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ABSTRACT 

  
       In this paper, robust output feedback stabilizing controllers are developed for computer control of 
decentralized singularly-perturbed systems without state estimation devices. The developed techniques 
will be suitable for decentralized large-scale and high-dimension systems with strong potential for 
practical applications, such as aircraft, power distribution and communication networks. Moreover, the 
controllers are expected to satisfy following criteria: (1) computer control, (2) decentralized control, (3) 
robust control, (4) stabilizing control, (5) reliable control, (6) reduced-order control, and (7) output 
feedback control. The analog to digital transformation technique is used to convert continuous-time 
state models to discrete-time domain for digital control use. Singular perturbation methods are applied 
to reduce the order of the system. The concept of Riccati equation approach will be applied to stabilize 
the systems. Moreover, the robustness test will be fulfilled to understand the robustness bound of the 
system, and reliable control investigation will be performed to show the reliability of the system. 
 
Keywords: robust, stability, output feedback, decentralized, singularly-perturbed, order-                    

reduction, reliability. 
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摘      要 

 
  在這篇文章中，發展出一種可由電腦執行的強健式輸出回授穩定性控制技術，且不需要

有觀察器的輔助。系統狀態將由輸出信號獲得。此控制技術將可應用於大型分散式殊異擾動系

統。且有助於實際上的應用，如電力系統，網路系統和通訊系統。 

        控制器的設計包含以下之特性：(1)電腦控制、(2)分散式控制、(3)強健控制、(4)穩定
性控制、(5)可靠性控制、(6)減階控制、(7)輸出回授控制。類比/數位轉換技術被用來轉換連續

時間的狀態模組至離散時間，以達成數位控制的目的。奇異擾動法則被用來作減階的技術， 

穩定性控制可以用最佳化控制法來獲得。且強健控制測試也將被實行，藉以了解強健控制之範

圍值。再者，也亦將進行系統之可靠性控制分析。 

 

關鍵字: 強健、穩定性、輸出回授、分散式、殊異擾動、減階、穩定性 
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                   I. INTRODUCTION 
 

The computer control becomes a major 
technique in today’s large-scale and high-
dimension systems. These systems include 
electric power systems, nuclear reactors, 
aerospace systems, computer networks, 
communication networks, and the petroleum 
industry. Such systems consist of a number of 
independent subsystems that serve particular 
functions, share resources, and are governed by 
a set of interrelated goals and constraints. Each 
of the subsystems is responsible for the 
operation of a specific task of the overall 
system or does full-function control. This 
situation is often referred to as decentralization. 
Operations of decentralized control are 
performed on the subsystem level that make it 
attractive in cases where the classical 
stabilization and estimation techniques are 
either impossible or impractical to apply due to 
the excessive dimensionality of the system. 
Therefore, decentralized control is a major 
control scheme for dealing with large-scale 
systems. Decentralized control is also important 
for the following reasons: (1) The construction 
of a central control unit and the transmission 
lines among the various subsystems are costly, 
particularly for geographically divided systems 
such as electrical power networks. (2) The 
transmission of a signal among the various 
controlled units can delay and distort the 
transfer of information. (3) The instrumentation 
necessary for carrying out a decentralized 
control is simple. (4) As a result of the 
technological growth of computer control, the 
cost of local control units is constantly 
decreasing. (5) Decentralized control enables 
the local control units to be completely 
independent and thereby increases the 
robustness of the system. It is not surprising 
that in past decade many researchers have 
directed their attention to various problems that 
relate to such systems. Such systems are also 
called interconnected systems. Moreover, they 
are usually endowed with a complex 
interconnecting structure and are frequently 
high-dimension. Consequently, researchers 
have tried to simplify these interconnecting 
high-dimension systems. 

The   decentralized   robust controllers in 
large-scale systems have been discussed and 
designed by many different approaches in many 
papers [1-3]. Usually, there are three kinds of 
controllers: (1) state feedback controllers, (2) 
output feedback controllers [1, 4] and (3) 
observer-based controllers [2, 5]. Many papers 
concentrate on output feedback controllers and 
observer-based controllers, because state 
variables of systems are not always available 
for measurement. Output feedback controllers 
and observer-based controllers can perform 
sub-optimal control, because in output feedback 
controllers, the obtained optimal gains are for 
output feedback not state feedback; in observer-
based controllers, state variables estimated are 
not exactly correct values and observers are the 
necessary equipment in this control scheme.  
After these concerns, output feedback control 
becomes a control method that many engineers 
and researchers are interested in, because it is 
less expensive and more reliable [6].  
       The decentralized singularly-perturbed 
system may also be stabilized by optimal output 
feedback control. Savkin and Petersen [1] 
investigated the stability of continuous time 
full-order linear systems via decentralized 
output feedback control. They use only the 
input-output information and applying the 
linear quadratic regulator [LQR]. Yan, Wang, 
Lu and Zhang [7] investigated the stability of 
decentralized output feedback for class of 
nonlinear systems. They developed a controller 
with holographic structure for the stability of 
large-scale decentralized systems with 
similarity. But, these methods are not suitable 
for the system that this paper is looking into. 
       In systems, stabilization is the most 
important part when we design controllers. 
Therefore, controllers not only have to achieve 
the performances we expect but they also must 
be able to stabilize systems. There are many 
approaches used by researchers to investigate 
the stability and the stabilization of 
decentralized singularly-perturbed systems. 
Among all system performance requirements, 
robust stability is a paramount condition for 
designs of system control. Numerous 
approaches have been proposed in the literature. 
Especially, in [8], the system concerned is also 
a singularly-perturbed system. However, in this 
paper, the system is not only a singularly-
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perturbed system but also a decentralized 
control system and a computer controlled 
system. 

One of the major approaches to robust 
stabilization is by the Riccati equation. This 
approach can also achieve the optimal control 
[9]. However, it is well known that if attention 
is restricted to linear time-invariant controllers, 
then the use of decentralized control may lead 
to decentralized fixed modes. The presence of 
such fixed modes may prevent a given system 
from being stabilized via linear time-invariant 
decentralized control. After all, this is a 
particular situation. We can assume the models 
are stabilizable and detectable to prevent fix 
modes. However, in this research, our 
motivation for introducing such an output 
feedback controller is not to overcome the 
problem of fixed modes but rather to give a 
controller that is stabilizing with respect to the 
quadratic performance index.       
        The controllers not only stabilize the 
system but also achieve desire performance is 
always the major task of the designs. Therefore, 
the pole placement of the systems is also 
needed to concern when finding the stabilizing 
gain. The LQR regulator would be a good 
approach, because the technique is well known 
and familiar by all engineers.  

Often in control design it is necessary to 
construct estimates of state variables which are 
not available by direct measurement. If a 
system is linear, its state vector can be 
approximately reconstructed by building an 
observer which is a linear system driven by the 
available outputs and inputs of the original 
system. Lunberger [10] first proposed an 
“observer” and introduced the idea of a 
reduced-order observer to estimate those states 
of a system that are not accessible by direct 
measurement. The other type of observer is the 
same order as the process under observation. 
They are called full-order observers. In this 
paper, we propose reduced-order output 
feedback control which doesn’t need to 
construct observers if the state variables are not 
available for measurement. 
       Robust control is one major concern for the 
designs in large-scale systems. Here, the control 
scheme of decentralized singularly-perturbed 
systems will be investigated for robust control. 
The state model will be always an inaccurate 

representation of the actual physical system 
because of parameter changes, unmodeled 
dynamics, unmodeled time delays, changes in 
equilibrium point, sensor noise, and unpredicted 
disturbance inputs. A robust control system 
exhibits the desired performance despite the 
presence of significant uncertainty. In this paper, 
the unmodeled dynamics will be the major 
uncertainty considered, because decentralized 
singularly-perturbed systems are reduced to 
lower-order systems by neglecting the fast state 
variables that only affect the system responses 
in the very initial time period. Therefore, in this 
research, robust control is defined as that the 
desired performances is still existing after 
applying the decentralized reduced-order output 
feedback controllers in singularly-perturbed 
full-order systems. The bound of robust control 
is expected to be found in the investigation.      

The reliability of the control systems is 
also a relevant evaluation criterion. 
Conventional feedback control designs for a 
multi-input-multi-output plant may result in 
unsatisfactory control system performance or 
even instability. In the event of controller 
outages, it may be possible to control the plant 
using only the surviving inputs and outputs. A 
control system designed to tolerate failures of 
controllers, while retaining desired control 
system properties, will be called a “reliable” 
control system. In the decentralized control, the 
reliability goal is the stabilization of the system 
by a controller in each control channel, such 
that the system can tolerate control channel 
failures [11].  Siljack [12] presents the approach 
of designing a separate stabilizing controller for 
each control channel, and gives “connective 
stability” conditions under which some or all of 
these controllers together also stabilize the 
system. 

Due to increasing complexity of modern 
technological process, reliability of control has 
become an essential requirement in the design 
of large-scale systems. In a decentralized high-
dimension system, if a local controller breaks 
down, it is entirely feasible that the whole 
system may do the same. Replacement of a 
faulty controller by a standby, or disconnection 
of the corresponding subsystem for the purpose 
of preventing the system breakdown may be 
either impossible or undesirable due to the 
design constraints. A reliability goal for a 
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decentralized system is the stabilization of the 
plant by a controller in each control channel [11, 
12]. 

In decentralized control systems, basically 
there are two types of control schemes. The 
control scheme of the type-one, the controller 
of each channel only controls partial overall 
state variables [12]. The control scheme of the 
type-two, the controller of each channel can 
control overall state variables [11]. The second 
type of decentralized control scheme is 
considered as a potential reliable control 
scheme, because of the structure. In the type-
two system, if the controller of each channel is 
able to stabilize the system, the system 
possesses reliable control properties. Due to the 
way of designs, the decentralized control 
scheme that has been developed in this research 
belongs to the type-two system.      

In output feedback controller designs, 
singular perturbation methods, computer 
control schemes, and decentralization have 
never been involved together such as this 
research. In today’s system control, computers 
are widely used in every sophisticated system; 
therefore, computer control implementation 
should be absolutely and highly concerned in 
the design procedure. Using digital computers 
to implement controllers has substantial 
advantages. Many of the difficulties with 
analog implementation can be avoided. For 
example, there is no problem with accuracy or 
drift of the components. It is very easy to have 
sophisticated calculations in the control law, 
and it is easy to include logic and nonlinear 
function. Tables can be used to store data in 
order to accumulate knowledge about the 
properties of the system. It is also possible to 
have effective user interfaces [13,14].  Using  
reduced-order control  can  helps  to simplify 
the system analysis, improves the 
manufacturing process, and minimizes the cost.  
 
       II. PROBLEM STATEMENT 
 

The mathematical model of the  system  is 
shown as:                                                         

i

m

i
i zAxAx ∑

=

+=
1

000&                             (1a)                         

iiiiiii uBzAxAz ++= 0&ε                        (1b) 

iii zCy =                                              (1c) 
 
where i=1~m, which can be also shown as 
 

mm zAzAzAzAxAx 030320210100 .....++++=&  

111101 zAxAz +=&ε                               11uB+                              
xAz 202 =&ε         222 zA+                     22uB+  
xAz 303 =&ε                    333 zA+          33uB+  (1d) 

      :                                       : 
xAz mm 0=&ε                           mmmmm uBzA ++  

                 111 zCy =  
                222 zCy =  
                333 zCy =                                        (1e) 
                       :            
                mmm zCy =  
 

The system is a linear time-invariant 
decentralized singularly-perturbed system 
which has n-order and m independent inputs or 
m sub-systems.  SRx∈  and FRz∈  are the 
slow and the fast state variables respectively; 
each sub-system iz  has its own order. in

i Ru 1∈  
and in

i Ry 2∈ are the input vector of the i-th 
subsystem and the output vector of the i-th 
subsystem respectively. 00A , iA0 , 0iA , iiA  and 

iC  are constant matrices with appropriate 
dimensions with i=1~m. 11A  ~ mmA  are 
nonsingular matrices. 

The goal of this research is to develop 
computer control of robust, output feedback, 
reduced-order controllers for stabilization of 
linear singularly-perturbed systems via 
decentralized control. The system control 
scheme is shown as Fig. 1. 

The computer control schemes will be 
employed to implement the proposed output 
feedback controllers. Singular perturbation 
methods will be used to reduce the order of the 
model. Hence, the proposed techniques will be 
suitable for large-scale and high-dimension 
systems with strong potential for practical 
applications, such as power distribution and 
communication networks. 
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       This research provides a new technique to 
control decentralized singularly perturbed 
systems. It also helps to simplify the system 
analysis, improves the  manufacturing  process, 
minimizes the cost, and stabilizes the systems.  
 
 

         u1 
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   Fig.1. The computer output feedback control of 

decentralized singularly perturbed systems. 
 

The value of the small parameter ε will be 
the key point when we discuss the robustness of 
the designed controllers in uncertain systems. 
When we assume ε ≅ 0, that means we neglect 
the fast state variables that belong to the sub-
systems in this case. This is also how we can 
improve the manufacturing process and 
simplify the system analysis. A standard LQ 
criterion will be given as a condition for the 
optimal control design. This will help us to 
minimize the cost and stabilize the system [1].      
       Computer control implementation will be 
fulfilled, and appropriate A/D devices and 
sampling rates will be used to ensure the 
robustness of proposed designs. 

 
             III. PRELIMINARIES 
 
3.1 Singular  Perturbation Methods 
 

Using the state-variables representation, a 
linear time-invariant system can be represented 
as                                             

                            
,11211 uBzAxAx ++=&    )0()0( xtx ==          (2a) 

,22221 uBzAxAz ++=&ε   )0()0( ztz ==        (2b) 
 

where x and z are m- and n- dimensional slow 
state and fast state of the system. u is an r- 
dimensional control vector. The matrices ijA  
and iB  are of appropriate dimensions. The 
scalar, positive parameter ε represents all small 
parameters to be ignored. The system (2) is in 
the singularly perturbed form in the sense that 
by making ε = 0 in the system. the degenerate 
system becomes 
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22
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Therefore, the full, high-order, or 

perturbed system (2) becomes the degenerate, 
low-order, or unperturbed system [15,16]. 
 
3.2 Analog to Digital Transformation 
 

In order to obtain the digital control laws 
and fit computer control schemes,  continuous-
time state models needed to be transformed to 
discrete-time state models [13].    

A given state model   
 

                )()()( tButAxtx +=&                     (5a) 
                    )()( tCxty =                                 (5b) 
 
       The complete response of the model is 
 

 ∫ −+−=
t

k
kk dButtxtttx τττφφ )()()()()(       (6) 

 
where φ  = transition matrix. 

But, == )()( ktuu τ  constant; since tk < τ <  
t and zero-order-hold sampling has been used. 
So, 
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           ∫ −+−=
t
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        ∫
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Now, we set khtk =  where h is the fixed 

sampling interval, and k is an integer index that 
represents the number of sampling periods. 
Hence, we can represent hktk )1(1 +=+ . Now, 
the discrete-time model of the continuous-time 
system is shown as 

     ∫+=+
h

khBudkhxhhkx
0

)()()()())1(( λλφφ      (14) 

In general;    )()())1(( khuBkhxAhkx dd +=+  (15) 
where Φ== )(hAd φ                                      (16) 

           Γ== ∫
h

d BdB
0

)( λλφ                              (17) 

 
Also, in the output equation, C  is 

unchanged; therefore, )()( tCxty =  yields 
)()( khCxkhy = . 

 
3.3 Stabilization and LQR Optimal 

Control 
 

If the discrete-time system is 
            )()()1( kukxkx Γ+Φ=+                      (18) 
            )()( kCxky =                                       (19) 
 
The closed-loop system is  
        )()()()1( kxAkxKkx C=Γ−Φ=+            (20) 

and the LQ performance index is 
      ))()()()((

2
1

0

kRukukQxkxJ T
N

k

T += ∑
=

            (21) 

        
Then, the optimal control 

              )()()( kxkKku optimal −=                       (22) 
where  ΦΓ+ΓΓ= − PRPK TT 1)(                      (23)  
and, the P is the solution of the Riccati equation 

 
QPRPPPP TTT +ΦΓ+ΓΓΓ−Φ= − }][{ 1       (24) 

where P is a constant matrix. 
This optimal control feedback gain is also 

the gain that can stabilize the system [1]. 
 
             IV. MAIN RESULTS 
 

 Fig. 2 shows the approach to control the 
system. Fig. 3 shows the idea of the order 
reduction in the step one of Fig 2. The system is 
a two-time scale system; therefore, there are 
fast state variables and slow state variables. The 
slow state variables belong to the main 
controlled system, and the fast state variables 
belong to the control subsystems. The responses 
of the fast state variables will die out very fast 
so that we can just ignore the fast state variables 
and base the design on a reduced-order system. 

  
 

 
 
 
                                   Singular-perturbed Methods               
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     Fig.2. The flow-diagram of the approach. 
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   Fig.3. The idea of order reduction. 
 

Because the overall system is a computer 
controlled system, the responses of the 
computer based subsystems are a lot faster than 
the main plant, and the responses of the fast 
state variables will die out pretty fast in the very 
initial time period. Due to this phenomenon, the 
fast state variables can be ignored to simplify 
the system; the order of the overall system can 
be reduced. This also rises the idea that the state 
model of the overall system can be 
approximated. This kind of system status can 
refer to Quasi-steady state, and the parameter ε  
can be set to be zero.  

In this controller design, singular 
perturbation  methods are applied  to reduce the 
order of the system. The system model is given 
by Eq(1). The system is in the singularly 
perturbed form in the sense that  
ε =0. So, the sub-station station variables, z1, z2, 
z3  …… have reached quasi-steady state. Hence, 
the system order is reduced to the order of the 
main station which is equal to the dimension of 
the slow state variable x.       

Therefore, from Eq(1), we can re-build the 
state model as         
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The system is in the singularly perturbed 

form in the sense that ε =0. So, the sub-station 
station variables, z1, z2, z3  …… have reached 
quasi-steady state. Hence, the system order is 
reduced to the order of the main station which 
is equal to the dimension of the slow state 
variable x. From Eq(25b), it can be shown as  
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−−
−−

xAuB

xAuB
xAuB
xAuB

mmm 0

3033

2022

1011

:
:
:
:
:
:

                                                (26) 

               Full Order Model 

 Contr.  Contr. 

             Two-time Scale Model 
 
    z                            z                 x            z      

 Contr.  Contr. 

 Contr.  Contr.

 Contr.

Contr. 

 Contr. 
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Next, in order to solve 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

mz

z
z

:
2

1

, by inspection 

from Eq(25a), we can see the diagonal matrices 
of A’s are square; therefore, we obtain:   

 

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

mz

z
z
z

:
:
:
:
:
:
3

2

1

1

55

44

33

22

11

0............00
0::::::::0
::::::::::
::::::::::
::::::::::
:..............:
:..............:
:............00
0............00
00..........00 −

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

mmA

A
A

A
A

A

   

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−
−−
−−

xAuB

xAuB
xAuB
xAuB

mmm 0

3033

2022

1011

:
:
:
:
:
:

                                                   (27)                                                                              

          
We expand the two matrices on the right. 

We can have Eq(28) shown below. Equation 
(28) shows that all sub-systems iz  can be 
represented by the slow state vector x .  

From (1d), it can be shown as        
                                             

xAAuBAxAuBAz 10
1

1111
1

111011
1

111 )( −−− −−=−−=                              
xAAuBAxAuBAz 20

1
2222

1
222022

1
222 )( −−− −−=−−=                           

xAAuBAxAuBAz 30
1

3333
1

333033
1

333 )( −−− −−=−−= (28) 
                                    :                                                                    

xAAuBAxAuBAz mmmmmmmmmmmmm 0
11

0
1 )( −−− −−=−−=

       So, xAAuBAz iiiiiiii 0
11 −− −−=                      (29) 

 
where i=1~m; mmAA ~11  are nonsingular 
matrices.  

Next, recall the state equation of the slow 
state variable in Eq(1a) which is 

 
                      

i

m

i
i zAxAx ∑

=

+=
1

000&                      (30) 

We can  obtain  new representations for 
the equation of slow state variables by using 
Eq(29). 

 
                      

i

m

i
i zAxAx ∑

=

+=
1

000&                    (31a) 

= ∑
=

+
m

i
iAxA

1
000 [{ )]}( 0

11 xAAuBA iiiiiii
−− −−        (31b)       

= +− −

=
∑ xAAAA iii

m

i
i ][ 0

1

1
000 ][ 1

1
0 iiii

m

i
i uBAA −

=
∑−   (31c)  

= +− −

=
∑ xAAAA iii

m

i
i ][ 0

1

1
000

 

[ ]mmmmm uBAAuBAAuBAA 1
022

1
220211

1
1101 ......... −−− −−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

mu

u
u

:
2

1 (31d) 

 
Now, an n-order multi-input decentralized 

singularly-perturbed system is reduced into a 
S=(n-F)-order multi-input time-invariant system. 
       So, from Eq(31), we can write the reduced-
order model as 
 
                          uBxAx rrrr +=&                     (32a) 
                         irirriiii uDxCzCy +==        (32b) 
 
where  rx  indicates that the model has been 
processed with order-reduction 

riiiiiiii xAAuBAz 0
11 −− −−= ; 0

1
iiiiri AACC −−=  

iiiiri BACD 1−−=  

=rA  ][ 0
1

1
000 iii

m

i
i AAAA −

=
∑−  

=rB [ ]mmmm BAABAABAA 1
02

1
22021

1
1101 ... −−− −−−  

=u  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

:
u

u
u

                                   

Next step, from the model Eq(32), the 
model can be digitized as [15]. 

 
             )()())1(( khukhxhkx rr Γ+Φ=+            (33) 
 
where )(hφ=Φ hAre=  

           ∫=Γ
h

Bd
0

)( λλφ  

           h : sampling period. 
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Equation (33) can be also shown as   
 

     )(........)()()1( 11 kukukxkx mmrr Γ+Γ+Φ=+    (34) 
 
where 1Γ  is the first column of Γ  and 2Γ  is the 

second column of Γ  and so on. 
Now, if the main station is controlled from 

the subsystem one. The Eq(34) can be revised 
as 

 
              )()()1( 11 kukxkx rNr Γ+Φ=+           (35a) 
 
where )....( 3322 mmN KKK Γ+Γ+Γ+Φ=Φ  
and mKK ~2  are existing assumed state 
feedback gains. 
 
                 )()()( 1111 kuDkxCky rrr +=            (35b) 

 
If the state variables are not available for 

measurement, we may use system output that is 
always available. In the subsystem one, the 
output feedback can be assumed as  
         
                 )()( 111 kyGku =                               (36) 
 
where 1G  is the output feedback gain of the 
subsystem one. 

Optimization will be performed based on 
the condition of Eq(36), This means we are 
looking for the optimal gain *G  not the optimal 
input )(* ku ; therefore, this control can be also 
called the sub-optimal control. 
        From Eq(35b) and Eq(36), 

             )]()([)( 11111 kuDkxCGku rrr +=          (37)                
so,  )()(][ 11111 kxCGkuDGI rrr =−                      (38) 
where I is an identity matrix. 
then  )(][)( 11

1
111 kxCGDGIku rrr

−−=   
or,              )()( 11 kxPku r=                              (39) 
where 11

1
111 ][ rr CGDGIP −−=  

The state model of the close-loop output 
feed back control from the subsystem one can 
be written as 

 
                    )()1( kxAkx rCr =+                      (40) 
 
where 11PA NC Γ+Φ=  

The LQ performance index of each 
subsystem is       

))()()()((
2
1 1

0
kuRkukwQkwJ ii

T
ii

N

k

T
i += ∑

−

=

    (41) 

 
where iQ : the weighting matrix with p. s. d. for 

each sub-system and ⎥
⎦

⎤
⎢
⎣

⎡
= i

i

i Q
Q

Q
22

11

0
0 . 

:iR the weighting matrix with p. d. for 
each sub-system. 

⎥
⎦

⎤
⎢
⎣

⎡
=

z
x

w r ; rx  is a slow state vector and 

z is a fast state vector. 
Also, the LQ performance index of 

unknown slow state rx  can be obtained as [17].    
 

))()()()((
2
1 1

0
kuRkukxQkxJ ii

T
irir

N

k

T
ri += ∑

−

=

   (42) 

 
Therefore, for the subsystem one, the 

performance index of the discrete-time reduced-
order model Eq(35) can be shown as  
    

))()()()((
2
1

1111

1

0
1 kuRkukxQkxJ T

rr

N

k

T
r += ∑

−

=

   (43) 

 
Now, from the preliminaries, this LQR 

optimal control state feedback gain also 
stabilizes the system. Therefore, we know if we 
have control from the subsystem one, based on 
Eq(35) and Eq(43), a stabilizing state feedback 
type gain can be found as 

 
                       )()()( 1 kxkKku r

S −=                 (44) 
 
where  N

TT LRLK ΦΓ+ΓΓ= −
1

1
1111 )(                 (45)  

and, the L is the solution of the Riccati equation 
11

1
1111 }][{ rN

TTT
N QLRLLLL +ΦΓ+ΓΓΓ−Φ= −  (46) 

where L  is a constant matrix. 
Now, let Eq(39) equals to Eq(44), the 

output feedback gain of the subsystem one, 1G , 
can be found by the following process. 

 
                       )(1 kxP r )()(1 kxkK r−=             (47a) 
                  111

1
111 ][ KCGDGIP rr −=−= −       (47b) 

                  11111 ][ KDGICG rr −−=                 (47c) 
                  111111 KDGKCG rr +−=                 (47d) 

                         11111 ][ KKDCG rr −=−                   (47e)      
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In Eq(47e), the matrix  ][ 111 KDC rr −  
maybe a  non-square  matrix. In order to move 
the matrix  ][ 111 KDC rr −   to  the  right  side  of  
the  equal sign, the pseudo-inverse matrix can 
be applied in here. By defining a pseudo-
inverse matrix,  ][ 111 KDCT rr −= . The  output  
feedback  gain of the subsystem one is found as 

 
                             RTKG 11 −=                        (48) 
 
where RT is pseudo-right inverse which is 

1)( −TT TTT . 
           1K  can be any matrix that satisfies Eq 

(45) and Eq (46).                         
Next, using the matrix 1G to obtain   

11
1

111 ][ rr CGDGIP −−=   and the close-loop 
output feedback control is implemented by 1P  
as Eq(39). In Eq(47a), the reduced-order state 

)(kxr is cancelled in both sides; therefore, the 
state of this system would not be concerned in 
this control scheme. It achieves the goal of no 
state estimation needed. 

Since the close-loop system is stable, the 
output feedback gain 1G  is a robust stabilizing 
gain. The system can be stabilized by this 
output feedback gain. The robust stabilizing 
output feedback gain of the subsystem two to 
the subsystem m can just follow the same 
procedure as the subsystem one. 

Due to the control scheme is designed 
based on the reduced order model, the stability 
of the reduced order model is assured by 
applying the Riccati Equation shown in the 
previous procedure. For the stability of the full 
order system, a robustness test is needed for 
understanding the robustness bound of the 
system. Furthermore, the stability of the overall 
system can be confirmed. The robustness test 
procedure is shown in the illustration. Table 1 
contains the result of the robustness test of the 
illustration problem. 
 

  V. RELIABLE CONTROL 
INVESTIGARION 

   
In decentralized systems, reliable control 

is obtained, if every controller of every 
subsystem is able to stabilize the system. Even 

if one of the controllers fails, the rest of the 
controllers can still control the overall system. 
Therefore, the system can avoid breakdown 
problem. Siljack presents the approach of 
designing a separate stabilizing controller for 
each control channel. In such a structure, the 
system is called a multiple control system. It 
has been established that the system possessing 
this type of structure has build-in reliability 
properties [12]. Figure 4 shows the structure of 
a multiple control system. 

                  
 Fig.4. A multiple control scheme.  

 
       On the contrary, the other type of 
decentralized control scheme that has a state 
Eq(49) is shown in Fig. 5. [12,17,18]. In this 
type of decentralized systems, the controller of 
each channel does not have ability to control 
overall state variables. In Eq(49), the term 

)(kui  influences )(
1

kx j

N

ij
j

ij∑
≠
=

Φ , but it is unable to 

control the poles of )(kx j . )(kui can only 

control )(kxi . 
 
  )()()()1(

1
kxkukxkx j

N

ij
j

ijiiiii ∑
≠
=

Φ+Γ+Φ=+     (49) 

 
where i is the number of the controlled unites 

and j is the number of the subsystems, 
and, .ji =  
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Fig.5. A decentralized control system that the 

controllers only control partial overall state 
variables. 

 
From Fig. 5, the overall system breaks 

down due to a disconnection or a failure of the 
subsystem is shown in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
                Fig.6. A controller failure. 
 
       From Fig. 6, the controller of the 
subsystem one fails. The plant one is unable to 
be controlled by the controller one. Although 
the controller two is still functioning, it only 
can control the plant two that is only part of the 
overall system.  
 
    
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. A multiple control system with a 

failure controller.  

On the other hand, if the multiple control 
system has same failure that is shown in Fig. 7, 
the controller two can still control overall 
system regardless of the malfunction of the 
controller one.  
       From the concepts of multiple control 
systems, to design a reliable decentralized 
control system can be based on the structure of 
decentralized control systems. 
       Now let us look at the structure of a 
decentralized singularly-perturbed system 
shown in Figure 1 and the state equation of the 
subsystem Eq(50) developed in the previous 
process. 

The reason why Eq(50) is discussed for 
reliable control is to see whether the output 
feedback controller G1 can control overall state 
variables.   

 
           )()()1( 11 kukxkx rNr Γ+Φ=+              (50a) 
                        )()( 11 kxPkx rrN Γ+Φ=           (50b) 
                        )(][ 11 kxP rN Γ+Φ=                 (50c) 
 
where    )....( 3322 mmN KKK Γ+Γ+Γ+Φ=Φ  
and mKK ~2  are existing assumed state 

feedback gains. 
       11

1
111 ][ rr CGDGIP −−=  

After choosing an appropriate value for 1G , 
the matrix 11PΓ  will be absorbed to the matrix 

NΦ ; therefore, a nn×  matrix ][ 11PN Γ+Φ  that 
contains the existing poles of the system is 
obtained. In other words, the output feedback 
controller 1G  can control the overall state 
variables. 
       From Eq(50) and Fig. 1, the input of the 
subsystem one 
 
                 )()()( 1111 kxPkyGku r==                 (51)    
 
It obviously shows that the input )(1 ku  can 
control overall state variables. It is likewise in 
the rest of the inputs and in the full order 
system. In addition, the stabilizing output 
feedback controller has been developed by the 
Riccati equation approach in Eq(48). Therefore, 
these two concepts conclude that the controller 
of each channel can stabilize the overall state 
variables. This is same  as the idea of a multiple 

     Subsystem One    Subsystem Two 

Controller  One 

      Plant 1       Plant 2 

Controller Two 

                                                        

Subsystem One
 
 
 
 
 
 
 
 
Subsystem Two 

       Plant 

  Controller  One 

   Controller  
Two

     Subsystem One      Subsystem Two 

Controller  One 

        Plant 1 

Controller  Two

        Plant 2 

  Controller Two 
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control system proposed by Siljack [14].           
 
               VI. ILLUSTRATION 
 

A system is a fifth-order system with three 
first order subsystems, three inputs and three 
outputs. The state model is shown as 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−−

−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

3

2

1

3

2

1

6.000
05.00
004.0
000
000

4.0003.035.0
045.004.04.0
005.03.04.0

2.03.01.010
1.02.01.005.0

u
u
u

z
z
z
x

z
z
z
x

&

&

&

&

ε
ε
ε

  (52a) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

3

2

1

100
010
001

z
z
z

y
y
y

                            (52b) 

 
where  x  is a slow state vector that is second-

order.                                       
321 ,, zzz  are all fast state vectors and 

first-order individually. 
Therefore, when we set 0=ε , the system 

can be reduced to a second order system such as 

     

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−

−
+⎥

⎦

⎤
⎢
⎣

⎡
−−
−−

=

3

2

1

3.0333.008.0
15.0222.008.0

943.0363.0
163.01545.0

u
u
u

xx rr&
      (53)                             

Next, we digitize this reduced-order model 
to discrete-time domain with the sampling 
period 0.1.             

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−

−
+⎥

⎦

⎤
⎢
⎣

⎡
−

−
=+

)(
)(
)(

0289.00322.00075.0
0151.00223.00079.0

)(
9103.00344.0
0154.0985.0

)1(

3

2

1

ku
ku
ku

kxkx rr

 (54) 

Now, if we want to have the optimal 
control in the subsystem one, by assuming the 
existing  

[ ]112 =P  and [ ]553 =P , we can rewrite 
the model as 

)(
0075.0
0079.0

)(
7980.01467.0
0378.00382.1

)1( 1 kukxkx rr ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−

=+ (55)         

If the performance index of the slow state 
vector from the subsystem one is  
 
   ))()()()((

2
1

1111

1

0
1 kuRkukxQkxJ T

r

N

k

T
r += ∑

−

=

  (56) 

 

where ⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

1Q  ; 11 =R  

The robust stabilizing controller of the 
subsystem one 

 
              [ ]5737.02814.31 −−=su )(kxr       (57) 
 
     with =L ⎥

⎦

⎤
⎢
⎣

⎡
3957.130517.61
0517.618580.364  

Next, from Eq(12) 0
1

iiiiri AACC −−=  and 

iiiiri BACD 1−−= . After digitization, the values 
and the sizes of 1rC  and 1rD  are unchanged. 
Therefore, we can obtain [ ]6.08.01 −=rC  and 

8.01 =rD . Moreover, the output feedback gain 
of the subsystem one is also obtained by Eq(48). 

RKTG −=1 ; Therefore, .48.11 =G  Also, 
[ ]8.4.4.6][ 11

1
111 −=−= −

rr CGDGIP . To ensure 
that 1G   is  a  stabilizing   gain, we  can  use  the  
value of 1P   in  Eq(39)  and  apply into  Eq(55). 
Then, the close-loop system model would be 

like Eq(40) that ⎥
⎦

⎤
⎢
⎣

⎡
−

=
8340.01947.0
0757.09876.0

CA . The 

poles of the original open-loop system that has 

⎥
⎦

⎤
⎢
⎣

⎡
−

=Φ
7980.00344.0
0378.00382.1

N
  with eigenvalues 

1.0123 and 0.8239 has one pole outside the unit 
circle and unstable. After using the output 
feedback gain, 1G , the poles of the close-loop 
system become 094.09108.0 i±  which are inside 
the unit circle and stable. Therefore, it shows 
that 1G  is a robust stabilizing gain. The control 
scheme of the subsystem  one  can  be  shown  
as  Fig. 8.  Moreover, the output feedback gains 
of the subsystem two and the subsystem three 
can be found by the same procedure as the 
subsystem one. 

 
                    u1  
 
    
                                                                                 

1y  

                                          
                    
                  
            
Fig.8. The computer robust output feedback 

stabilizing controller of the subsystem one. 
 

A/D  G1 

A/D

Subsystem 
       one 

System
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6.1 The robust control test  
 
       Using the same technique and same 
conditions in the original full-order model with 

001.0=ε . The discrete-time model would be 
like 

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−−

−−

=+ )(

0001.00001.00003.06713.0837.0
0006.00001.008239.09042.0

0005.00007.00559.08072.0
0005.00004.00002.09102.00334.0

0003.00004.00002.00151.09842.0

)1( kwkw

          

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−−

−−

)(
)(
)(

4919.10045.0012.0
0373.01574.10003.0

0281.00356.08017.0
0282.00315.00074.0

0147.000218.00077.0

3

2

1

ku
ku
ku  

    Now, we apply the feedback gains obtained 
from the reduced-order model in the original 
full-order model. We will have the locations of 
the two main performing poles at 

092.090.0 i± . We can see the two poles’ 
locations are very close to the locations that we 
find in the reduced-order model. That shows 
robust control of this reduced-order output 
feedback controller.   

       Also, by assuming [ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3

2

1
1 11100

z
z
z
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we can have the system responses based on the 
subsystem one with h=0.1 and ε=0.001 as 
follows. 
 

 
Fig.9.  The open-loop zero-input response of the full 

order system with the slow state poles at  
1.012 and 0.824 ; P2=[1 1],P3=[5 5]  respect 
to subsystem one.  The system is unstable.                           

 

 
   

Fig.10.  The close-loop zero-input response of the             
full-order system with the reduced-order 
output feedback controller shifting poles to 

092.090.0 i±  respect to subsystem one. 
The system  is stable. 

 
       We can also find out how the system 
tolerates system uncertainties by changing the 
parameter ε. Table 1 shows how the poles shift 
when the value of ε  changes. 
 

Table 1. The robust control test. 
       
                     ε                   Poles 
               5.0000e-004        092.0897.0 i±  
               0.0060 0922.0899.0 i±  
               0.0115        0925.0902.0 i±  
               0.0170        0927.0907.0 i±  
               0.0225        0929.0909.0 i±  
               0.0280        093.091.0 i±  
               0.0335        0931.0911.0 i±  
               0.0390        0932.0912.0 i±  
               0.0445        0933.0913.0 i±  

 
Every system has difference tolerance 

from system uncertainties. In this case, we 
assume the system performance allows shift of 
radius = 0.012 at each pole location. Then, 
when ε <  0.017, we can have a robust control 
system. The reduced-order controllers that 
perform inside this bound are called robust, 
decentralized reduced-order output feedback 
controllers. Moreover, the stability of the full 
order system that is controlled by the reduced 
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order controllers can be also confirmed if the 
control is inside the robustness bound. The 
complete procedure achieves the design of 
computer robust output stabilizing control. 

The same procedure can be used in the 
subsystem two and the subsystem three for the 
robust control test.  
         
               VII. CONCLUSIONS 
 

The goal of this paper is to find the robust 
stabilizing gain that can be used by the 
decentralized output feedback controller. The 
computer implemented reduced-order 
controllers can stabilize the decentralized 
singularly-perturbed systems from every 
substation.  This more reliable and cheaper 
output feedback control technique overcomes 
the disadvantages of building observers in each 
system. Now, with the found robust stabilizing 
gain of the reduce-order control, the computer 
control technique of decentralized singularly-
perturbed systems is getting more mature on all 
aspects.   
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