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ABSTRACT

In this paper, robust output feedback stabilizing controllers are developed for computer control of
decentralized singularly-perturbed systems without state estimation devices. The developed techniques
will be suitable for decentralized large-scale and high-dimension systems with strong potential for
practical applications, such as aircraft, power distribution and communication networks. Moreover, the
controllers are expected to satisfy following criteria: (1) computer control, (2) decentralized control, (3)
robust control, (4) stabilizing control, (5) reliable control, (6) reduced-order control, and (7) output
feedback control. The analog to digital transformation technique is used to convert continuous-time
state models to discrete-time domain for digital control use. Singular perturbation methods are applied
to reduce the order of the system. The concept of Riccati equation approach will be applied to stabilize
the systems. Moreover, the robustness test will be fulfilled to understand the robustness bound of the
system, and reliable control investigation will be performed to show the reliability of the system.

Keywords: robust, stability, output feedback, decentralized, singularly-perturbed, order-
reduction, reliability.
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I. INTRODUCTION

The computer control becomes a major
technique in today’s large-scale and high-
dimension systems. These systems include
electric power systems, nuclear reactors,
aerospace  systems, computer  networks,
communication networks, and the petroleum
industry. Such systems consist of a number of
independent subsystems that serve particular
functions, share resources, and are governed by
a set of interrelated goals and constraints. Each
of the subsystems is responsible for the
operation of a specific task of the overall
system or does full-function control. This
situation is often referred to as decentralization.
Operations of decentralized control are
performed on the subsystem level that make it
attractive in cases where the classical
stabilization and estimation techniques are
either impossible or impractical to apply due to
the excessive dimensionality of the system.
Therefore, decentralized control is a major
control scheme for dealing with large-scale
systems. Decentralized control is also important
for the following reasons: (1) The construction
of a central control unit and the transmission
lines among the various subsystems are costly,
particularly for geographically divided systems
such as electrical power networks. (2) The
transmission of a signal among the various
controlled units can delay and distort the
transfer of information. (3) The instrumentation
necessary for carrying out a decentralized
control is simple. (4) As a result of the
technological growth of computer control, the
cost of local control units is constantly
decreasing. (5) Decentralized control enables
the local control units to be completely
independent and thereby increases the
robustness of the system. It is not surprising
that in past decade many researchers have
directed their attention to various problems that
relate to such systems. Such systems are also
called interconnected systems. Moreover, they
are usually endowed with a complex
interconnecting structure and are frequently
high-dimension.  Consequently, researchers
have tried to simplify these interconnecting
high-dimension systems.

The decentralized robust controllers in
large-scale systems have been discussed and
designed by many different approaches in many
papers [1-3]. Usually, there are three kinds of
controllers: (1) state feedback controllers, (2)
output feedback controllers [1, 4] and (3)
observer-based controllers [2, 5]. Many papers
concentrate on output feedback controllers and
observer-based controllers, because state
variables of systems are not always available
for measurement. Output feedback controllers
and observer-based controllers can perform
sub-optimal control, because in output feedback
controllers, the obtained optimal gains are for
output feedback not state feedback; in observer-
based controllers, state variables estimated are
not exactly correct values and observers are the
necessary equipment in this control scheme.
After these concerns, output feedback control
becomes a control method that many engineers
and researchers are interested in, because it is
less expensive and more reliable [6].

The decentralized singularly-perturbed
system may also be stabilized by optimal output
feedback control. Savkin and Petersen [1]
investigated the stability of continuous time
full-order linear systems via decentralized
output feedback control. They use only the
input-output information and applying the
linear quadratic regulator [LQR]. Yan, Wang,
Lu and Zhang [7] investigated the stability of
decentralized output feedback for class of
nonlinear systems. They developed a controller
with holographic structure for the stability of
large-scale  decentralized  systems  with
similarity. But, these methods are not suitable
for the system that this paper is looking into.

In systems, stabilization is the most
important part when we design controllers.
Therefore, controllers not only have to achieve
the performances we expect but they also must
be able to stabilize systems. There are many
approaches used by researchers to investigate
the stability and the stabilization of
decentralized singularly-perturbed  systems.
Among all system performance requirements,
robust stability is a paramount condition for
designs of system control.  Numerous
approaches have been proposed in the literature.
Especially, in [8], the system concerned is also
a singularly-perturbed system. However, in this
paper, the system is not only a singularly-



perturbed system but also a decentralized
control system and a computer controlled
system.

One of the major approaches to robust
stabilization is by the Riccati equation. This
approach can also achieve the optimal control
[9]. However, it is well known that if attention
is restricted to linear time-invariant controllers,
then the use of decentralized control may lead
to decentralized fixed modes. The presence of
such fixed modes may prevent a given system
from being stabilized via linear time-invariant
decentralized control. After all, this is a
particular situation. We can assume the models
are stabilizable and detectable to prevent fix
modes. However, in this research, our
motivation for introducing such an output
feedback controller is not to overcome the
problem of fixed modes but rather to give a
controller that is stabilizing with respect to the
quadratic performance index.

The controllers not only stabilize the
system but also achieve desire performance is
always the major task of the designs. Therefore,
the pole placement of the systems is also
needed to concern when finding the stabilizing
gain. The LQR regulator would be a good
approach, because the technique is well known
and familiar by all engineers.

Often in control design it is necessary to
construct estimates of state variables which are
not available by direct measurement. If a
system is linear, its state wvector can be
approximately reconstructed by building an
observer which is a linear system driven by the
available outputs and inputs of the original
system. Lunberger [10] first proposed an
“observer” and introduced the idea of a
reduced-order observer to estimate those states
of a system that are not accessible by direct
measurement. The other type of observer is the
same order as the process under observation.
They are called full-order observers. In this
paper, we propose reduced-order output
feedback control which doesn’t need to
construct observers if the state variables are not
available for measurement.

Robust control is one major concern for the
designs in large-scale systems. Here, the control
scheme of decentralized singularly-perturbed
systems will be investigated for robust control.
The state model will be always an inaccurate
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representation of the actual physical system
because of parameter changes, unmodeled
dynamics, unmodeled time delays, changes in
equilibrium point, sensor noise, and unpredicted
disturbance inputs. A robust control system
exhibits the desired performance despite the
presence of significant uncertainty. In this paper,
the unmodeled dynamics will be the major
uncertainty considered, because decentralized
singularly-perturbed systems are reduced to
lower-order systems by neglecting the fast state
variables that only affect the system responses
in the very initial time period. Therefore, in this
research, robust control is defined as that the
desired performances is still existing after
applying the decentralized reduced-order output
feedback controllers in singularly-perturbed
full-order systems. The bound of robust control
is expected to be found in the investigation.

The reliability of the control systems is
also a relevant evaluation  criterion.
Conventional feedback control designs for a
multi-input-multi-output plant may result in
unsatisfactory control system performance or
even instability. In the event of controller
outages, it may be possible to control the plant
using only the surviving inputs and outputs. A
control system designed to tolerate failures of
controllers, while retaining desired control
system properties, will be called a “reliable”
control system. In the decentralized control, the
reliability goal is the stabilization of the system
by a controller in each control channel, such
that the system can tolerate control channel
failures [11]. Siljack [12] presents the approach
of designing a separate stabilizing controller for
each control channel, and gives “connective
stability” conditions under which some or all of
these controllers together also stabilize the
system.

Due to increasing complexity of modern
technological process, reliability of control has
become an essential requirement in the design
of large-scale systems. In a decentralized high-
dimension system, if a local controller breaks
down, it is entirely feasible that the whole
system may do the same. Replacement of a
faulty controller by a standby, or disconnection
of the corresponding subsystem for the purpose
of preventing the system breakdown may be
either impossible or undesirable due to the
design constraints. A reliability goal for a
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decentralized system is the stabilization of the
plant by a controller in each control channel [11,
12].

In decentralized control systems, basically
there are two types of control schemes. The
control scheme of the type-one, the controller
of each channel only controls partial overall
state variables [12]. The control scheme of the
type-two, the controller of each channel can
control overall state variables [11]. The second
type of decentralized control scheme is
considered as a potential reliable control
scheme, because of the structure. In the type-
two system, if the controller of each channel is
able to stabilize the system, the system
possesses reliable control properties. Due to the
way of designs, the decentralized control
scheme that has been developed in this research
belongs to the type-two system.

In output feedback controller designs,
singular  perturbation methods, computer
control schemes, and decentralization have
never been involved together such as this
research. In today’s system control, computers
are widely used in every sophisticated system;
therefore, computer control implementation
should be absolutely and highly concerned in
the design procedure. Using digital computers
to implement controllers has substantial
advantages. Many of the difficulties with
analog implementation can be avoided. For
example, there is no problem with accuracy or
drift of the components. It is very easy to have
sophisticated calculations in the control law,
and it is easy to include logic and nonlinear
function. Tables can be used to store data in
order to accumulate knowledge about the
properties of the system. It is also possible to
have effective user interfaces [13,14]. Using
reduced-order control can helps to simplify
the  system  analysis, improves the
manufacturing process, and minimizes the cost.

Il. PROBLEM STATEMENT

The mathematical model of the system is
shown as:

{ X = ApX+ > Az, (1a)
i=1
&, = A x+ Az, + Bu, (1b)
i =Ciz (1c)
where i=1~m, which can be also shown as
X=RApX+AuZ +ApZ, + Az +... Ay, 2,
&, = AgXx+ ALz, + B,
&2, = AypX +A,2, +B,u,
&, = AyX + Az, +B,u, (1d)
gzm =Am0X +Ammzm +Bmum
Y. = Clzl
¥, =C,z,
Y; =C;2, (1e)
ym = szm
The system is a linear time-invariant

decentralized  singularly-perturbed  system
which has n-order and m independent inputs or
m sub-systems. xeR® and zeR" are the
slow and the fast state variables respectively;

each sub-system z; has its own order. u, e R™
and y, e R™ are the input vector of the i-th

subsystem and the output vector of the i-th
subsystem respectively. A,, A, A,. A, and
C, are constant matrices with appropriate
dimensions with i=1-m. A, ~ A are
nonsingular matrices.

The goal of this research is to develop
computer control of robust, output feedback,
reduced-order controllers for stabilization of
linear  singularly-perturbed  systems via
decentralized control. The system control
scheme is shown as Fig. 1.

The computer control schemes will be
employed to implement the proposed output
feedback controllers. Singular perturbation
methods will be used to reduce the order of the
model. Hence, the proposed techniques will be
suitable for large-scale and high-dimension
systems with strong potential for practical
applications, such as power distribution and
communication networks.



This research provides a new technique to
control  decentralized singularly perturbed
systems. It also helps to simplify the system
analysis, improves the manufacturing process,
minimizes the cost, and stabilizes the systems.
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Fig.1. The computer output feedback control of
decentralized singularly perturbed systems.

v

The value of the small parameter ¢ will be
the key point when we discuss the robustness of
the designed controllers in uncertain systems.
When we assume ¢ = 0, that means we neglect
the fast state variables that belong to the sub-
systems in this case. This is also how we can
improve the manufacturing process and
simplify the system analysis. A standard LQ
criterion will be given as a condition for the
optimal control design. This will help us to
minimize the cost and stabilize the system [1].

Computer control implementation will be
fulfilled, and appropriate A/D devices and
sampling rates will be used to ensure the
robustness of proposed designs.

I1l. PRELIMINARIES
3.1 Singular Perturbation Methods

Using the state-variables representation, a
linear time-invariant system can be represented
as

{ X=AXx+A,z+Bu, x(t=0)=x(0) (2a)
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& =A,x+A,z+B,u, z(t=0)=1z(0) (2b)

where x and z are m- and n- dimensional slow
state and fast state of the system. u is an r-
dimensional control vector. The matrices A,

and B, are of appropriate dimensions. The

scalar, positive parameter ¢ represents all small
parameters to be ignored. The system (2) is in
the singularly perturbed form in the sense that
by making € = 0 in the system. the degenerate
system becomes

{)‘(‘0) = A, X+ A,z +Bu, xO(t=0)=x(0) (32)
0=A,x?+A,29+B,u, zO(t=0)=20) (3b)
or

X0 = (Ay = Ay Ay, A )X + (B, - A, A, B, )u (48)
{z“’) t)=—-A,"A,x® - A, B,u (4b)

Therefore, the full, high-order, or
perturbed system (2) becomes the degenerate,
low-order, or unperturbed system [15,16].

3.2 Analog to Digital Transformation

In order to obtain the digital control laws
and fit computer control schemes, continuous-
time state models needed to be transformed to
discrete-time state models [13].

A given state model

X(t) = Ax(t) + Bu(t) (5a)
{Y(t) =Cx(t) (5b)

The complete response of the model is
t
X(t) = gt —t, )X(t, ) + j ¢(t—7)Bu(zr)dr  (6)
k
where ¢ = transition matrix.

But, u(zr) =u(t,) = constant; since ty < t <

t and zero-order-hold sampling has been used.
So,

x(t):¢(t—tk)x(tk)+j¢(t—r)B(tk)dr (")
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=¢(t—tk)x(tk)+j¢(t—r)dr8u(tk) (8)
k

let A=t—r (9)
therefore; dA =-dr
when 7 =t, - A=t-t,

=t > 4=0
KO =4t -t)xt )+ [dAdnBu) (10)

A=t—t,
t-t,

=gt-t)xt)+ [¢(A)dDBut,) (A1)

sett=t,,,, where t,,, —t, = h=constant
sampling period

Gt

X(t.1) = 4t —tOX(E) + [ 42 _(d2)Bu(t,) (12)

=g(h)x(t,)+ } $(A)dABu(t,) (13)

Now, we set t, = kh where h is the fixed

sampling interval, and k is an integer index that
represents the number of sampling periods.

Hence, we can represent t, ., = (kK +1)h. Now,

the discrete-time model of the continuous-time
system is shown as

x((k +1)h) = g(h)x(kh) +T¢(/1)d/18u(kh) (14)

In general;  x((k +1)h) = A, x(kh) + B,u(kh) (15)
where A, = g(h) =@ (16)
h
By = [#(1)diB =T 17)
0
Also, in the output equation, C is
unchanged; therefore, y(t)=Cx(t) Yields
y(kh) = Cx(kh).
3.3 Stabilization and LQR Optimal
Control
If the discrete-time system is
{x(k +1) = dx(K) + Tu(k) (18)
y(k) = Cx(k) (19)
The closed-loop system is
X(k +1) = (@ -TK)x(k) = A.x(k) (20)

and the LQ performance index is

J= %i(xT (K)Qx(K) +u" (K)Ru(k)) (21)
Then, the optimal control

u Ml (k) = —K (k) x(K) (22)

where K =(I"PT+R) T P® (23)

and, the P is the solution of the Riccati equation

P=®"{P-PI[T"PI +R]'T"P}+Q
where P is a constant matrix.
This optimal control feedback gain is also
the gain that can stabilize the system [1].

(24)

IV. MAIN RESULTS

Fig. 2 shows the approach to control the
system. Fig. 3 shows the idea of the order
reduction in the step one of Fig 2. The system is
a two-time scale system; therefore, there are
fast state variables and slow state variables. The
slow state variables belong to the main
controlled system, and the fast state variables
belong to the control subsystems. The responses
of the fast state variables will die out very fast
so that we can just ignore the fast state variables
and base the design on a reduced-order system.

Continuous-time Decentralized
Singularly- perturbed Original Svstem

ﬁ Singular-perturbed Methods

Continuous-time Reduced-order Model

ﬁ A/D Converters

Digitized Discrete-time Reduced-order Model

I

State-model with an Individual Input

Concepts of Multiple
Control Systems

Concepts of Stochastic
Control Theory

A 4
Controllers or Observers

Fig.2. The flow-diagram of the approach.



Full Order Model

A A A

Contr. Contr. Contr.

Z z X Z
Contr. Contr. Contr.
Reduced Order Model
X
A | A A
v — v v
Contr. Contr. Contr.

Fig.3. The idea of order reduction.

Because the overall system is a computer
controlled system, the responses of the
computer based subsystems are a lot faster than
the main plant, and the responses of the fast
state variables will die out pretty fast in the very
initial time period. Due to this phenomenon, the
fast state variables can be ignored to simplify
the system; the order of the overall system can
be reduced. This also rises the idea that the state
model of the overall system can be
approximated. This kind of system status can
refer to Quasi-steady state, and the parameter &
can be set to be zero.

In this controller design, singular
perturbation methods are applied to reduce the
order of the system. The system model is given
by Eq(1). The system is in the singularly
perturbed form in the sense that
¢ =0. So, the sub-station station variables, z;, z,,
Z3 have reached quasi-steady state. Hence,
the system order is reduced to the order of the
main station which is equal to the dimension of
the slow state variable x.

Therefore, from Eq(1), we can re-build the
state model as
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X= Ay X+AuZ, + Az, + Ay +.. Ay, 2, (253)
(A, 0 0 . . .. .0 o01[z]
00A, 0 . . ... 0]l
0 0 Ay v e ]z
. . A44 . . R . . :
Ay oL _
R S N A
L0 0 . . L0 AL 2]
[ ez, - B,u, - A, x |
€1, - B,u, — A, X
€1, — B,Uu, — A, X (25b)
¢z, — B,u, — A ,X]|

The system is in the singularly perturbed
form in the sense that &€ =0. So, the sub-station
station variables, zi1, 75, z3 . have reached
quasi-steady state. Hence, the system order is
reduced to the order of the main station which
is equal to the dimension of the slow state
variable x. From Eq(25b), it can be shown as

_ [z
A, O 0 0 O ;

0 A, O 0 22

0 0 Ay . 2

: A,

. A =

0 : : : oo 0 .
L O 0 " " . " " " 0 Amm_ ,Zm,
[ - B,u, — ApXx 1

—B,u, — AyX

- B3u3 - Asox (26)
|~ Bl — AgoX |
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zl
Next, in order to solve | z, |, by inspection

z

from Eq(25a), we can see the diagonal matrices
of A’s are square; therefore, we obtain:

- 9-1

2] [Ar 0 0 .0 0
2, A, O 0
Z, 0 0 A33 .- :
: v Ay L L

) g Ag o
: 0 : 0
lz,] [0 © .0 Ayl
__Blul_Ail)X_
_Bzuz_Azox
- Baus - Asz (27)
__Bmum_AmOX_

We expand the two matrices on the right.
We can have Eq(28) shown below. Equation

(28) shows that all sub-systems z; can be

represented by the slow state vector X.
From (1d), it can be shown as

7, = Ani1 (_Blul - AlOX) = _A117181u1 - AnilAloX
Z, = Azzi1 (_Bzuz - Azox) = _Azzileuz - AzzilAzoX
Z; = A3371 (_B3u3 - Asox) = _A337183u3 - AsailAaoX (28)

Zy = Ammil(_Bmum - AmOX) = _Ammileum - AmmilAmOX

SO’Zi =_Aii_1Biui _Aii_lAiox (29)
where i=1~-m; A, ~A_ are nonsingular
matrices.

Next, recall the state equation of the slow
state variable in Eq(1a) which is

>'<:A00x+Zm:A0izi (30)

We can obtain new representations for
the equation of slow state variables by using
Eq(29).

X= AOOX+Zm:AOiZi (31a)

= Ax+ {3 [A, CABU ~ATAN]  (31D)
Ao - 3 AA A [ A, A B B10)

=T - 2 AA A

[7 AolAnilBlul - A02A227132U2 .........

mileum] tt (31d)

u

Now, an n-order multi-input decentralized
singularly-perturbed system is reduced into a
S=(n-F)-order multi-input time-invariant system.

So, from Eq(31), we can write the reduced-
order model as

{

where X, indicates that the model has been

processed with order-reduction

(32a)
(32b)

X, =AX +Bu
Vi =Ciz; =C;x, + D,y

Z; = _AiiilBiui - AiiilAiOXr o Cu= _CiAiiilAiO
D, = _CiAiiilBi
A= [Aw =2 Ay Ao
i=1
Br = [_ A\JlA117181 - AozAzzile - ADmAnmile]
ul
U= UZ
Us

Next step, from the model Eq(32), the
model can be digitized as [15].

X, ((k +1)h) = dx, (kh) + Cu(kh) (33)

where @ = g(h) =e*"
r=| " $(1)diB
h : sampling period.



Equation (33) can be also shown as

% (k +1) = DX (K) + Ly, (K) +......0u (k) (34)

where T, is the first column of I' and T, is the
second column of I" and so on.

Now, if the main station is controlled from
the subsystem one. The Eq(34) can be revised
as

X, (k+1) =@ X, (k)+Tu, (k) (35a)
where @ = (® +T,K, + K, +..T,K,)
and K,~K, are existing assumed state
feedback gains.

¥, (k) =C,.x, (k) + D,,u, (k) (35b)

If the state variables are not available for
measurement, we may use system output that is
always available. In the subsystem one, the
output feedback can be assumed as

U (k) = Glyl(k) (36)

where G, is the output feedback gain of the

subsystem one.

Optimization will be performed based on
the condition of Eq(36), This means we are
looking for the optimal gain G™ not the optimal
input u”(k); therefore, this control can be also

called the sub-optimal control.
From Eq(35b) and Eq(36),

U (k) = G,[C,y X, (K) + Dyyuy ()] (37)
$0, [I -G,D,,]u,(k) =G,C,.x, (k) (38)
where | is an identity matrix.
then u, (k) =[I _GlDrl]_lGlcrlxr (k)
or, u, (k) = Px, (k) (39)

where P, =[I -G,D,]'G,C,,

The state model of the close-loop output
feed back control from the subsystem one can
be written as

X, (k +1) = A.x, (k) (40)
where A. =@, +T,P,

The LQ performance
subsystem is

index of each
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)= %Nf(wT (K)Quw(k) +u,” ()R, (K))

k=0

(41)

where Q,: the weighting matrix with p. s. d. for
each sub-system and . = {Qlil 0 }
0 Qp

R, : the weighting matrix with p. d. for

each sub-system.
W{Xr}; X, is a slow state vector and
z
Z is a fast state vector.
Also, the LQ performance index of
unknown slow state X, can be obtained as [17].

N-1

J, :gz(xf(k)anr<k)+uf(k)Riui(k» (42)

Therefore, for the subsystem one, the
performance index of the discrete-time reduced-
order model Eq(35) can be shown as

N-1

=5 X (T (9Qux (00 (IRu (k) (43)

k=0

Now, from the preliminaries, this LQR
optimal control state feedback gain also
stabilizes the system. Therefore, we know if we
have control from the subsystem one, based on
Eq(35) and Eq(43), a stabilizing state feedback
type gain can be found as

u® (k) = =K, (k)x, (k) (44)
where K, =(I,'LT, +R)™'T, L, (45)
and, the L is the solution of the Riccati equation
L=®,"{L-LL['LL, +R 1T, L}, +Q, (46)
where L is a constant matrix.

Now, let Eq(39) equals to Eq(44), the
output feedback gain of the subsystem one, G, ,
can be found by the following process.

Px, (k) ==K, (K)x, (k) (47a)
P =[l _GlDrl]_lGlCrl =-K, (47b)
G,C, =-I-G,D,]K, (470)
G,C, =-K, +G,D,K, (47d)
G,[C,, -D,K,1=-K, (47¢e)
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In Eq(47e), the matrix [C,-D,K,]

maybe a non-square matrix. In order to move
the matrix [C,,-D,K,] to the right side of

the equal sign, the pseudo-inverse matrix can
be applied in here. By defining a pseudo-
inverse matrix, T =[C,-D,K,]. The output

feedback gain of the subsystem one is found as

G, =-KTF (48)
where TF® is pseudo-right inverse which is
T7 (TTT)—II
K, can be any matrix that satisfies Eq
(45) and Eq (46).
Next, using the matrix G, to obtain
P =[I-GD,]'GC,  and the close-loop
output feedback control is implemented by P,

as Eq(39). In Eq(47a), the reduced-order state
x, (k) is cancelled in both sides; therefore, the

state of this system would not be concerned in
this control scheme. It achieves the goal of no
state estimation needed.

Since the close-loop system is stable, the
output feedback gain G, is a robust stabilizing

gain. The system can be stabilized by this
output feedback gain. The robust stabilizing
output feedback gain of the subsystem two to
the subsystem m can just follow the same
procedure as the subsystem one.

Due to the control scheme is designed
based on the reduced order model, the stability
of the reduced order model is assured by
applying the Riccati Equation shown in the
previous procedure. For the stability of the full
order system, a robustness test is needed for
understanding the robustness bound of the
system. Furthermore, the stability of the overall
system can be confirmed. The robustness test
procedure is shown in the illustration. Table 1
contains the result of the robustness test of the
illustration problem.

V. RELIABLE CONTROL
INVESTIGARION

In decentralized systems, reliable control
is obtained, if every controller of every
subsystem is able to stabilize the system. Even

-10 -

if one of the controllers fails, the rest of the
controllers can still control the overall system.
Therefore, the system can avoid breakdown
problem. Siljack presents the approach of
designing a separate stabilizing controller for
each control channel. In such a structure, the
system is called a multiple control system. It
has been established that the system possessing
this type of structure has build-in reliability
properties [12]. Figure 4 shows the structure of
a multiple control system.

Subsystem One

Controller
One

Phant

Controller i
Two i
I
I

g
o
g
[2]
E]
g
)

Fig.4. A multiple control scheme.

On the contrary, the other type of
decentralized control scheme that has a state
Eq(49) is shown in Fig. 5. [12,17,18]. In this
type of decentralized systems, the controller of
each channel does not have ability to control
overall state variables. In EQq(49), the term

u; (k) influences icbijxj(k), but it is unable to

j=1
J#i

control the poles of x, (k) . U;(k) can only
control x; (k) .

(49)

X, (k+1) = (Dixi(k)+l"iui(k)+id)ijxj(k)

J#i
where i is the number of the controlled unites

and j is the number of the subsystems,
and, i = j.



_________________

Subsystem One Subsystem Two

Controller One Controller Two

A 4 A 4

Plant 1 Plant 2

A

Fig.5. A decentralized control system that the
controllers only control partial overall state
variables.

From Fig. 5, the overall system breaks
down due to a disconnection or a failure of the
subsystem is shown in Fig. 6.

Subsystem One Subsystem Two

Controller Two
A

Controller One

=

A 4
Plant 2

Plant 1

Fig.6. A controller failure.

From Fig. 6, the controller of the
subsystem one fails. The plant one is unable to
be controlled by the controller one. Although
the controller two is still functioning, it only
can control the plant two that is only part of the
overall system.

Controller Two

R i
1
1
1
1

Subsystem Two

Figure 7. A multiple control system with a
failure controller.
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On the other hand, if the multiple control
system has same failure that is shown in Fig. 7,
the controller two can still control overall
system regardless of the malfunction of the
controller one.

From the concepts of multiple control
systems, to design a reliable decentralized
control system can be based on the structure of
decentralized control systems.

Now let us look at the structure of a
decentralized  singularly-perturbed  system
shown in Figure 1 and the state equation of the
subsystem EQq(50) developed in the previous
process.

The reason why Eq(50) is discussed for
reliable control is to see whether the output
feedback controller G; can control overall state
variables.

x. (k +1) = @ x. (k) + Tu, (k) (50a)
=Dy X, (k) + P X, (k) (SOb)
= [(DN + FlF)jl_]Xr (k) (SOC)

where @, =(®+T,K, + K, +..,K,,)

and K, ~ K, are existing assumed state

feedback gains.
P = [l _GlDrl]ilGlCrl
After choosing an appropriate value for G,,

the matrix I'; P, will be absorbed to the matrix
@ ; therefore, a nxn matrix [®, +T,P] that

contains the existing poles of the system is
obtained. In other words, the output feedback
controller G, can control the overall state

variables.
From Eq(50) and Fig. 1, the input of the
subsystem one

u; (k) = G,y, (k) = Bx, (k) (51)

It obviously shows that the input u,(k) can

control overall state variables. It is likewise in
the rest of the inputs and in the full order
system. In addition, the stabilizing output
feedback controller has been developed by the
Riccati equation approach in Eq(48). Therefore,
these two concepts conclude that the controller
of each channel can stabilize the overall state
variables. This is same as the idea of a multiple
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control system proposed by Siljack [14].

VI. ILLUSTRATION

A system is a fifth-order system with three
first order subsystems, three inputs and three
outputs. The state model is shown as

. [0s 0 01 02 a1} [0 0 o
“11o - 01 03 02| ||o o ofy] (52a)
3:0.4 0305 0 0 ;1+0.4 0 0ly

1 |-04 04 0 -045 0 |?||0 -05 0 |y

%) loss 03 0 0 -4/ |0 0 o6

Y, 1 0 0)z

y, =10 1 0z, (52b)
Ys 0 0 1]z

where X is a slow state vector that is second-
order.

Z,,Z,,2, are all fast state vectors and
first-order individually.

Therefore, when we set ¢ =0, the system
can be reduced to a second order system such as

—01545-016 008 —0222 015 4
—0363 -094 008 0333 -03 N
Next, we digitize this reduced-order model
to discrete-time domain with the sampling
period 0.1.

(53)

0.985

&(k+l)=[7 s

X (k) + U, (K)
00344 09103 00075 00322 -0028

us (k)
Now, if we want to have the optimal
control in the subsystem one, by assuming the
existing
p,=fr 1] and p,

,0.01541 ® {0.0079 -0.0223 0.01519:[u1(k)] (54)

=[5 5], we can rewrite

the model as
R v T e T

If the performance index of the slow state
vector from the subsystem one is

N-1

_1

Z(x (K)Qx, () +u," (K)Ryu, (k)) (56)
where Q, = [Cl) ﬂ R, =1
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The robust stabilizing controller of the
subsystem one

=[-3.2814 -05737]x, (k) (57)
with L — | 364.8580 610517
61.0517 13.3957

Next, from Eq(12) c,=-C,A, ‘A, and

D, =-C,A, ‘B, . After digitization, the values
and the sizes of C, and D, are unchanged.
Therefore, we can obtain C, =[0.8 -0.6] and
D,, =0.8. Moreover, the output feedback gain
of the subsystem one is also obtained by Eq(48).

G,=-KT® ; Therefore, G, =148 Also,
P, =[1-G,D,]"'G,C, =[-6.4. 4.8]. To ensure
that G, is a stabilizing gain, we can use the

value of P, in EQq(39) and apply into Eq(55).
Then, the close-loop system model would be

like Eq(40) that a_ | *9870 00757 gpe
—0.1947 0.8340

poles of the original open-loop system that has

1.0382 0.0378

D, =
~0.0344 0.7980

1.0123 and 0.8239 has one pole outside the unit
circle and unstable. After using the output
feedback gain, G,, the poles of the close-loop

system become 0.9108+i0.094 which are inside
the unit circle and stable. Therefore, it shows
that G, is a robust stabilizing gain. The control

scheme of the subsystem one can be shown
as Fig. 8. Moreover, the output feedback gains
of the subsystem two and the subsystem three
can be found by the same procedure as the
subsystem one.

} with eigenvalues

up
O—> Subsystem p| System
A one
A/D
Y1
t Y
G, [« A/D

Fig.8. The computer robust output feedback
stabilizing controller of the subsystem one.



6.1 The robust control test

Using the same technique and same
conditions in the original full-order model with
£ =0.001. The discrete-time model would be
like
09842
~00334 09102 0.0002 0.0004
08072 -0559 0
-09042 08239 0

~0.0151 0.0002 —0.0004 0.0003
~0.0005
wk +1) =
0.0001 —0.0006

0837 06713 00003 0.0001 —0.0001
0.0077 0.00218 0.0147
0.0074 - 0.0315 - 0.0282 |[u, (k)
0.8017 0.0356 0.0281 || u, (k)
- 0.0003 -1.1574 - 0.0373 || u, (k)
0.012 - 0.0045  1.4919

Now, we apply the feedback gains obtained
from the reduced-order model in the original
full-order model. We will have the locations of
the two main performing poles at
0.90+i0.092 . We can see the two poles’
locations are very close to the locations that we
find in the reduced-order model. That shows
robust control of this reduced-order output
feedback controller.

X

i z
Also, by assuming y1=[0 011 1%

ZZ

ZS
we can have the system responses based on the

subsystem one with h=0.1 and £=0.001 as
follows.

open loop zero-input response

Armplitude

Time(o.1 sec.)

Fig.9. The open-loop zero-input response of the full
order system with the slow state poles at
1.012 and 0.824 ; P,=[1 1],Ps=[5 5] respect
to subsystem one. The system is unstable.

—0.0007 0.0005 w(k)+
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close-loop zero-input response

Amplitude

L s L
70 a0 90

40

50 &0 100

Timero.1 sec.)

Fig.10. The close-loop zero-input response of the
full-order system with the reduced-order
output feedback controller shifting poles to
0.90+1i0.092 respect to subsystem one.
The system is stable.

We can also find out how the system
tolerates system uncertainties by changing the
parameter €. Table 1 shows how the poles shift
when the value of & changes.

Table 1. The robust control test.

& Poles
5.0000e-004 0.897 £i0.092
0.0060 0.899 £i0.0922
0.0115 0.902 +£i0.0925
0.0170 0.907 £i0.0927
0.0225 0.909+10.0929
0.0280 0.91+10.093
0.0335 0.911+i0.0931
0.0390 0.912 +i0.0932
0.0445 0.913+1i0.0933
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Every system has difference tolerance
from system uncertainties. In this case, we
assume the system performance allows shift of
radius = 0.012 at each pole location. Then,
when ¢ < 0.017, we can have a robust control
system. The reduced-order controllers that
perform inside this bound are called robust,
decentralized reduced-order output feedback
controllers. Moreover, the stability of the full
order system that is controlled by the reduced
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order controllers can be also confirmed if the
control is inside the robustness bound. The
complete procedure achieves the design of
computer robust output stabilizing control.

The same procedure can be used in the
subsystem two and the subsystem three for the
robust control test.

VII. CONCLUSIONS

The goal of this paper is to find the robust
stabilizing gain that can be used by the
decentralized output feedback controller. The
computer implemented reduced-order
controllers can stabilize the decentralized
singularly-perturbed systems from every
substation. This more reliable and cheaper
output feedback control technique overcomes
the disadvantages of building observers in each
system. Now, with the found robust stabilizing
gain of the reduce-order control, the computer
control technique of decentralized singularly-
perturbed systems is getting more mature on all
aspects.

REFERENCES

[1] Andrey V. Savkin and lan R. Petersen,
“Optimal Stabilization of Linear Systems
via Decentralized Output Feedback,” IEEE

Trans. Automat. Contr., Vol. 43, pp.
292~294, 1998.

[2] H. Oloomi and M.E. Sawan, “The
Observer-based Controller Design  of
Discrete-time Singularly Perturbed

Systems,” IEEE Trans. Automat. Contr.,
Vol. AC-32, No.3, pp. 246~249, 1997.

[3] W. M. Haddad and D. S. Bernstein,
“Controller Design with Regional Pole
Constraints,” IEEE Trans. Automat. Contr.,
Vol. 37, pp. 54~69, 1992.

[4] S. H. Wang and E. J. Davison, “On the
Stabilization of Decentralized Control

Systems,” IEEE Tans. Automat. Contr., Vol.

AC-18, pp. 473~478, 1973.

[5] M. S. Mahmoud, “Design of Observer-
based Controllers for A Class of Discrete
Systems,” Automatica, Vol. 18, pp.
323~328, 1982.

[6] Rbert E . Benton, Jr and Dirk Smith, “Static

Output  Feedback  Stabilization  with

-14 -

Prescribed Degree of Stability,” IEEE Trans.
Automat. Contr., Vol. 34, No. 10, pp.
1493~1496, 1998.

[7] Xing-Gang Yan, Jian-jun Wang, Xing Ya
Lu, and Si-Ying Zhang, “Decentralized
Output Feedback Robust Stabilization for
a class of nonlinear Systems with
Similarity,” IEEE Trans. Automat. Contr.,
Vol. 43, pp. 294~299, 1998.

[8] Z. H. Shao and M. E. Sawan, “Robust
Stability of Singularly Perturbed Systems,”
Int. J. Contr., Vol. 58, No. 6, 1469~1476,
1993.

[9] D. P. Iracleous and A. T. Alexandridis, “A
Simple Solution to the Optimal Eigenvalue

Assignment  Problem,* IEEE Trans.
Automat. Contr., pp. 1746~1749, 1999.
[10] D. G. Luenberger, “Observer for
Multivariable System,” [IEEE Trans.

Automat. Contr., Vol. AC-11, pp. 190~197,
1966

[11] R. J. Veillette, J. V. Medanic and W. R.
Perkinsa. “Design of Reliable Control
Systems,” IEEE Tran. Automat. Contr.,
Vol. 37, pp. 290~304, 1992.

[12] D. D. Siljak, “Reliable Control Using
Multiple Control System,” Int. J. Contr.,
Vol. 31, No. 2, pp. 303~329,1980.

[13] Karl J. Astrom and Bjorn Wittenmark,

Computer-controlled Systems: Theory
and Design, Prentice-Hall Inc, NJ, 1997..

[14] George A. Perdikaris, Computer
Controlled System: Theory and
Application, Kluwer Academic

Publisher, Dordrecht, 1991.
[15] P. Kokotovic, Hassan K.Khalil and John
O’Reilly, Singular Perturbation Methods

in__Control: _Analysis _and _ Design,
Academic Press, London, 1986.
[16] DS Naidu, Singular Perturbation

Methodology in Control Systems, Peter
Peregrinus Ltd, London, 1998.

[17] D. D. Siljak and M. B. Vukcevic,
“Decentralization,  Stabilization, and
Estimation of Large-scale Linear System,”
IEEE Trans. Automat. Contr., pp 363~366,
1976.

[18] K. Yasuda, Decentralized Optimal Control
for Large-scale Interconnected Systems,
Control and Dynamic System, Academic
Press, NY, pp. 139~162, 1986.




