240 BERFERFRE - (RENT %)

Integral Equation Formulation of Microstrip Resonators of Arbitrary
Shape :
Wei-Jane Shu* , Ching-Her Lee**

Department of Industrial Education
National Changhua University of Education, Taiwan R.O.C.

Abstract

A spectral-domain, full-wave technique based on an electric field integral equation

formulation is developed for the analysis of laterally open microstrip-patch reS(.)nators of
arbitrary shape. The effects of the layered background structure are .rlgorouslly
incorporated in the formulation by means of the Hertzian vectf)r.potentlal Green's
function. For numerical solution, a Galerkin's method of moments is implemented. The
conducting patch is modeled using planar triangular surface patches, and the current

distribution on the microstrip patch is approximated in terms of subdomain-type vector

asi i i 1 lements.
basis functions defined over the triangular e .
For validation of this approach, the modeling of an example rectangular shape

microstrip resonator is presented in detail, and the computed results will be publishedina ..

coming paper.
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"‘ 1’ Introduction

Printed microstrip-patch resonators of various shapes are used w1dely at microwave
' nd millimeter-wave frequencies for building filters, oscillators, antennas, etc. These
esonators have narrow bandwidths and can only operate effectively in the vicinity of the
ftsonant frequency. Therefor, an efficient and accurate approach to help ascertain the

"d accurate techniques are the rigorous full-wave spectral or space domain methods
Ehich account for all wave phenomena associated with the structures and the layered
| "’ckground medium [1]~[7]. Though the full-wave approaches are usually very
mplicated, it was seen in the literature that the results by the full-wave analysis agree
'tremcly well with those measured at high frequencies [8].

In this paper, we present-a full-wave technique based upon a rigorous spectral
main formulation of electric field integral equation (EFIE) for the analysis of
_1crostr1p patch resonators. Because the EFIE formulation is utilized, the procedure is
plicable to both open and closed resonator surfaces.

For numerical solution, the patch or resonator surface is modeled using certain kind
i surfaces patches. In this research, a set of specml subdomain-type vector triangular
s1s functions which are defined on elemental triangular patches i 1s used in the Galerkin's
ethod of moments procedure to represent the unknown patch current. A crucial
aracterlstlc of these triangular functions is that they yield a current representation free
i line or point charges at subdomain boundaries. Another important point of these
ctor basis functions is that they are easily extendible to approximate the currents of
licrostrip patch resonators of arbitrary shape.

In Section II, a brief review of the EFIE formulation for a general microstrip
onator is presented. The vector triangular basis functions for modeling the current on
microstrip patch is developed in Section III. To solve the EFIE, the Galerkin's
‘@ ment method is adopted in conjunction with the vector basis functlons defined over
" ngular subdomains to obtain a linear system of equations for the patch current. In
Ction IV, we give an example of vector triangular basis modeling for a rectangular
g fect electric conducting patch. The validation of this approach and areas of
Plications are presented in Section V.
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IL. The EFIE Formulation for a General Micorstrip Resonator

Consider the integrated microstrip patch of arbitrary shape depicted in Fig.1. The

integral equation satisfied by the unknown surface current Js on the patch is ( for natura)

modes )[9]
T (kZ+VV-)j G(FIF) T, (p)ds =0, ples (1)

where G (T1T) is the electric Hertzian potential Green's function for the planar strip in
the layered dielectric-conductor background structure shown in Fig.1. The Green's
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Fig. 1- A general microstrip resonator.

o lane and ¢ plane.

function is in dyadic form and decomposes into a

function , and the reflected Green's function has components

G'= XG{X+V (—GI X + Gl y+—GIz)+ zG z
‘ ’ X oz o
The scalar components of the reflected Green's dyad are given in terms of invg@

transform integrals as

2.
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where A" =&" + () and the wavenumber parameters.are defined :

$2_ 22 _ 2

Jilm layer, respectively. The reflection and coupling coefficients in the integrands of the

2 2 '
as pc=12—k , and

where k¢ and kf are the wavenumbers for the cover region and dielectric

: fjeﬂected Green's dyad components are given as

R < P ~Pgcoth (p,t)
(=
P.*+pgcoth (pt)

R = Kpc—pftanh (e19)
Kp, +pstanh Oft)

(4)

C= 2(K-1)p,
[P +pecoth (pet )] [Kp, + pe tanh ( Pet)]

,{ here K = gyfe., and €, and gr are the permittivities of the cover region and the film layer

- fespectively,

The integrands in the spectral representation of Green's dyad components contain

-+ fhulti-valued parameters Pc and pf, necessitating a choice of branch cuts in the complex &

The integrands of the reflected Green's dyad also contain the

. " foefficients Rt, Rp, and C. The first one has a simple pole when A = Ap is an eigenvalue
principal and a reflected part, & - :

G(pl p) =GP+3", where GP is the two-dimensional unbounded space Green's. f _ _ _ .
R "t Mas a simple pole when A = A is an eigenvalue of a TM mode of the symmetric slab

Uf a TE mode of the symmetric slab background structure, while the second coefficient

Lackground structure, and the third one has simple poles at both TE and TM eigenvalues.
Careful examination of the integrands reveals that all are even functions of pf, so the

branch cut for this parameter is not implicated.
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’;which require the continuity of the normal components of Iy across the edges shared by
fadjacent elements, or their vanishing at the boundary edges of the patch.

III. MOM technique
A. Equivalent current representation with planar triangular patch expansions

To-solve Eq.(1) numerically, we model the microstrip patch by triangular elements.
The nodes of each triangular element are assigned the indices i, j and k in the )
counterclockwise vdirection as illustrated in Fig:2. Here we adopt a local indexing ;
scheme, in which these mdlces assume the values 1, 2, or 3 ina cychc manner. The 31des B |

of any elemental trian gle T" are formed by three ed«e vectors 8b i =1,2,3, with 8 .
orlented from node j to node k. Partitioning T™ into three parts A( ) , the total area AM s

thus E AS,“). We then define L as the area coordinate associated with the 4th node [10],
i=1
which is given as
A(“) v 3 .
Lr—(n—) ; EIL«F—l ()

The global position vector t of an arbitrary point x on T can be expressed in terms of the R 3
. s —(n '
area coordinate and the local position vector p;, ) as

S0 B P
P=iMep? L Pl Ll L, =123 ©

On modeling the microstrip'pdt(,h, the patch current on T" is approximated as 4

) s

™= 1 W (5) | QRS T
= . ig.2. Local coordinates associated with a mangular element. The element number
where V( ( p ) is the vector basis function defined as L . superscripts have been omitted.
—'(n) ' : ‘ |

V(P = ®)

~and I( ) is the unknown current coefficient to be determmed In terms of the above— . Testing procedure and matrix assembly

mentioned current basis functions, the EFIE (1) becomes
—(n),

. o w3 ) Py ,
Hk2+VVY Y | G(r|r')-21§)§A(n)d*n“0 O
. n i=1 ‘

In the moment method solution procedure, we need to test Eq.(9), which means to
ke a dot product of this equation with vector basis function \é (£=1,2,3), or
- Fquivalently, pg (3—1 2,3),andi mtegrate the result over T"

To verify the validation of the vector basis rep1esentat10n for mlcrostrlp patch "

= Y m) . 2 P ) 3 _'(n) '
current, we may take the divergence of & )(p) which i$ 0 Vi" (k&+VV.) Z G(fIT) - £ Vi dsy |ds
«n) - 3 1‘“) ™ n=l fon =1
V- (p) = 21 o) (10)’,_ m=123- ,N | (11)

In view of the equation of continuity, the charge density associated with the current (7) is
constant over any triangular element. When the expansions (7) is substituted into the
integral equation (1), the coefficients Ign) are constrained by the boundary -conditions,
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For the sake of simplicity, we use a one- pomt rule to approximate the testin,
integrals. That is, to approximate p(r) and G (F1¥' ) with the corresponding values D a

the mth triangular centroid. Thus Eq (11) becomes

0-FPk24TY) 3 3 I

n=1 {=1 .rn
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m=12- ,N (12)
where the ccmer of gravity of T™ is specified by the global position vector 7¥™ and the
local vector pog o :

Eq(12) are most conveniently evaluated by transforming from the global coordinate - B
system to a local systcm’of coordinate defined within T, which is the so called
normalized area coordinates [11]. The integral transformation from Cartesian to
normalized area coordinate for any function g(f') may be written in vector form as

I'= % &Ly

i=1
where L' are SUb}CCt to the constraint of (§), and

. 1oLy

>, S -,

g(r) —“=f f g(r) dLy'dL;'
Ir“ 280 Jo Jy

As aresult, we obtain

(13)

; bopleLy . \
0= 2 > KB (k2 +Vv-)f f E@E™IF)-(8 Ly =6 L) dLy dLy ff
n=1 4= o Jo : " ‘
which leads toa system of linear equations
§ %,Zﬁf“’lf":O , £=1,2,3 (15)
n=1 i=1
where the impedance Z§™ is given as
1 ey
z‘“‘“’ P (k2 + VY- ) EE™1F)-(8 Ly - 'e'ﬁ“’- Ly') dLy' dLj (16)

0 Jo
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IV. Modeling of an example rectangular patch resonator

Consider a rectangular patch with dimension Wy in x direction and W, in z
direction, which can be partitioned into 2-N4 N, patches of isosceles-right-angled

- triangular shape, as illustrated in Fig.3. The relation between the quantities mentioned

above is
Wx=h'Nx N WZ=h'NZ
where h is the length of isosceles-right-angled side.
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Fig.3. Modeling for a rectangular patch resonator

We classify these triangles into two groups. Group 1 indicates those triangles with
rectangle in the down-and-left, group 2 indicates those triangles with rectangles in the up-
and-right. Each node on the patch is assigned (x, z) in rectangular coordinate, with

x=hnx, z=h nz

- onx =0, 1,2, (Ng=1), nzy=0,1,2 -
nxy =1, 2, ,Nx, nzz=1, 2, ,N,

» (Nz~1)
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The notation 1 means for group 1, 2 means for group 2. From now on, we just deduce thet

formula for group 1, since it follows the same procedure to do with the group 2.
In the nth source element, the position vector of three nodes r *( Y v =1,2,3 4
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The position vector of the centroid point can be expressed as follows
c1 = (h-(mx,+0.29289) , h-(mz;+0.29289) )

Now we have calculated all the notations shown in Eq.(16) , and we substitute them

the three corresponding side length vectors &, »¥ =1,2,3 and the local vectors" Eq.(16) . Since the operator (k2 + VV. )G(F(m)lf') and the double surface parameter

Bin), i+ =1,2,3 from nodes to any point within the element are as follow

<) $hicgral is mutually independent, we assume the interchange of the two is valid. Next, we
fé' ¢ =(hnxy, hnz) aluate (k2 + VV. ) GG |, and for convenience, we define G( &,{ ) and take a

£ = (hoxy, he(uzp+1) )

asonable assumption that both y and y' approach zero as follows
= (h-(axi+1) , honzy )

(kYY) -G (H™iF) = (KZHVV. ) BEMRY ek G- g e

8&1 =(-h,h) )
81 —(0’—h) L _."’ |
Ekl' =(h,0) =f f GEL) o 6 drat | -
pir=(hL; , h-Ly') , e Je
Ejl =(~-hLj~hLy , hly') : here q(&,L) isin dyadic lfign and
Py >_,' L Gx=Qux = (kc2 2;2) ( t) é —%
Pxi = (hLl;,-hLy-hLy") o 2pe

B (I1+Ri—2pc)
For an isosceles-right-angled triangle with waist length h, as depicted in Fig.4, the ' = Qgz = (=0)- 20,

C . . late t t
pomt 1, j, k, c is the three nodes and the centroid, we can calcu ate to ge Eq.(16) now becomes

ic =0.4142136h

' B bopl-Lyf |
_ 3 mn)_"(m) - ,”»:, g (n)| . ) ' ' '
ji = ki = 0.7653669h | - § B L £ fo fo Q&L "Ly-8; L) dL dLy dG dE (18)
Pet = (0.2928%h, 0.2928%h ) fnce 5’2@"’ is not a function of integration variables L;' ,'Lj' and Ly'; we can perform the
Pej =(-0.70711h, 0.2928%h ) : ;
ack = (0.2928%h , —0.70711h ) L Iculdtlon of py pcg before doing the surface integral f f () d&df. The double integral
k L complex variable &, { will be computed numerically.
T : : For numerical solution, we have to find out resonant frequencies which render the
“Eeterminant of the impedance matrix vanish. The resonant frequencies are then
E bstltuted back to the matrix equation for solving the unknown current distributions f1r‘-
h Pk R ch mode. A Fortran program is under development for the computation work;
- umemcal results for some example structures are expected to be published in a coming
/A aper
¢ Pei —fsc_]
i i
-~ h >

Fig.4. Anisosceles-right-angled triangle with waist length h.
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V. Conciusion

In this work, a powerful, full-wave technique based on a rigorous spectral domaip

formulation of electric field integral equation is presented for the analysis of microstrip -

resonators of arbitrary shape. A special set of subdomain-type vector triangular basig

functions is utilized in the MOM procedure to represent the unknown patch surface -

current. The selected vector basis functions are seen to be powerful in modeling arbitrary-
shape patch surfaces. The approach developed in this research will be valided by using jt
to solve patch currents of simple, regular shapes. Work along this line is under process,

and results are expected to.be published in a coming papers.
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