Parallel Processing for Fuzzy Queries in Human Resources Websiteg

Lien-Fu Lai, Chao-Chin Wu, Ming-Yi Shih, Wen Chiou
Department of Computer Science and Information Engineering
National Changhua University of Education
Changhua City, Taiwan
{1flai, ccwu, myshih}@cc.ncue.edu.tw, a86651234@hotmail.com

ABSTRACT

In this paper, we use Parallel FuzzyCLIPS to parallelize the
execution of FQHR websites for two kinds of task partitioning in
both grid and cluster environments. First, a new architecture of
FQHR websites is proposed to parallelize the execution of fuzzy
queries on grid and cluster systems. Second, our approach
supports two kinds of task partitioning: data level and module
level. The data level partitions the facts and allocates them to
multiple processors for parallel execution, while the module level
partitions the rules and allocates them to different processors.
Third, a performance evaluation model is presented to analyze
the proposed approach. Finally, we implement a parallelized
FQHR website to test the speedups by experiments and to verify
the results of performance analysis.

Keywords: Parallel Processing, Grid Systems, Cluster Systems,
Fuzzy Query, FuzzyCLIPS, Human Resource Websites

I. INTRODUCTION

In human resource websites, the query requirements of job
seekers and hiring companies often contain imprecision and
uncertainty that are difficult for traditional SQL queries to deal
with. For example, when a user hopes to find a job which is
near Taipei City and pays good salary, he can only make a
SQL query like “SELECT * FROM Job WHERE
(Location="Taipei City’ or Location= ‘Taipei County’) and
Salary =40000”. However, both ‘near Taipei City’ and ‘good
salary’ are fuzzy terms and cannot be expressed appropriately
by merely crisp values. A job which locates in ‘Taoyuan
County’ with salary of 50000 may be acceptable in user’s
original intention, but it would be excluded by the traditional
SQL query. SQL queries fail to deal with the compensation
between different conditions. Moreover, traditional database
queries cannot effectively differentiate between the retrieved
jobs according to the degrees of satisfaction. The results to a
query are very often a large amount of data, and the problem of
the information overload makes it difficult for users to find
really useful information. Hence, it is required to sort results
based on the degrees of satisfaction to the retrieved jobs.
Computing the degree of satisfaction to a job needs to
aggregate all matching degrees on individual conditions (e.g.
location, salary, industry type, experience, education etc.). In
addition, traditional database queries do not differentiate
between conditions according to the degrees of importance.
One condition may be more important than another condition
for some user (e.g. salary is more important than location in
someone’s opinion). Both the degree of importance and the

D-46

1I. FQHR: A Fuzzy QUERY MECHANISM FOR
: HuAMN RESOURCE WEBSITES

EQHR [1] applies the fuzzy logic theory to develop a fuzzy
Wty mechanism for human resource websites. It contains (1)

ring mechanism to represent and store fuzzy data, and (2)
query language to make fuzzy queries on fuzzy

toring Fuzzy Data into Databases

QHR adopts the notions of Galindo’s work [6] to classify
Wy data into three types: discrete fuzzy data, continuous
data, and crisp data. The discrete fuzzy data is
sented by a discrete fuzzy set which consists of a set of
frete data items with their degrees of conformity. The
Muistic degrees of conformity (i.e. totally unsatisfactory,
e atisfactory, rather unsatisfactory, moderately satisfactory,
satisfactory, very satisfactory, and totally satisfactory)
ilized to make it easier and clearer for users to grade
es. “Totally unsatisfactory’ and ‘totally satisfactory’ stand
0 and 1 respectively, while the others grade values between
pind 1. For example, a fuzzy term ‘near Taipei City’ can be
ssed as a discrete fuzzy set like {(Taipei City, totally
actory), (Taipei County, very satisfactory), (Taoyuan
unty, moderately satisfactory)}. FQHR uses the membership
finctions in [7] to define the linguistic degree of conformity
[etween a discrete data item and a fuzzy term (see Figure 1).

rather
unsalisfactory
unsatisfactory

degree of matching to every condition should be considef
compute the degree of satisfaction to a job.

‘We have proposed a fuzzy query mechanism for h
resource websites (FQHR) [1] to alleviate the me
problems: (1) Users’ preferences often contain imprecision:
uncertainty. FQHR provides a mechanism to express
data in human resource websites and to store fuzzy data
conventional database management systems without modifyj ]
DBMS models. (2) Traditional SQL queries are based on
matching which is limited in its ability to come to grips Wil
the issues of fuzziness. FQHR provides a mechanism to
fuzzy queries by fuzzy conditions and to differentiate betw
fuzzy conditions according to their degrees of importance!/(3
Traditional SQL queries fail to deal with the compens
between different conditions. FQHR provides a mechanisri
aggregate all fuzzy conditions based on their degre
importance and degrees of matching. The ordering of que
results via the mutual compensation of all fuzzy conditions
helpful to alleviate the problem of the information overload.-

In FQHR, the fuzzy logic theory [2] is used to develo
fuzzy query mechanism for human resource websites
FuzzyCLIPS [3] is used to offer the capability of fuzzy
computation and fuzzy reasoning for matching and aggreg
fuzzy conditions. The matching and the aggregating of fuzzy
conditions are implemented as FuzzyCLIPS rules. Therefo
the number of fuzzy data needed to compute the degrees is:|

rather

satisfactory V&Y

Hz(x) y
satisfaclory

moderately
salisfactory

L] X
0 025 05 075 1

Figure 1. The membership functions for degrees of conformity

A fuzzy number 4 can be defined by a triplet (a, b, c) and
the membership function 45 (x) Is defined as:

main factor that affects the response time of making a fuzzy 4 2_a e
query. A large amount of fuzzy data may increase the p ASxsh
execution time substantially. We have proposed a Paralll Hz)=y .
FuzzyCLIPS programming language [4] that defines new. ooy PSFSC
syntax to call the MPICH library [5] by adding extemn: 0 Ja>c

functions into the FuzzyCLIPS inference engine. New defin
syntax follows the same style of the FuzzyCLIPS language
is able to execute a FuzzyCLIPS application in parallel on ti
cluster system. In this paper, we use Parallel FuzzyCLIPS to
parallelize the execution of FQHR websites for two kinds of
task partitioning in both grid and cluster environments. First;2
new architecture of FQHR websites is proposed to parallelize
the execution of fuzzy queries on grid and cluster systems:
Second, our approach supports two kinds of task partitioning:
data level and module level. The data level partitions the fa
and allocates them to multiple processors for parallel executlo
while the module level partitions the rules and allocates them
to different processors. Third, a performance evaluation model
is presented to analyze the proposed approach. Finally, We
implement a parallelized FQHR website to test the speedups by
experiments and to verify the results of performance analysis.

Therefore, each linguistic degree of conformity can be
pped to a triangular fuzzy number [8], e.g. ‘rather
sfactory’ is mapped to (0.5,0.75,1).

B The continuous fuzzy data is represented by a continuous
: zy set which consists of a set of continuous data items with
ﬁ elr degrees of conformity. For example, a fuzzy term ‘good
Slary” can be expressed as a continuous fuzzy set fike {(50000,
tally satisfactory), (45000, very satisfactory), (30000, totally
insatisfactory)}. The degree of conformity can be defuzzified
)y using mathematical integral to compute the center of the
drea that is covered by the corresponding triangular fuzzy
lumber [9], e.g. ‘very satisfactory’ is defuzzified by computing
!S center of gravity of (0.75, 1, 1) as follows.

; [} x(4x-3)ax .

.[;.75 (4x—3)dx

Therefore, the membership function corresponding to the
given ‘good salary’ can be constructed by {(50000,1),
(45000,0.92), (30000,0)} (see Figure 2).

Degree of Satisfaction

1
092

30000 45000 50000 Monthly Salary
Figure 2. The membership function of ‘good salary’

B. Makiné Fuzzy Queries on Web Databases

A fuzzy query consists of a set of fuzzy conditions. The
fuzzy set that defines a fuzzy condition could be discrete,
continuous, or crisp. Each fuzzy condition associates with a

_ fuzzy importance to differentiate between fuzzy conditions
" according to the degrees of importance and uses a fuzzy set to

state the degrees of conformity for different attribute values.

-The linguistic degrees of importance (i.e. don’t care,

unimportant, rather unimportant, moderately important, rather
important, very important, and most important) are utilized to
make it easier for users to grade relative importance.

For matching fuzzy conditions with fuzzy data, FQHR
adopts the possibility measure in the fuzzy logic theory [10] to
compute the degree of matching between a fuzzy condition A
and the fuzzy data B :

Poss{E is Z} = sup[min(z; (x), 45 (x))]

Where the possibility of B being 4 is obtained by: for
each data item xeU (universe), we get a minimum of two
degrees of conformity ,_(x) and 115(%) > and the possibility

measure is the maximum of these minimums. Computing the
overall degree of satisfaction between a fuzzy query and the
fuzzy data needs to aggregate all fuzzy conditions based on
their degrees of importance and degrees of matching. The
fuzzy weighted average (FWA) [11] is applied to calculate the
overall degree of satisfaction using triangular fuzzy numbers.
In FQHR, the matching degrees of all fuzzy conditions are
indicators (x;) that rate the overall degree of satisfaction
between a fuzzy query and the fuzzy data. The degrees of
importance are weights (w;) that act upon indicators. Therefore,
the fuzzy weighted average y can be defined as

n
Zi=l WiX;

V=L s Xy Wy W,) = e ——

Zi=l Wi

Where there is n fuzzy conditions, the degree of matching
x;, 1 < i< nisrepresented by a crisp value or a triangular fuzzy
number, and the degree of importance w;, 1 < i < n is
represented by a triangular fuzzy number. FQHR adopts the
approximate expressions on @ and ® operators for the
computation of L-R fuzzy numbers, which is suggested by
Dubois and Prade [12]. By applying FWA to calculate fuzzy
data’s overall degrees of satisfaction to a fuzzy query, the
ordering of all fuzzy data is obtained according to their overall
degrees of satisfaction.

D-47




III. PARALLEL PROCESSING ON FQHR WEBSITES

In FQHR websites, both the matching of fuzzy conditions
with fuzzy data and the aggregating of all fuzzy conditions are
implemented as FuzzyCLIPS rules. Therefore, the number of
fuzzy data needed to compute the degrees is the main factor
that affects the response time of making a fuzzy query. A large
amount of fuzzy data may increase the execution time
substantially. For example, the matching of two continuous
fuzzy sets can be accomplished by the fuzzy-intersection
function in FuzzyCLIPS as follows.

(efrules match-salary-préferénce
(query (gid 7qid) (salary-preference 2sp))
Gob (jid ?jid) (sglary-.offct 2507
sy

{bind 7x (get-fs-value (fuzzy-intersection 7sp ?s0)
(miaximum-defuzzify (fuzzy-intersection 2sp 2s0)3))
(asserf (salary-muatch (qid 7qid) (id %jid) (degree 7x)))

Parallel FuzzyCLIPS [4] use the SPMD computational
mode] (Single Program Multiple Data) [13] and the MPI
library [5] to develop a parallel FuzzyCLIPS programming
language on cluster systems. To improve the response time, we
apply Parallel FuzzyCLIPS to construct the architecture of
FQHR websites for parallelizing the execution of fuzzy queries
in grid and cluster environments (see Figure 7).

Chane E!

Miiter

Warking
Memsry

Rhowledyy
Bure

Applisation
Seftware

Servarlet

Selution

Inteenst.

LAN
gt — A P S—
B"i Stave: ﬂ Shave B" 'l Stave B

Figure 7. The architecture of parallelized FQHR on grid and cluster systems

Shave

In parallelized FQHR, clients can input fuzzy data (resumes
or jobs) and make fuzzy queries via a browser. The web server
receives requests from clients and controls the system flow.
The application software in the master node receives system
messages from the web server and accesses the database in the
DB server. All retrieved data are translated into FuzzyCLIPS
facts that are loaded into the working memory in the master
node. The knowledge base in each computing node contains all
FuzzyCLIPS rules that implement the matching and the
aggregating of fuzzy conditions. We propose to embed the
MPICH-G2 1.1brary [14] into the FuzzyCLIPS inference engine.
MPICH-G2 is able to deal with the parallelism on both grid
and cluster systems. New defined syntax mentioned in Section
I is implemented to transmit messages between processes in
the MPICH-G2 library. The slave node can be any computer in
the Intem.et or LAN. The master node first executes
(makePartztion_<data_size>) to allocate facts into slave nodes
by load balancing. The master node then executes (packFact
<rank _of | receiver> <a_fact>) to buffer all allocated facts into
the corresponding buckets for slave nodes. The master node
executes (packageSendTo) in FuzzyCLIPS to call MPI Send()
in MPICH-G2 for sending all packages of facts. Each slave
node executes (packageRecvFrom <rank_of sender>) to call

D-48

MPI Recv() for receiving its allocated facts. Accordﬂél
FuzzyCLIPS inference engine in each slave node can the;;
its allocated facts to execute the FuzzyCLIPS rules in p
Finally, the results generated by slave nodes are trap
back to the master node through MPICH-G2 functiopg.
master node gathers the returned results to form the sg}
and displays the solution in the web page.

Flach partition fact indicates the index range (i.e. [from,to])
'];iﬂ' allocated facts for the rank of a slave node (see Figure 8).
M aster node doesn’t transmit real facts to slave nodes but
W it each partition to the corresponding slave node. That is,
haster node only transmits one partition fact to each slave
m‘r;_ The transmission time can thus be reduced. Each slave
,urf can execute the reset command to assert all facts in the
¥ i ing memory and then delete not-allocated facts according
. index range of the received partition fact. The results
ated by slave nodes are sent back to the master node. The
r node gathers all returned results to form the solution.
implementing the data-level task partitioning, we add a
ETE module for each node to delete not-allocated facts
ding to its received partition fact (see Figure 9).

he Module-Level Parallel Execution

U0 avoid unnecessary coupling among parallelized rules,
odule-level approach utilizes the definodule construct to
jon rules into different modules where each module has
®own agenda. Execution can then be controlled by selecting a
in module’s agenda for executing rules. Instead of data,
rogrammer can allocate different modules of rules to
ent processors by using the focus command.

The partitioning of parallelized task content can be v.
Different partitioning approaches may suit to different cq5z8%8
affect the performance of parallel processing. In Fuzzy(J. o
the partitioning of tasks could be data or rules. Therefor, o
propose two kinds of task partitioning approacheg
FuzzyCLIPS applications: data level and module level,
level task partitioning, the facts will be partition
allocated to multiple processors for parallel executig
module-level task partitioning, the rules are partitioned
allocated to different processors for parallel execution,

A.  The Data-Level Parallel Execution

Transmitting a large amount of facts may affect
performance of parallel processing. Our data-level ap :
transmits the indexes of fact partitions instead of real facts
define a new template for indexes of fact partitions as follg

(defiemplate (partition (slot rank) (slot from) (slot 10)));

I Master

[ pavhition (cark jirem Aj{E T
14 _{partition (rank ) From HyTe CF)
i “(partition (rank 3}from C3+1o D)
T % ]

Slave n-1

[ All DataJ

Slave 2
[ All Data ]

Slave 3
( AllData ]

Slave 1

{ All Data J

Peegambadbran
~E ] Emad Bafimred asnd

&

) H

i
EachProcess oaly
executes the
mapped Module,
Result (all)

Figure 10. The module-level task partitioning

The example in Figure 10 illustrates how to execute
itioned rules in parallel for a FuzzyCLIPS program. All
can be partitioned into n modules. Each module is
cated to one computing node. Each computing node can

Figure 8. The data-level task partitioning

(defrule Package Secute the reset command to assert all facts in the working
gj;’la(’]‘; A(;l/l]lcwoj)ce 800)) liemory, but it only focus its allocated module for execution.
2f-<- (partition (rank 2r)(from %) (t0 ?) lhe results generated by slave nodes are sent to the master
=> ) lode. The master node gathers all returned results to form the

(retract ?f) olution.

(packFact ?r ?f))

. (defitemplate MPI (slot RANK) (slot PROCS))

(defrule Send
(declare (salience 700)) (definadule Modulel)
(MPI (RANK 0)) (defimodule Modulel)
=> (defmodule Module2)
(packageSendTo)) (defrule MAIN:: MODULE_ASSIGNMENT_Module0
(defrule Receive (MPI (RANK 0))
(MPI (RANK ?r)) =>
=> (focus Modulel))
(packageRecvFrom () (defrule MAIN: : MODULE_ASSIGNMENT Modulel
(defmodule DELETE (import MAIN ?ALL) (export ?ALL)) (MPI (RANK 1))
(defrule DELETE::delete-not-allocated-data =>
(MPI (RANK ?r)) (focus Modulel))
(partition (rank 7r) (from ?f) (to ?1)) (defrule MAIN: : MODULE_ASSIGNMENT _Module2
?fact <~ (DATA (ID ?n&:(or (< ?n ?f) (> ?n 21)))) (ﬁf’l (RANK 2))
= =
(retract 2fact)) (focus Module2))

Figure 9. The implementation of data-level task partitioning Figure 11. The implementation of module-level task partitioning

For implementing the module-level task partitioning, we
add a module to group rules for each computing nodes (see
Figure 11). At the beginning of execution, every node must
execute the MAIN module. In the MAIN module, we define
rules for assigning modules to the corresponding nodes based
on their ranks. Each node will focus its allocated module.
Therefore, partitioned rules can be executed in parallel.

IV. PERFORMACE ANALYSIS

A.  Performance Analysis for Data-Level Parallel Execution

The data-level method partitions facts and allocates them to
multiple processors for parallel execution. Let 7o, Ty, T, T,
and 7, be the time spent in each of five phases, respectively.
The analytic costs for all phases are as follows.

D-49

1)

%

3

9

The time spent for packing all partition facts in the
master node. The total number of processors is denoted
as P and the time for packing one fact is denoted as T},
Each computing node needs a partition fact to indicate
the index range. The master node needs to send P-1
partition fact to P-1 slave nodes, respectively. Therefore,
the total packing time 7, for P-1 facts is :
‘ Ta= (P —1)x Tpack
The time spent for sending facts to slave nodes. The
master node calls packageSendTo function to send a
coresponding packed partition fact to each slave node,
and slave nodes call packageRecvFrom function to
receive it. Since the packageSendTo function is
implemented by the local complete function, the
transmissions to different slave nodes are overlapped.
The communication startup time is denoted as o and the
transmission time for sending one fact is denoted as S.
Therefore, the total sending time T}, for P-1 facts is
L=a+p
The time spent for deleting facts in computing nodes.
Each node needs to delete not-allocated facts according
to its partition fact. All nodes execute the deleting
processes in parallel. Through load balancing, each
node’s performance ratio can be obtained by R; = S;
/ i s Where R; is the performance ratio for each
j=1

processor ranked i (1<i<P and O0<R<I) and §; is the
execution efficiency for processor i to execute the NAS
Parallel Benchmark (NPB) [15]. The total number of
facts is denoted as D and the time for deleting one fact is
denoted as T... Therefore, the total deleting time T for
P nodes is

Te= rlrsligl),((D X (1= Ri) x Ttetere)

The time spent for matching allocated fuzzy data with
all fuzzy conditions and aggrating the matching
results in computing nodes. Each node needs to match
allocated facts with 7 fuzzy conditions in FQHR. The
execution time for processor i to match the size x of
fuzzy data with 7 fuzzy conditions is denoted as TD;x.
The aggregation for one fact needs to add up 7 matching




results corresponding to 7 fuzzy conditions. The
execution time for adding one data is denoted as T4, All
nodes execute the matching and aggregating processes in
parallel. Therefore, the total matching and aggregating
time T for P nodes is
Td=I]£lias.l7’((TDi,DxRi+7)<DXRiXTadd)

5) The time spent for packing and sending the
computation results back to the master node. Each
slave node needs to send the computation results of its
allocated facts back to the master node. All slave nodes
pack the computation results and call packageSendTo
function to send their results to the master node in
parallel. But the master node needs to call
packageRecvFrom function sequentially (one-by-one) for
receiving all results. Therefore, the total packing and
sending time 7, for P-1 nodes is

P-1
Tc=]rstilsz;,)_(l(DxRianck)+iZ=l:(a+ﬂxDx R}

The total execution time of the data-level method is the
summation of the execution time of the five phases. That is,
Tdala-level = Ta+ Tb+ Tf;+ Td+ T;.

B.  Performance Analysis for Module-Level Parallel Execution
The module-level method partitions rules and allocates
them to different processors for parallel execution. All
matching rules for one fuzzy condition are allocated to one
computing node. We use 7 computing nodes (i.e. 1 master and
6 slaves) to match all facts with 7 fuzzy conditions in parallel.
Let Ty T, and T, be the time spent in each of three phases,
respectively. The analytic costs for all phases are as follows.

1) The time spent for matching all fuzzy data with one
fuzzy condition in each computing node. Each node is
responsible to execute the rules for matching all facts
with one fuzzy condition. The execution time for
processor i to match the size x of fuzzy data with one
fuzzy condition is denoted as TM;,. Seven nodes execute
the matching processes in parallel. Therefore, the total
matching time 7} for 7 computing nodes is

Te = max(TM: p)

I<i<pP
The time spent for packing and sending the matching
results back to the master node. Each slave node needs
to send the matching results of one fuzzy condition back
to the master node. Six slave nodes pack and send the
results in parallel, but the master node receives all results
sequentially. Therefore, the total packing and sending
time T, for 6 slave nodes is

Tg=DxfI},aak+6><(a+,BxD)
The time spent for aggrating all matching results in
the master node. The aggregation for one fact needs to .
zg?ie‘slp 7 megchling results generated by 7 computing
, respectively. ing ti

T, foral fgcts i y. Therefore, the total aggregating time

Th=T7xDxTota

Y

3

D-50

The total execution time of the module-level methog’
summation of the three phases. That is, Tomie-teves = T+

C. The Comparison between Data Level and Module Leyi)

We anal)'/ze T data-level and 7, module-level 1O Compar i
performange in the case of 7 computing nodes (i.e. P=7);
the packing time in Tipiwe and T, oo’

max(Dx Rix Tyaet) + 6x Tyae A Dx Tpaa , YESpectively. As py

1<i<6
large nU{nber of facts, the packing time in the daty.
method is approximately 1/7 of that in the module:]

method. Second, the sending time in T}, v and Tonodute s, i
) e-leve] dlQ
and 6x (a + fx D), respectively. Ags [y 8

7xa+ﬁ+i(ﬂxDxRx)

i=l H
large number, the sending time in the data-level methoifi2

approximately 1/6 of that in the module-level method, Ti7®
the adding time in T a0 Tppite sever ar€ 7x D x Ri%
and 7x Dx Tua , respectively. The adding time in the data:
method is approximately 1/7 of that in the module:
method. Fourth, the data-level method needs the deleting
IIISI,E;(( D x (1— Ri)x Tatee) > but the module-level method dog;

Finally, the matching time in Tyugie and Tnoctite-tevet

max(7Di, b~ x) ahd max(TM, p), respectively. For comp
I<i<P 1<i<P

TD;, Yvith TM;,, we use the same processor to execute
matching processes in both methods. The results are shown
Figure 12 after the execution of matching with 2000 fac
10000 facts in both methods. Through the regression anal
we can use the tendency lines to formulate 7D;, and TM,
TD;, = 4E-06x" — 0.0033x + 2.2857 and TM,, = 4E-06
0.003x + 1.9816, respectively. Where i is the same proces
and x indicates the data size. In practice, the data size in
data-level method is approximately 1/7 of that in the modull
level method, since the facts are partitioned into 7 processors i

g University, and Lin Tung University. Totally, there
computers (containing 22 cores) in the grid system.
use grid sites are connected by the Internet, the available

dth of the network is fluctuant during any time interval.
wommunication time will be much longer than that on the
or system. Thus, the message passing will play a more
ant role in the grid system.

\We have tested the response time of fuzzy queries
rorming on the job search in the grid environment. Each

query is applied to retrieve and compute 1000 jobs to
0 jobs using 4, 8, 12, and 16 computing nodes,
ctively. Figure 13 shows the performance improvement

o of the parallelized FQHR website using 4 computing
Wcs for the data-level and module-level methods. The
¥rormance improvement ratio through the data-level method

ound 3, while that through the module-level method is
d 2. The data-level method has better performance
ovement ratio, which is consistent with the results of

rmance analysis.

® Parallelizing the execution of fuzzy queries in both grid
and cluster environments. The performance of the
proposed approach is analyzed by an evaluation model
and verified by experiment results. The execution time
of the FQHR websites can be improved to a more
reasonable response time.

® Extending FuzzyCLIPS to be a parallel programming
language by the SPMD model, the MPICH-G2 library,
and load balancing. The SPMD model makes it easier to
apply data parallelism and maintain programs. New
defined syntax is easy for programmers to learn,
because it follows the same style of the FuzzyCLIPS
language and calls the MPICH-G2 library by adding
external functions into the FuzzyCLIPS inference
engine. Load balancing determines the appropriate
computational load for each heterogeneous computing
node on grid systems.

® Supporting two kinds of task partitioning to suit to

different properties of parallelized applications. The
data-level partitions the facts and allocates them to

Pafonnunes Fngprovessent Ratio Smough
Datarkovet Parsiel Execution

Perfonuanse kaprovenisst Ratio

TR et Begrs Ravet
My ddeLeved

Ratin

FETIE LT R S
TataSine

W W abe RN Bes sl
PataSie

multiple processors for -parallel execution, while the
module-level partitions the rules and allocates them to
different processors.

REFERENCES

LF. Lai, C.C. Wu, L.T. Huang, and J.C. Kuo, “A fuzzy query
mechanism for human resource websites,” Lecture Notes in Artificial

(1

Figure 14. The performance
improvement ratio through the
data-level method

Figure 13. The performance
improvement ratio using 4
computing nodes

‘Figure 14 shows the performance improvement ratio
ifough the data-level parallel execution using 4, 8, 12, and 16
Fomputing nodes, respectively. In the case of 16 nodes, the
Performance improvement ratio can reach 5 if the data size is

Hore than 6000. The increasing in numbers of parallel nodes
find the performance improvement ratio are not linearly
Corresponding, because more parallel nodes need more
Communication time. Similarly, if the data size is less than
4000, the communication time would largely affect the
berformance improvement ratio in the cases of 12 and 16

the fiata—level method. Therefore, the matching time in T4
Ievel 18 larger than the matching time in T, jever. :

Matetitng Process for Data-Level b One Proctssor Matching Process for Module-Level s One Pmc
ks
e
2 LY AENEE L00A3X 2 22887 5

Rimy /

§

i .

Y AT SRR LR

: :

L e e 7 erform

- o ER e ¥computing nodes. On the other hand, the case of 8 nodes keeps

I B I Rtic performance improvement ratio above 4. The experiment
Pk e e o s e wn e e ww fcsult shows that the data-level method with 8 computing

Datagize 13ata sive

: Whodes i i i i ites.
Figute 12. Tho oxcoution time of the maiching process s is relatively suitable for parallelized FQHR websites

V1. CONCLUSION

In this paper, we use Parallel FuzzyCLIPS to parallelize the

ecution of FQHR websites for two kinds of task partitioning

Bin both grid and cluster environments. The advantages of the
Proposed approach are as follows.

® Supporting fuzzy queries for human resource websites
by offering a mechanism to aggregate all fuzzy
conditions based on their degrees of importance and
degrees of matching. The ordering of query results via
the mutual compensation of all fuzzy conditions is
helpful to alleviate the problem of the information

overload.

Tde,e,e‘ is a very small time scale and less than 1 ms. The
excess time spent by the module-level method in packing,
sending, adding and matching is far larger than the deleting -
time spent by the data-level method. We conclude that the
performance of the data-level parallel execution for FQHR
web_s1tes is better than that of the module-level method. 3
Besides, the data-level method is flexible in selecting the
number of parallel computing nodes. Therefore, the data-level ~§
method is more suitable for parallelized FQHR websites.

V. EXPERIMENT RESULTS

_>0ur grid system consists of four grid sites connected by
Taiwan TANET, including Bao-Shan and Jin-Der Campuses at
National Changhua University of Education, National

Intelligence (LNAI 5855), pp. 579-589, 2009.

L.A. Zadeh, “Fuzzy sets,” Information and Control, 8:338-353, 1965.

FuzzyCLIPS, hitp://www.iit.nrc.ca/IR_public/fuzzy/fuzzyClips/fuzzyCL

IPSIndex.html .

C.C. Wy, LF. Lai, and Y.S. Chang, “Towards automatic load balancing

for programming parallel fuzzy expert systems in heterogeneous

clusters,” Journal of Internet Technology, 10(2): 179-186, 2009.

MPICH, http://www-unix.mcs.anl.gov/mpi/mpich1/

J. Galindo, A. Urrutia, and M. Piattini, Fuzzy Databases: Modeling,

Design and Implementation, Idea Group Publishing Hershey, USA, 2005.

E.W.T. Ngai and FX.T. Wat, “Fuzzy decision support system for risk

analysis in e-commerce development,” Decision Support Systems,

40(2):235-255, Aug. 2005.

A. Kaufmann and MM. Gupta, Introduction to Fuzzy Arithmetic:

Theory and Applications, Van Nostrand Reinhold, New York, 1985.

T.Y. Tseng and C.M. Klein, ”A new algorithm for fuzzy multicriteria

decision making,” International Journal of Approximate Reasoning,

6:45-66, 1992.

H.J. Zimmermann, Fuzzy Set Theory and Its Applications, 2nd revised

edition, Kluwer Academic Publishers, 1991.

P.T. Chang, K.C. Hung, K.P. Lin, and C.H. Chang, “A comparison of

discrete algorithms for fuzzy weighted average,” IEEE Transactions on

Fuzzy Systems, 14(5):663-675, Oct. 2006.

[12] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and
Applications. New York, London, 1980.

[13] B. Wilkinson and M. Allen, Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers,
second edition, Prentice Hall Publisher, 2005.

[14] MPICH-G2, http://www3.niu.edu/mpi/

[15] NAS Parallel Benchmark Suites, hitp://www.nas.nasa.gov/Resources/
Software/npb.html

[
B3]

[4]

(5]
{6]

17]

(8]
9

[10]

[11]

D-51




