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Abstract

There has recently been a resurgence of interest in the
propagation characteristics of open integrated microstrip
transmission lines. This is due to the discovery of leaky regimes
for higher-order modes on the lines. In contrast to the dominant
EHg mode on _microstrip transmission lines, three distinct
propagation regimes for higher-order modes exist on open
integrated microstrip transmission lines. In this paper a
powerful, new integral equation. formulation is used to analyze
propagation ih -all three regimes for integrated microstrip
transmission lines. This formulation provides a clear physical
picture of the different propagation regimes based on the location
of surface wave poles and branch points in the complex spectral
-var}able plane. The integral equa(tion is discretized via the
method of moments, where entire-domain basis functions

incorporating suitable edge behavior are utilized to provide
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convergence with relatively few terms. Results obtained in the

form of propagation constants and current distributions are

compared with the results of other workers, and good agreement

is observed.
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Leaky Mode Analysis of Microstrip Transmission
Lines with EFIE Method

I. INTRODUCTION

In the past few years, there has been a resurgénce of interest in the propagation
characteristics of open integrated microstrip transmission lines. This is in large part due
to the discovery of leaky regimes for higher-order modes on the lines. In contrast to the
dominant EHp mode on microstrip transmission lines, three distinct propagation regimes
for higher-order modes exist on open integrated microstrip transmission lines. One such
work was first published by Ermert [1] for closed microstrip structures. He presented é
thorough mode-matching analysis of the fundamental and the first two higher order
modes. A principal conclusion from his work was that a "radiation" region exists close
to the cutoff of these modes. Howe\}er, Ermert's.description was incomplete, and due
to the exponentially growing nature of these leaky modes, he rejected any inclusion of
such modes in his analysis. Later Oliner [2] and Oliner and Lee [3, 4] and Michalski
and Zheng [5, 6], described three distinct propagation regimes for higher-order modes
on open integrated microstrip transmission lines. These works help to clarify the
unclear features hidden in the leaky modes.

The first regime, denoted here as the bound regime, is characterized by
propagation constants that are purely real (in the low loss limit) and fields that are
confined to the vicinity of the transmission line. The dominant EHp mode of open
microstrip structures is always in this regime. The second propagation regime, the
surface wave regime, is characterized by complex propagation constants with relatively

small imaginary parts, resulting in attenuation of the signal traversing the line. This

attenuation is due to the fact that surface waves traveling away from the axis of the

transmission line are excited in the film layer of the integrated circuit background
structure, and energy from the transmission line mode is transferred to these surface
waves. The third propagation regime, the radiation regime, is characterized by complex
propagation constants with relatively large imaginary parts. In this case losses occur

from both excitation of surfdce waves in the film layer and radiation into the cover
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medium surrounding the integrated microstrip transmission line. Micros&ip modes
operated in the last two regimes are called leaky modes. The existence of such leakage
phenomena has been experimentally verified by Shigesawa, et. al., in the closely related
case of integrated dielectric waveguides [7].

In this paper a powerful, newly developed electric field integral equation [8] is
used to analyze propagation in all three regimes for intégrated microstrip transmission
lines. This formulation provides a clear physical picture of the different propagation
regimes based on the location of surface wave poles and branch points in the complex
spectral variable plane. The integral equation is discretized via the method of moments,
where entire-domain basis functions incorporating suitable edge behavior are utilized to
provide convergence with relatively few terms. The résults obtained are compared with
the results of Oliner [2] and Michalski and Zheng [5, 6], and good agreement is
observed. » '

In Section II the integrai equation formulation is introduced. Based on the
definition of parameters in the formulation, the three above mentioned propagation
regimes are identified and discussed in Section III. Section IV details the application of
the method of moments of the integral equation and discusses numerical implementation
of results. In Section V we present numerical results in the form of dispersion curves
and current distributions in all three propagation regimes. As a check, these results are
- compared to those obtained by Oliner [2] and Michalski and Zheng [5, 6]. We close in
Section VI with a discussion of further applicability of these techniques in analysis of
coupled microstrip transmission lines and isolated and coupled integrated dielectric

waveguides.

II. FORMULATION
Consider the integrated microstrip transmission line geometry depicted in Figure 1.
The integral equation satisfied by the unknown surface current on the line with an

assumed propagation dependence of exp[j(wt - {z)] is derived in [8, 9]:

‘t.(kiﬁ‘%'-)jé’(;‘a'lﬁ'; O K@ 0dr=0, pet
g (1)

e
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where k(p'; {) is the unknown surface current on the microstrip line, t is a unit tangent

to the microstrip line surface and V=V,+ jCE=§ai+§ai+ j€z is the axially
X y

transformed del operator . We have assumed that the natural microstrip modes are of

main interest.

cover region /oo ] y
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Fig. 1 An axially uniform, isolated microstrip transmission line.

The electric Hertzian potential Green's dyad decomposes into a principal and a
reflected part, 8(p | p3 {) =gF+ 8", where 2? is the two-dimensional unbounded
space Green's function in integral form, and the reflected Green's function has

components
“>T — '—".‘ ~ o~ a ™ o . r~ A pn
g (pips0) =thX+y(5;gcx +g y+ilg z)+zgz

The scalar components of the principal and reflected Green's dyads take the foilowing
forms [9]:

o0

ei€ (x=x)a-ply-Y'l

d§
4np, (2a)

gP(p1p; () =

— 00
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g{\ © [ R{(\)
jE(x-x"), ~p.(y+y)
g I= R,(\) |2 © dt

4T p,
con | o (2b)

where A2 = £2 + (2. The wavenumber parameters are defined by pif= Z‘,Z + CZ - kif,
and k¢ and kg are the wavenumbers in the cover region and film layer, respectively. The
reflection and coupling coefficients in the integrands of the reflected Green's dyad
components are given by

" Kp, +p;tanh (pst)

=P coth (p;1)
Pc+Ds coth (p; t) .

on 2(K-1)p, K
[pe+pecoth (pet)] [Kp.+petanh (pst)] €c

where €; and &¢ are the permittivities of the cover and film regions.

For Eq.(1) to be applied in the following work, we simplify it further by assuming
that the microstrip line in Fig. 1 is thin and of negligible thickness. In this case, the
~ induced surface current is on the y' = O plane and the contour /involved in the

integration becomes a line segment extending in x direction. For the specialized

structure, the tangential unit vector t and the surface current k can be expressed as

t=xtx+zt;, k =xKks+zKk,

To evaluate Eq.(1), we rewrite the integral representations of the scalar -

P T
components & and g, , as

g?,}f,c(P|X';C)=f i{’,}f,c(plx’;C,&)dé; 3)

with

: .p e 6(x-x)e—p, 1yl

1 f NS —
4T p,
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j§(x-x) g=Pc ¥
it \ =R e’ e
" 4np,
iy C
c

where the fact y' = 0 has been applied. Substitution of (3) into Eq.(1) gives

tLim (k24 VV I Ix; LEVK (x; O dE dx'= 0
y—-0 ] a (4)

©o
where we have assumed interchange of differentiation and integration is valid. Notice

that the operator V now becomes $= j<‘,§+5a—§+ jCE since éa——>j§ when we
y X

interchange 9 and f d§
ox - .

It is seen that a discontinuity at y = 0 will be encountered while taking derivative

of the quantity i® on y. In solving Eq.(4), we must exercise caution in taking the limit

as y — 0 because of the derivatives on y involved in V operation. By omitting some

purely algebraic steps, we obtain

K= (iP+ iD(Xky o+ 2K+ Yig(ERx+ ) Kz) ®)

sothat

- >

Which poses no problem in the limitas y — 0. Also
VK = (ER+ 25 +i0 AT + DRkt 2k 4 YiL(Ehat LR
which gives

VK = (P + iD(EKkx+ 0K - Poit(E ks + L Ky)] @®)
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where -2- i, =-p, i has been applied. Itis seen that 0 7-iPkyX = Oand the derivative

oy oy
of i’ on y is not necessary to be calculated. This allows us to avoid getting into trouble

while taking the limit y — 0. We then obtain

t"“i%'i‘i{= (j&tx+iCt, )P+ ii )(jE.vkx'*'jt..kz)_pcix:(j(z:kx'*'jckz)] )]
Again the limit as y — O poses no problem. Substituting (6) and (9) into Eq.(4) and

noting that when y = 0 the quantities i’, i} andi_ become

E(x-x)
i? =2
4np.
T
il R gigeen

ir cl 4npe (10)

respectively, we obtain, after taking the limit y — 0 in the results, the integral equation

as:

o0

ei(x-

Pc

by J—oo

- >
]
N >

Eventually, two coupled integral equations are obtained by letting t=xand
They are

oi&x-x)

o4

[ KA (14R Ky~ E(1+Re—p, C) (Ek, +{ k,)]dE dx' = 0

[

(12a)

x") :
[kZ(l'*'Rt ) (txkx +tKz )-(1 +Rt_pc CX gtx + Ctz)( gkx + Ckz )] d‘t: dx'=0
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~ ) ej E(x-x") 2 '
z: [kc(1+Rt)kZ—C(1+Rt—ch)(§kx+§kz)]d§dx =0

c

b J oo (12b)

Equations (12) are the final form of the electric field integral eqhations for thin isolated

microstrip line to be used in Section IV.

III. PROPAGATION REGIMES

The integrands in the spectral representation of Green's dyad components contain
multi-valued parameters p¢ and pg, necessitating a choice of branch cuts in the complex &
plane. The integrands of the reflected Green's dyad also contain the coefficients Ry, Rp,
and C. The first of which has a simple pole when A = Ap is an eigenvalue of a TE mode
of the symmetric slab background structure, the second of which has a simple pole
when A =Ap is an eigenvalue of a TM mode of the symmetric slab background
structure, and the third of which has simple poles at both TE and TM eigenvalues.
Careful examination of the integrands reveals that all are even functions of py, so the
branch cut for this parameter ot implicated. V

To correctly locate the po.ions of the poles and branch points in the complex &

plane it is necessary to invoke material losses, and later take the low-loss limiting case.
To this end we assume
go=& —je", er=gf —jef, &, & >0
so that
‘ ke=ker — jKeis )\p‘:?\vpr—jxpi, C=B-jo
where all quantities above are non-negative. Surface wave poles occur in the complex

¢ plane at values of § which satisfy Ej,f,+ Cz = }\,f,, giving
2 .2 .2 a2, 2 .
§p= (xpr“?"pi— B +a) - 2 O"pr%'pi_ Bo)

We will assume for convenience that the integrated circuit background structure supports

only one surface wave, the dominant TMg mode, in frequency ranges of interest (a
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restriction that will be removed later in sections IV and V). Similarly, the brancl&point

. 2 ,
in the complex & plane corresponding to pc occurs when &+ Cz—kz =0, or

NI
Er= (K~ B+ ) - 2j (kerkei~ Bo)
. 2 2 2 2 2 2 hi : ds t
Now consider the case of B~ - o” > Ay~ Ay > ki k(. This corresponds to pure

guided microstrip mode in the bound regime. We first assume that material losses
dominate, s0 AprApi > B, and then gradually allow propagation lqsses to increase (or
equivalently, take the low loss limit) such that Bo is greater than Aprhpi and kerkei. This
leads to a migration of the location of the surface wave pole and branch point in the
complex & plane, as shown in Figure 2. Note that the migration of the pole and branch
point do not cause them to cross the contour of integration, which is the real § axis.

. . 02 2 2 2 2 .2 .
Thus in the bound regime, characterized by B"~o” > A —Ay; > ki, ~K;, evaluation of

the spectral integrals in the expressions for the Green's dyad components can be

performed in a straight-forward fashion.

I:(Y;) € - plane
¥ ==~ -l--> x branch point
G m o -—=--—>o0 pole

—pe >~ Re(§)

integration contour

Fig. 2. Integration contour and migration paths of poles and branch
points for bound regime.

-

; 2 .2 2 2 .2 .2 .
Next consider the case.of Kpr—kpi > B"-o” >k, —k_, which corresponds to the

surface wave propagation regime. Again assuming material losses dominate and then

)

I
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gradually allowing propagation losses to increase (or taking the low loss limit) until Bo
is greater than Kpr?\,pi and kerkei we obtain the complex & plane picture of Figure 3. Note
that in this case the surface wave pole has migrated across the contour of integration.
Since the physical situation has not been altered, the integration contour should stay on
the same side of the surface wave pole, as described by Boukamp and Jansen [10].
This necessitates detouring around the pole as shown in Figure 3, resulting in the
inclusion of a residue term in evaluation of-the spectral integral. This residue
contribution corresponds to the surface wave which has been excited in the integrated
circuit background structure, resulting in a decay in the microstrip transmission line
mode (o > 0). This surface wave travels in the integrated circuit surround at an angle to

the microstrip axis with cosine 3 / Apr.

ImE) € - plane
A
% —-—- - x branch point

ﬂ pole
— S Re(€)

integration contour

= 0

(o<--=
Q——

X-=f===3

Fig. 3. Integration contour and migration paths for surface wave regime
(or leaky regime (1) in Fig. 5).

The third propagation regime, the radiation regime, occurs when Bz— ol < kZ‘r—kii.
Allowing material losses to dominate and then gradually increasing propagation losses
(or invoking the low-loss limit) until Bo is-greater than Apr Ap; and kerke results in both
the pole and the branch point migrating across the contour of integration, in a similar
fashibn as in Assailly, et. al. [11]. This effect is shown in Fig.4. For the same reasons

given above, this necessitates deforming the contour of integration around the branch cut
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and the surface wave pole as shown in the Figure. In this case propagation losses are
quite large, since both radiation into the cover medium and surface waves in the film

layer are excited.
Im@) € - plane
I—-----------»-
branch point

ﬂpole i
Vo Re®)

integration contour

- >0

Q——

Fig. 4. Integration contour and migration paths for rad1at1on regime (or
leaky regime (2) in Fig. 5).

From the above discussion, we end up with three propagation regimes as:

B> ?\,p , bound regime

2 2,2 :
kz < -a'< 7» surface wave regime

B - <k2, (13)

radiation regime

where material losses in the film layer and in the cover medium have been assumed to be

zero, and hence Xp and k, are purely real. A dispersion curve indicating the three

L d

propagation regimes is provided in Fig. 5.

IV. METHOD OF MOMENTS SOLUTION

To solve equation (1) numerically, let t=Xt,+2t,, and K =Xk, +2k, We then
follow a similar procedure as done in [12] by expanding kx(x') and k,(x') for even case
(even kz(x') and odd kx(x")) as follows

s
B
Iy
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N-1
N o~ ! 2 '
k(x)=4/1- ) ;} an Uzni1 () (14a)

N-1 :
I (x) & — ke " by Ton () i
: A / 1-—- (%’)2 n=0 (14b)

where ap, and by, are expansion coefficients representing the contribution of each order of
Chebyshev polynomials Up(x") and Tp(x') to the unknown surface currents and the
factors in front of the summation terms give Up(x') and Ty(x") the correct edge
behavior. For the expansion of currents of odd case (odd k;(x') and even kx(x')), the
same kinds of functions can still be used but with Upp4+1(x") and Top(x") replaced by
Ugn(x") and Ton+1(x"), respectively. Notice that owing to even or odd symmetry of the
currents, only even or odd orders of Chebyshev polynomials were used. The same
functions were used later to test the equations in the longitudinal and transverse
directions (Galerkin's method). After an usual MoM procedure, we finally obtain the
LE.'s for the open microstrip geometry as

Even case:
N-1 “[ 2R -E2(R - C
Y a, 1" (n+1)f [ : (2 )] Yonv2 (WE) Jomao (wE) dE
n=90
N- (154)
-j 2 ba -1 5 f ). S (WE) Tamez (WEYAE =0

' m=0,1,2,..,, N-1.

N>

J2n+2 (W) Jom (w€)dg

N-1
Y an (DR (n+1) ¢ f

n=90

kR R C
=] 2 by (-1 )nwj C )] Jon (Wﬁ) J2m(W§)d§ =0

n=0
(15b)
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Odd case:
Nil an (C1)" (0+1/2) RESS (1: -c) Tont1 (WE) Tomar (WE) dE
n=0 Jo pc&
+j NZS by (1" 3¢ er (R;—C) Tons1 (WE) Jamer (wE)d§ =0
n 0

(16a)
m=0, 1, 2,..., N-1

n=0 ¢

N-1 ] * |
Z: Zan D" (+1/2) § f (—RPC) 2n+1( w&) szﬂ(w&)d&
0

No1 T R-CR-C
+j 2 b DM i Cp( )

n=0 0

Jons1 (WE) Jymyq (WE)AE =0

(16b)
where R = 14R; and C' = pcC.

This is a homogeneous system of 2N simultaneous algebraic equations for the 2N
current expansion coefficients, It has nontrivial solution for those values of { which
render its determinant vanish. To obtain the propagation constants of various modes,
we can iterate, using Miiller's method, to search for the zeros of the determinant in the
complex ¢ plane. In the bound regime, the zeros are purely real (a=0), which belong to
bound modes; however, in the leaky regime, the zeros are complex ({ =B — jou ), and
correspond to léaky modes. »

Numerically, in evaluating the infinite integrals, a path along the dashed line
. shown in Figure 4 should be chosen whenever a surface wave pole near (or right on )
the real &-axis is encountered to avoid the numerical difficulty, since at that point the
integrand is nearly singular (or singular). Also note that in regime 3, on performing the
integration along the,real E-axis in the interval [0, Ep] (where the contribution of the
radiation comes from), the wavenumber parameter p; which involves a square root
operation has to be negated if an intrinsic function (in a computer program) which takes
the principal value of a square root is used. Due to the branch cut, the angle chosen for

Pc is 1800 different from its principal value.
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Typical calculated results including dispersion curves and current distributions are

shown in next section and, wherever possible, are compared to other researchers’ work.

V. NUMERICAL RESULTS

In Figure 6, we present the dispersion curves of the first three higher order modes
(EH1, EH and EH3) in their leaky regime for an open-microstrip line geometry depicted
in Fig. 1. The same structure was previously analyzed by Oliner [2] using an
approximate, asymptotic approach [13], and also by Michalski and Zheng [6, 14]
utilizing a rigorous analysis based on the mixed-potential electric field integral equation
(MPIE). Results from the three different approaches are seen to agree quite well for EHy
mode; the agreement is somewhat less favorable for higher order modes.

In Figure 7, we show dispersion characteristics of the fundamental and first three
higher order modes in both bound and leaky regimes for a narrower microstrip line with
a higher dielectric constant. This microstrip geometry was previously analyzed by
Ermert [1] and Lee and Bagby [15] in the bound regime and lately by Michalski and
Zheng [6] in both the bound and leaky regimes. Our results for EHg and EH{ modes
are seen to agree completely with Michalski and Zheng's work; the agreement is also
quite good for EHa mode. The dispersion curves TMg and TEj in this figure represent
the first two surface wave modes supported by the symmetric slab waveguide (the
dielectric layer and infinite conducting plane assembly). When B/kq crosses TM line,
the corresponding microstrip mode enters the leaky regime. '

Figures 6 and 7 show that the leakage is large in lower frequency range, the
leakage gradually decreases while the frequency moves up and ultimately becomes
lossless after entering the bound regime where { is purely real (o = 0).

In Figures 8, 9 and 10, we present some sample current distributions of the three
higher order modes of the narrower microstrip. The numbers 1,3 and 2,4 represent the
real and i.maginary parts of currents corresponding to two different operating
frequencies, respectively. Currents in each figure are normalized to have a maximum
value of one. It is noted that there is relatively less change in the longitudinal current
distribution than in the transverse current distribution as the microstrip mode passes
from the bound regime to the leakage regime. Also notice that in the bound regime, the

real part dominates the longitudinal current and the imaginary part dominates the
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transverse current, which means the currents are 90° out of phase (as can easily be

verified by the continuity equation). This is, however, not the case for leaky modes.
The same current distributions are supported in Michalski and Zheng's work {5, 6]

using subdomain basis MoM. Comparison shows that the shape of currents are similar,

whereas the values are quite different due to normalization and an opposite propagating

direction being used in their work.

VI. CONCLUSIONS |

In this paper a powerful, new integral equation formulation was used to analyze
propagation in all three regimes for integrated microstrip transmission lines. This
formulation provides a clear physical picture of the different propagation regimes based
on the location of poles and branch points in the complex spectral variable plane. The
integral equation was discretized via the method of moments, where entire-domain basis
functions incorporating the correct edge behavior were utilized to provide improved
accuracy and convergence with relatively few terms. The results obtained are in good
agreement while compared with the results obtained by other techniques.

The first regime, denoted as the bound regime, is characterized by propagation
constants which are purely real (in the low loss limit) and fields which are confined to
the vicinity of the transmission line. The second propagation regime, the surface wave
regime, is characterized by complex propagation constants with relatively small
imaginary parts, resulting in attenuation of the signal traversing the line. This
attenuation is due to the fact that surface waves traveling away from the axis of the
transmission line are excited in the film layer of the integrated circuit background
structure, and energy from the transmission line mode is transferred to these surface
waves. The third propagation regime, the radiation regime, is characterized by complex
propagation constants with relatively large imaginary parts. In this case losses occur
from both excitation of surface waves in the film layer and from radiation into the cover
medium surrounding the integrated microstrip transmission line.

We are now in the process of utilizing the results of these lossy modes to the
design of microstrip device couplers, and extending this work to isolated and coupled

integrated dielectric waveguides.
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Fig. 5. Propagation regime diagram. The EHy mode is the second higher order
mode of the microstrip shown in Fig. 1.
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(a) Transverse and (b) longitudinal current distributions of the first higher

order mode of the microstrip line shown in Fig. 7. - ‘
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Fig. 9.
higher order mode of the microstrip line shown in Fig. 7.

(a) Transverse and (b) longitudinal current distributions of the second
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Fig. 10. (a) Transverse and (b) longitudinal current distributions of the third

higher order mode of the microstrip line shown in Fig. 7.
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