Cross- coupled YBCO BPFs with wide upper stopband using quarter-wavelength stepped-impedance resonators

Hsu, Chung-I G.; Wang, Li-Ming; Chen, Li-Shian; Lee, Ching-Her

Abstract

This paper presents a cross-coupled high-temperature superconducting filter (BPF) design using (HTS) bandpass quarter-wavelength stepped-impedance resonators ($\lambda/4$ SIRs) for the wireless communication applications. A pair of transmission zeros associated with the cross-coupled configuration is designed to be placed near the passband skirts, greatly sharpening the rolling-off at the passband edges. The spurious-passband center frequency of the BPF using $\lambda/4$ SIRs is simulated to be higher than that of the BPF adopting $\lambda/2$ SIRs. A BPF using $\lambda/4$ SIRs, conceived to be smaller than the corresponding BPF using $\lambda/2$ SIRs, has been fabricated by double-sided depositing patterned YBCO film on a 10-mm-square and 0.5-mm-thick LaAlO3 substrate and by putting them in a copper housing. The measured results revealed that this BPF has a very wide stopband bandwidth beyond the desired passband.