moved to outside. Similarly,
r o ( R we can write g 2°(P 1P £) in terms of its unperturbed counterpart and further simplify the
g t P
t
. 'Yy b -
g )= R, M d& integral on &,. To do this, we expand 2°(P 1 P'; {) in Taylor series with respect to C(:;)v
" AT P, (3b) and retain the first two terms as
g o | C
. 3 i) i ( ) A (0)
Following the method of weighted residuals [4], we define the (¢SERE operator 43 EEIP 0= (105 +aa_§ 21D (e
Cop )

Then substitution of (7) into Eq. (6) gives

N
> 2 f a8 jar (- f [g CIGE c“”)+agc @195 0)
&m £n

20) =, O, D =1,...,N. :
I A2 pup(P3 Gmp)” > petm, m “4)
&m

th propagation mode along the unperturbed (0r

(-t } iQ@nae =

n=1

where i‘,ﬁ’ @ C(rg)p) is the current of p
p .

isolated) mth microstrip line, and C(,?&, is the pth eigenvalue (or normalized propagation

8) -

f -
constant) of the unperturbed mth strip associated w1th Jmp Then the testing operation o where Pe & and m =1,..., N.

(4) on (1) gives
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A close examination of Eq. (8) reveals that we can make use of the isolated EFIE
for mth strip, pt mode 10 simplify the coupled integral equation even further. The

current j‘,ﬁ) (6 " on the m® isolated microstrip satisfies the following equation
p
A - 0 2 -, ,
tor J TP () fap®Hde =0 o)
&m

or using the same testing operator as (4), this equation can be written as

jdeifﬁL(B)-J TE 1P Ly Jmp®Hat =0 a0
&m em

Then by applying (10) to Eq. (8) and retain only the leading non-vanishing terms in the

coupled equations, we obtain

N

Crom(G- C.Egg)am + 2 Crnan =0, m=12,..N

m#n an
where
0) /= - = 2(0) = 4x 4pr
cmn=J ae i ®)- I =017 (D) e e (120)
&m £n

and

w0) 3 '
. Jmp(P)de d¢ (12b)

—_— -:(0) -—v' a? — —>"
Cram = D@ ==@1p50)
em JE )8 Gonp

Equation (11) is an N by N homogeneous matrix equation results from perturbation
approximation. Notice that Cypn and C,.m are independent of {, therefore the matrix
equation is much simpler and more efficient to be solved than that given in Galerkin's
MoM.

I1I. Specialization of the formulation for Two Coupled
Microstrips

o s
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For the geometry of two coupled microstrip lines depicted in Fig. 2, we solve for

" the nearly-de iy
th y-degenerate case and let {; and { be the propagation constants of the two

microstrips under unperturbed condition, respectively. -In this case Eq. (11) becomes
Cu-¢)  Ci a | o
— =0
Cxn Ca(C-C2) /|22 , (13)

T] . . . . [_‘ ] ] . ] . . ] . I ]

C=Zim=zi5

(14)

h I3 = — 2 e :
where { = (1 + $)/2, A = (§1 - {2)/2, ¥ = C13C21/C11Co2 and & A E

y
H o0
- cover region, g, / _ X

'y

(o o]

Fig. 2 Two identical thin coupled microstrip lines.
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jon developed above, we now apply it to solve the

al EH,, modes of the two identical
ndamental mode of the isolated line

To demonstrate the formulat

special case of loose coupling between fundament

strips. Denote the propagation constant of the fu

sponding current as 50(3). Then for nearly-de

micro
generate case, We have

as (o and the corre

Ci=C2=0o

and under the assumption of loose coupling, we let

196 ~ 196 = §o)
So (14) becomes

It is seen in this case that C12 = Ca1, C11 = Cyprand &= \ C12/C11| -

{=Cotd (15)

(15) is that the two system modes (the symmetric mode and

" An interpretation for
fting symmetrically from the

metric mode) can be viewed as emerging and shi

the antisym
find the propagation constant in

isolated EH, mode of Go. All that remains to be done to
(15) is the computation of Cy2 and C11. By Egs. (12a, b), Cyz and C,; have the

following forms, respectively

C12=j aejio®)- J IS Cio) ACRE S | (16a)
2 22

1

N {CRLA (16b)
Lo

—— B —.»(0) —>' a? —> \—»l.
Cn= Jio P Ce_plps 0
L/ at.-

Before we can perform a direct calculation of

expressed in terms of some chosen basis functions
The dot product of the currents and the dyadic Green's
first. The details of this work are included in Appendix.

Chebyshev polynomials of the first kind as the expansion bas

Cy2 and C11, the currents should be
as that done in method of moments.'
function should also be evaluated
A similar work using only
es for both longitudinal and
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. _§2Pc m + 1)(n + 1) Jne1(WE) Jna(WE)] dE

’ . ’N~l N-1

C1‘2=Z Z af,‘f) 2 aglo)
‘m:O n=0

E (0) Nt f°° Y

+) b b | 22 o-j2b pjm-

20 Zoba | €T (W) Tn(wE)] 8

(17a)

IN-I N-1 roo
2 2©® an0) (m+D@n+1) ...,
\m=0 n=0 ' J_oo §2 J Jm+1(w§) Jn+1 (Wg) Cxx d§

= (0) o [ :m-n
+ b b » ] w2 Jm(Wg) Jn(“'g) szdg
(17b)‘

where Y, =k’ R-E}R - C), Y, =
o Cl ; . é (R - C), Y,=k?R = {XR - C) and Cxy, Cy take the forms
. Cizand Cyp in (17) look very complicated in expression, but actually they

IV. Example Results
For de i S
e 00a1 n:;r:s_tr;tmn of the formulation, an example of coupled lines with dimensions
oropa ;nio ) = 2.36 and &f = 9.8 was calculated. A graph showing the normalized
s Thi . n1 co:stant (§/ko) versus separation between two microstrips is plotted in Fi
. S i : .
o u t obtained using EFIE approach in conjunction with MoM (where Galerki f';
: nique is implemented) is also shown in this figure werans.
It is seen that as (b - . '
coupting e n t. at as (b w)/w 2 2.5, the microstrips are separated far enough and the
close t gh e Il.eghglble’ In this case the coupled mode propagation constant s
o that of the isolated line of same dimensions. As (b — w)/w becomes ; ve;y
smaller, the
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coupling becomes stronger, and the curves of the two normal modes begin to depart from
that of the isolated microstrip.

The graph shows that as long as (b— w)/w is large enough (about 0.5 in this
example), the results obtained from perturbation analysis and the more accurate MoM
usirig Galérkin's technique are in good agreement. This makes perfect sense since the
accuracy of the perturbation analysis is based on the assumption that only a 'small
change' is introduced to the system. For larger perturbatidn, the approximated method
will be less accurate.

~ The perturbation analysis described in this section can also be applied to solve for
higher order modes. The only change to the formulation is the replacement of the
propagation constant {o with those of the higher order modes.

EFIE-BASED PERTURBATION ANALYSIS

(Ef=9.8, Ec=1, t=.635mm, 2w=3mm, N=3)
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3.02

2.98 —
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EHO Sym tric Mode

——

isolated Line, EHO Mode
metric Mode

EHO Antis

2.82 —
2.8

Propagation constant (Zeta/KO)

2.78 Note: Lines 1,2 are from perturbational analysis

2.76
Lines 3,4 are from Galerkin's method

2.74

BEHT SRR — W (RAAT—F)

2,72 T T T T T T
0 L 2 3

Spacing between coupled lines, (b=w)/w
- frequency=10 GHz

Fig. 3 Dependence of the normalized propagation constant for EHg coupled mode
on line separation. The parameters used for this coupled structure (see Fig. 2)
are /A = 0.021, w/t = 2.36 and & = 9.8.
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. Conclusions

In this paper, we presented an EFIE-based perturbation approximation for solving
the eigenmodes of N coupled microstrip lines. The example results for the two
microstrip line coupling case showed that the propagation constants split and shift
symmetrically away from their isolated limit as expected as the two microstrips become
closely spaced. This makes perfect sense and the validity of this approach is
demonstrated.

. The evaluation of the Sommerfeld type integrals is usually very time consuming

| which is the major trouble encountered in the analysis of various integrated coupling’r
geqmetries. The main advantage of ﬁtilizing perturbation analysis is that the formulation
‘s‘ far more efficient in numerical computation than those using MoM techniques. This
renders a large reduction in computation time. The same approach can be used to

analyzed coupled dielectric optical waveguides as far as the propagation constants are all
hat required.

APPENDIX

valuation of Cy, and C;; for EH, Coupled mode

In t_his appendix we will perform the detailed procedure for the evaluation of
Ci2 and Cy;. As the first step, 8° in Eqs. (16) is replaced with the expression (2). Then
’ we substitute (3) into Egs. (16), and assume that the two microstrips are located aty' =0

g?,;f,c<3lx';c>=f i Plx;0.8)de

4np.
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if R,
: R ei&(x-X) e~ Ds ¥ ubstitution of le(P) into (A 1a) gives
ln = n ————m
41cpc
ig } 0) L mm s
1. C C12—f8 de [X.lxl(P)'*'Zle (p)] f f (k02+ vV ) i .';(2%) (X')dédxf (A 4)
1 82 oo R

The end result gives

Cyp, jde*(fg(p) j f 2+ TV IEIN 0.8 Too (XDGEE (4 10y
2 & J-

o0

Then applying (A.3) to above equation, the X and y y dot product terms can be written as

RiQ0r & +VV)ipIx: o, &) D)

and
= 03\ 11.2 +(0)
= Jx1(P) [k ({P+ i) 5 (x") + JEP+ if il - p,i) Q(O) +(0)
— +0) ' t Pci) +jCoi7) (A5
cu=f fjmw) {2 f k2 vy ipIx:g, &)d&} - Pede iod | ) )
81 81 ac‘ —oo
A.lb 0. 1,2
(A.1b) 250®)r 62+ V) ipIx: G, &) 1)
AR Ry c . . . _
where y =j&x + 5;y +j{z. For thin microstrips of negligible thickness, we let = le)(p) [kz(.p+ i )J(O)(x ) + Gy i - p D) EJ(O) i Col(o) ] A6)
Based — .
3(108 (P) = J(100)(X) ” J*(xol)(x) 42 J(O)(x) (A2a) ased on the s.ame ci.lscuss1on addressed in [6] we see that (A.S)rand (A.6) also
pose no problem while taking the limit y — 0. Thus the right hand side of (A.5), after
and - taking y — 0 and collectin ,
» . _ g terms, becomes
D@ =10 =x {300 +233 ) (A2b)
| (), 55~ X)
0), 1
where the subscript '0' of the current components which represents the fundamental Jxi ) 47ipe [k R - § R-C)] .lxz(x) GCo(R - C).l( )(X) (A7)
mode EH,, has been dropped to reduce complexity in notation. where
. . ejg(x - x')
Evaluation of Cy, Lim @+ 1) = ps
. ) . - . —_— a . . . c
We will first evaluate C,,, the procedure for evaluating C;; is similar. Following With R = 1 + Ry, and
the same work work in [6], we obtain for the integrand of the infinite integral in (A.1a) as Lim (o, i7) = iEx = x)
70 1 mp,

VV- 110 &) ogx)

+(0) +(0)

= (]E,x + __y + Jcoz)(lp+ it — p.i) Gy +iCoiy) | (A.3)

ATpe (A.8)



242 | BERFERERF —HNRBEANT—F)

Substituting (A.7) and (A.8) back to (A.4), we obtain

-b+w © btw  poo ej&(x—x') e o |
Cn=| &% 1500 - Y3 0] agax

-b-w ‘Jb-w npc

-b+w btw poo - x)
+f dx jQ(x) j f O (12550 - Y3 i) dkax

D bow 4pe (A.9)
where Y, =I2R-EXR - C), Y,=k?R-R~-C) and Y3=E{(R-C). The
integration 11m1ts have been specified more specifically by replacing £; . with
[~ b-w, - b+ w]and &; with [b -~ w, b + w] in the above expression.

For currents on the isolated microstrip and on each of the coupled microstrips, we
can approximate them as follows

2 N-1

=1 1-) Zoaff’ Uy (A.102)

-w<osw

1 2 b T, ()

O ———
Al 1= (_) ) (A.10b)
w

where o, = x, i = 0 for isolated microstrip, o = x + b, i = 1 for microstrip 1 in Fig. 2, and
o =x - b, i = 2 for microstrip 2 in the same coupled line system. So if we change
variable to let u =x + b and v =x — b, then all the three expansion forms will be the same

(i.e. ji(u) =jo(v) = jg))(x)). For example, for the unperturbed EHg microstrip mode, we

have J(O)(u) J(O)(V) = jOx).

Based on the above expression of currents, let us examine the two cross-terms of
Cy, in (A.9) one step further. They are rewritten here for convenience as

-b+w b+w 0 jg(x _ xc
_ f (0)(x) j [ € Y3J(0)(X') dE_,dX'

-b-w b-w 4mpe

phes
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and

W

(0 .

W

and

-w

Notice that we have denoted Int (£) as

Int (€) =2 b
4npe

terms can be reduced to

- f Int (§) f (j sin &w) ) du

W

-b+w btw poo | \
3 f (0)()() f f e.lg(x - x)
-b-w bw J-oo 47pc

- Then by changing variables and carrying out the dot operations, we obtain

oo Y +w +w ‘
- f 3 _gi%b f % jO(u) du f e 5 jOw) dv gk
~00 47tpc -w

- f Int (£) f (cos &) jPu) du f

e ® ] (j sin &u)jS Xu) d“J

Y3 Qx) dgdx’

-w

] Y +w +w
—f —2 & 12&’] el i9w) du f e &5 iOw) dv dg

W

For antisymmetric modes, j, ~ is even andj 1s odd. By making use of the

symmetry characteristics, the above terms can be reduced to

+w

(-jsin&v) i) dv a&

-w

+w

(cos&u) J(O) (v)dv d§

)

-w

So they are in the same form but of different signs, and will cancel out in the calculation.

Similarly, for symmetric modes, jio) is odd and jio) is even. Thus the two cross

+w
f (cos &v) jVv) dv &

W
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and

- f Int () f (cos &) jV(u) du f (- j sin &) jOv) dv dg

oo W W

b+w ]
f<n2(x) f et jbx Tn(x—b) dx
b

W W , x-—b 2
(A.13d)

To evaluate (C.13), we make variable changes by letting u' = (x + b)/w and v' =
(x b)/w and then refer to the formulas developed in Appendlx B of [4]. We obtain

Again they have the same form but of different signs and will add up to zero.
With the two cross-terms removed, C12 now becomes

-b+w

o0 b+w +) b " | an+1
Cip= Rt Q0 efrax | Qe axdg ) =" { Jn* ( i 6w) (A4
J—oo 41tpc J-b-w b-w - (J ) ' a)
roo Y, r-b+w b+w ‘ ' n
o 22| Owmetax [ Q00 o axat A1) fion(x) = =0 "(“ *D W)
Jooo 470c [, b | ) (A.14b)
Substitution of expression (A.10) into (A.11) with appropriate arguments for i
i9 and j$?, we obtain n1 (x) otisP Wi TnEw)
10 Jz(), n - (A.l4c)
N-1 0 o Y, in
=2 af,?) a;’ L9 60 £, 0c)dE ) = et it J 1wnh(&w) ’
- 4mpe ¥ (A.144)
m=0  n=0 (A.12) G [
o8N o Yo 0 |
. ,
+ n% by 20 by f po— —2 o (X) t(z oo(x! )d?, here (1") represents the complex conjugate of j* and Jj, , Jan+1 are Bessel functions of

order n and n + 1, respectively. Applymg (A.14) to (A.12), we obtain the final form of

where Cizas

3) jEx :
f< n1(X) = j S, V dx (A.132) |
fo(x) = f etitq/ 1- (A.13b)

-b+w
f( znl (X) f + j&x Tﬂ

b-w A / (A.13c)

gzp &2 [ (m + 1)(n + 1) Ty (WE) Tngn (WE)] dE

N-1 N-1 s ‘
0 Yo ey
+ 20 3 60 f S €I [ W2 I (wE) To(wE)]

(A.15)

Evaluation of 6]]
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. , ' ) _ N-1 0 N-1 0 f( (x) f( ) (x") 9 (Y -
Refer to (A.1b). Since 5(10) is known for the fundamental coupled microstrip mode - Cq = aﬁn ) afl ) xm1 ; xnl g {T} ¢ dé
o - L= c
EH,, it is independent of {, and can be moved inside the differentiation operator 0/3( m=0  n=0 -0 T o 0
: N-1 N- '
So (A.1b) can be rewritten as + z b® l @ f f(zml(x) f;zl(x ) RS d§ (A.18)
o e 4m 0 g '
. = =0 oo 0
611=fdej{_a—j 0@ &2+ 7V i@ 1% 8, &) Jox)de} |t; ae- o C
ag )
% 2 o

Then by using (A.2a) and (A.3) to above expression of Cy1 and carrying out the dot

operation, we obtain

Ch =% 2 afr?) Z aflO)f (m+ 1)(2n + 1 " nJm+1(W§)Jn+1(W§) Cyx 48

m=0 n=0 &
Cn= N-1 -
o0 ©) (0) m-n 2
] at f f (96 12+ i) + e T pIDEES + DI 06 *Z, b 2 k f PO ROLRGR
2 &1 J-o ac (A.19)
her:
. I ae f f 9 (9@ 1P+ D) + o+ i piDGEIS + Kol 5]}| a5 e N AS l
e Jo J-0C C""=SE{_PZ} . (A.20a)
(A.16) "
. & and .
As in the evaluation of Cj2, we take the limit y — 0 of C3, then oo { Z(C)}, _
SrTe ¢, - (A.20b)

d&dx

-btw -btw  poo iE(x - x) '
ffmf dx jQ0 f f 2| e [y, {9 - Y3(C)J(O)(X)]} .

-b-w -b-w 00 ac l 4TCp c

b+w -btw  poo E(x - x) '
¥ j dx j9x) f f e {9’5——— [, iQ0) - Ya(% { Qi )]}

The expressions (A.15) and (A.18) are the final forms for Cizand Cpy, respectively,
which can be computed using general numerical quadrature methods.
déd |

-b-w -b-w —-00 ac.a 4np

C 0

(A.17)
where Y,(£) and Y3({) represent Y, and Y3 with {g replaced by L. |
By the same procedure as that for Cyz; we can show that the cross-terms in (A.17)
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