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在這篇研究中，對於電腦控制的分散驅動式殊異擾動系統之強健性及可靠性加以研

究和討論。因為此系統是使用減階控制器控制，因此，系統的強健性必須被加以考量。

在研究中也發展一種強健控制的測試方法，系統亦可由此法找出強健控制之範圍。可靠

性在於分散式殊異擾動系統是指每個控制端的控制器可以穩定受控系統，且使得受控系

統可承受任意控制端的失效。這篇研究的結果顯現出只要系統符合一特定架構， 且具

有一定的條件的話，此系統將會是一個可靠性的控制系統。 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



㆔㈩期 工業教育與技術㈻刊  80  

Journal of Industrial  Education and Technology
Vol. 30. December. 2006, PP. 79〜90 

 
 

Investigation of Robustness and Reliability in  
Computer Control of Decentralized 

Singularly-perturbed Actuator Systems  
                                                                        

Kai-chao Yao 
  

National Chang-hua University of Education 
Department of Industrial Education and Technology 

 
ABSTRACT 

 
Robustness investigation and reliability investigation are discussed and investigated in 

his research for computer control of decentralized singularly-perturbed systems. Due to the 
systems are controlled by using reduced-order control scheme, robustness of the system 
should be necessarily concerned. A procedure of a robust control test will be developed to 
find the robustness bound of the systems. A reliability goal for a decentralized system is the 
stabilization of the plant by a controller in each control channel, such that the system can 
tolerate control channel failures. The results of the research show the system that has a certain 
structure with certain conditions will be a reliable control system. 
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I. INTRODUCTION 

This paper is an extension research of [1]. In [1], Digital Observer-based Controller 
Design of Decentralized Actuator Systems is developed.  

Most of the engineering analysis and design tools rely on a precise mathematical 
description of the physical problem. Nevertheless, in most of the practical problems we can 
not specify such model (unstructured uncertainty) or the value of its parameters (structured 
uncertainty). In addition to the description and propagation of the uncertainty, the output 
subjected to optimization is now parameterized by the design variables. Considerable effort 
has been devoted to the development and implementation of viable numerical strategies. 
While these tools are the only alternative for studying large scale problems, their nature often 
precludes a deeper understanding of the problem and its solution. This paper studies the 
robustness and reliability of decentralized singularly-perturbed systems with structured 
uncertainty by multiple control technique. This allows to insure the controllers to have such 
systems present the desired performances.    

Robust control and reliable control are two of the major concerns for the designs in 
decentralized large-scale systems. Here, the control scheme of decentralized 
singularly-perturbed systems will be investigated for robust control and reliable control. 

The state model will be always an inaccurate representation of the actual physical 
system because of parameter changes, unmodeled dynamics, unmodeled time delays, changes 
in equilibrium point, sensor noise, and unpredicted disturbance inputs [3]. A robust control 
system exhibits the desired performance despite the presence of significant uncertainty. In 
this research, the unmodel dynamics will be the major uncertainty considered, because 
decentralized large-scale systems are reduced to lower-order systems by neglecting the fast 
state variables that only affect the system responses in the very initial time period. Therefore, 
in this research, robust control is defined as that the desired performances are still exiting 
after applying the decentralized reduced-order controller in singularly-perturbed full-order 
systems. The bound of robust control is expected to be found in the investigation.      

Due to increasing complexity of modern technological process, reliability of control has 
become an essential requirement in the design of large-scale systems [2], [4]-[8]. In a 
decentralized high-dimension system, if a local controller breaks down, it is entirely feasible 
that the whole system may do the same. Replacement of a faulty controller by a standby, or 
disconnection of the corresponding subsystem for the purpose of preventing the system 
breakdown may be either impossible or undesirable due to the design constraints. A reliability 
goal for a decentralized system is the stabilization of the plant by a controller in each control 
channel [2], [4]. 

In decentralized control systems, basically there are two types of control schemes. The 
control scheme of the type-one, the controller of each channel only controls partial overall 
state variables [4]. The control scheme of the type-two, the controller of each channel can 
control overall state variables [2]. The second type of decentralized control scheme is 
considered as a potential reliable control scheme, because of the structure. In the type-two 
system, if the controller of each channel is able to stabilize the system, the system possesses 



㆔㈩期 工業教育與技術㈻刊  82  

reliable control properties. Due to the way of designs, the decentralized control scheme that is 
concerned in this research belongs to the type-two system. 

      

II. SYSTEM DESCRIPTION 

The mathematical model of the system is shown as below: 
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where  i=1~m 

  
The system is a linear time-invariant decentralized singularly-perturbed actuator system 

which has n-order and m independent inputs or m sub-systems. SRx∈  and FRz∈  are 
the slow and the fast state variables respectively; each sub-system iz  has its own order. 

in
i Ru 1∈  and in

i Ry 2∈ are the input vector of the i-th subsystem and the output vector of 
the i-th subsystem respectively. 00A , iA0 , 0iA , iiA  , iB and iC  are constant matrices 
with appropriate dimensions with i=1~m.  

After apply singularly-perturbed methods and analog to digital transformation technique, 
if we have control from the subsystem one, the system can be shown as below [1] and the 
structure is shown in Figure 1. 
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Figure 1. The decentralized singularly-perturbed actuator control system.  

 

 

III. ROBUST CONTROL INVESTIGATION 

In singularly-perturbed systems, the parameter ε  reflects the changing of the state 
model by system uncertainties. Because of the values of ε  is very small, it is assumed to be 
zero when the control design is proceeded. This is a system uncertainty of unmodel dynamics. 
How much effect caused on poles shifting by system uncertainties and how much toleration 
of systems are the issues we would like to look into. 

Now, let look at a practical decentralized singularly-perturbed system model that is a 
fifth-order system with three first order subsystems and three inputs.  
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where  x  is a slow state vector that is second-order. 
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321 ,, zzz  are all fast state vectors and first-order individually. 
 

Therefore, when we set 0=ε , the system can be reduced to a second order system 
such as 
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Next, we digitize this reduced-order model to discrete-time domain with the 

sampling period 0.1. 
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Now, we will control the system from the subsystem one. By assuming the existing 

K2 and K3 are zeros, we can rewrite the model as 
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From the calculation, we know the locations of the poles in the reduced-order 

model are 0.9915 and 0.9038. If the desired locations of these poles are 0.9 and 0.8, after 
calculation, the necessary feedback gains [ ]2717.66679.301 −=K . Pole placement 
for the subsystem two and subsystem three can just follow the same procedure used in 
the subsystem one. 
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Now, we can perform robustness test on this system. Using the same technique and 
same conditions in the original full-order model with 001.0=ε . The discrete-time 
full-order model would be like 
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Now, we apply the feedback gains obtained from the reduced-order model for the 

desired pole locations at 0.9 and 0.8 to this full-order model. We will have the locations  
of the performing poles at 0.8999 and 0.8007. We can see the locations are very close to 
the desired locations. That shows robust control of the reduced-order controller. 
   

Also, by assuming [ ]


















=

3

2

1
1 11100

z
z
z
x

y , we can have the system responses based on 

the subsystem one with h=0.1 and ε=0.001 as Figure 2. and Figure 3.: 
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Figure 2. The open-loop zero-input response of the full-order system 

with the slow state poles at 0.9915 and 0.9038.                             
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Figure 3. The close-loop zero-input response with the reduced-order 

controller shifting poles to 0.9 and 0.8. 

 

We can also find out how the system tolerates system uncertainties by changing the 
parameter ε by a MATLAB program shown below: 

 
% the robust control test of the above example. 
% arbitrarily choose a small initial value for ε . 
z=0.0005;          
% set the test for 50 loops. 
for x=1:1:50;       
% input known parameters of  the Φ  and the Γ . 
a=0.4;b=-0.3;c=-0.5; 
d=-0.4;e=0.4;f=-0.45; 
g=0.35;h=0.3;i=-0.4;  
j=0.4;k=-0.5;l=0.6;. 
% express how these parameters affected by ε . 
a=a./z;b=b./z;c=c./z;                    
d=d./z;e=e./z;f=f./z; 
g=g./z;h=h./z;i=i./z; 
j=j./z;k=k./z;l=l./z; 
% the Φ  of the full-order state model. 
A=[-0.5 0 0.1 -0.2 0.1;  
     0 -1 0.1 0.3 -0.2; 
     a  b  c  0  0; 
     d  e  0  f  0; 
     g  h  0  0  i]; 
% the Γ  of the full-order state model. 
B=[0 0 0;0 0 0;j 0 0;0 k 0;0 0 l];  
% perform analog to digital transformation with sampling rate 0.1. 
[G,P]=c2d(A,B,0.1);               
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% the existing controlling feedback gain of the reduced-order controller.  
K=[-30.6679 6.2717 0 0 0];   
% the 1Γ  of the discrete-time state model. 
P1=P(:,1);  
% the new Φ  of the discrete-time state model 
M=G+P1*K;  
% the pole locations of  the closed-loop system controlled by the subsystem one . 
Y=eig(M);    
% the dominant pole locations of using the reduced-order controller. 
Y(1:2,1)                         
% move to next test with the interval 0.0055. 
z=z+0.0055  
end  

 
 
Table 1 shows how the poles shift when the value of ε  changes. 
 

Table 1. The robust control test. 

ε  Poles 
5.0000e-004 0.8999, 0.8003 

0.0060 0.9001, 0.7954 
0.0115 0.9003, 0.7902 
0.0170 0.9005, 0.7845 
0.0225 0.9007, 0.7781 
0.0280 0.9009, 0.7707 
0.0335 0.9011, 0.7619 
0.0390 0.9013, 0.7511 
0.0445 0.9015, 0.7368 

                                         
Every system has difference tolerance from system uncertainties. In this case, we 

assume the system performance allows 0.02 shift at each pole location. Then, when ε <  
0.017, we can have a robust control system. The reduced-order controllers that perform inside 
this bound are called robust, decentralized reduced-order controllers. 

The same procedure can be used in the subsystem two and the subsystem three for the 
robust control test. 

  
 

IV. RELIABLE CONTROL INVESTIGATION 

In decentralized systems, reliable control is obtained, if every controller of every 
subsystem is able to stabilize the system. Even if one of the controllers fails, the rest of the 
controllers can still control the overall system. Therefore, the system can avoid breakdown 
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problem. Siljack presents the approach of designing a separate stabilizing controller for each 
control channel. In such a structure, the system is called a multiple control system. It has been 
established that the system possessing this type of structure has build-in reliability properties 
[4]. Figure 4 shows the structure of a multiple control scheme with two sub-systems. 

 
 

 

    

 

 

 

 

 

 

 
                        

Figure 4. A multiple control scheme. 

 

  On the contrary, the other type of decentralized control scheme that has a state equation 
(7), [9]-[11]. In this type of decentralized systems, the controller of each channel does not 
have ability to control overall state variables. In (7), the term )(kui  influences  
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From the concepts of multiple control systems, to design a reliable decentralized control 
system can be based on the structure of decentralized control systems. 
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Now, let us look at the structure of a decentralized singularly-perturbed system shown in 
equation (8). Equation (8) is the state equation of the subsystem one in decentralized, 
full-order singularly-perturbed systems. It can be found by the same method as equation (2). 
The reason why equation (8) is discussed for reliable control is to see whether the controller 
K1 can control overall state variables.  

  

)()()]([)1( 11 kGNkwkKkw N +Γ+Φ=+                              (8) 
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After choosing an appropriate value for 1K , the matrix )(11 kKΓ  will be absorbed to 
the matrix NΦ ; therefore, a nn×  matrix )]([ 11 kKN Γ+Φ  that contains the existing 
poles of the system is obtained. In other words, the controller 1K  can control the overall 
state variables. 

From (8), the input of the subsystem one 
 

)()()( 111 kvkwKku +=                                            (9)    

 

It obviously shows that the input )(1 ku  can control overall state variables. It is 
likewise in the rest of the inputs. In addition, the stabilizing controller has been developed by 
the Riccati equation approach [1]. Therefore, these two concepts conclude that the controller 
of each channel can stabilize the overall state variables. This is same as the idea of a multiple 
control system proposed by Siljack, and the concept also fulfill to evaluate the reliable and 
robust systems [12]. 

 

V. CONCLUSION  

The control scheme described in this research is under investigation for robustness  and 
reliability. A procedure is developed to test if a decentralized singularly-perturbed actuator 
system is a robust control system. The bound of robust control will be found. It helps us to 
understand how much the system can tolerate system uncertainties. Consequently, appropriate 
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protections can be applied to prevent malfunctions of the systems. 
The control scheme described in this research uses the structural reliability concept to 

construct a reliable control system. By comparing with other reliable control designs that 
require additional devices, this design provides the most economical scheme to have a 
reliable control system. Moreover, the control scheme is not complicated by the goal of 
reliable control, too. The only condition of this reliable control design is that the controller of 
each channel has to be a robust stabilizing controller. That already has been achieved in [1] .   
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