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Abstract

This paper provides new stabilization criteria for a class of uncertain linear time-delay
systems with saturating actuators for time-varying delays. Based on Lyapunov-Krasovskii
functionals combined with LMI techniques, simple and improved delay-dependent robust
stability criteria, which are given in terms of quadratic forms of state and LM, are derived. A
numerical example is given to illustrate the effectiveness and applicability.

Index Terms- time-delay systems, delay dependence, actuator constraint, linear matrix
inequality.
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1. Introduction

Time delays and/or saturating actuators are frequently encountered in various
engineering systems, and their existence is often the source of instability. Therefore, it is very
desirable for the control system design to investigate the problem of the stabilization of
systems with time delay and/or saturating actuators. The stabilization problem of time delay
systems has been of interest to researchers over the past decade [1]-[2]. In control system
design, the limited power supply is in the form of a saturating actuator in a practical system,
hence the actuator is nonlinear. Several authors have discussed the problem of stabilization of
the system with saturating actuator [3]-[5].

A major subject in the analysis of linear dynamical systems with time-delay is related to
the stability. The criteria for asymptotic stability of such systems can be classified as the one
of delay independent, which do not include any information on the size of delay, for
example, [6]-[7]. Tarbouriech and Garcia [7] presented to study the problem of stabilization
of neutral systems with saturating state-feedback control law. The approach adopted is based
on the use of some Lyapunov-Krasovskii functionals with delay-independent stabilization of
linear time-invariant time-delay systems. The delay dependent includes such information on
the size of delay, for example, [8]-[9]. Han and Ni [9] addressed uncertain saturated systems
with pointwise and distributed time-varying delays. More precisely, using the
Lyapunov-Razumikhin function approach proposes the upper bounds on the time varying
delays such that the uncertain system is robustly asymptotically stabilizable. The stability
criteria have been proposed via LMI approach [2], [10]-[12]. Niculescu [13] proposed a
new FH ., memoryless control and ¢ stability constraint for time delay systems via
Lyapunov-Krasovskii functional and LMI approach.

This paper provides new stabilization criteria for a class of uncertain linear time-delay
systems with saturating actuators for time-varying delays. The system parameter uncertainties
are unknown but bounded, and the delays are time-varying. Based on Lyapunov—Krasovskii
functionals combined with LMI techniques, we obtain simple and improved delay-dependent
stabilization criteria. Our results, which are given in terms of quadratic forms of state and
LMI, are more informative. The proposed schemes in the paper are applicable to robust
control design.

I1. System Description

Consider the following uncertain time-delay systems with saturating actuator described by

1) = (Ao + A Ao (x,2))x(2)
# (4, + A 45O~ (1)
+ (B + AB(x,t))Sat(u(t)) (1)
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x(t)=¢(), Vie[-h0], )

where x() € R" is the state vector and 4;,j=0,1,A ,k, are known constant matrices
with appropriate dimensions, A 4;(x,?) and AB(x,t),j=0,1,A ,k,are matrix functions
representing the uncertainties in the matrices 4; , j= 01A ,k, and B.

AAj(x:t):Dij(xat)Ejaj:O:];A ;ka (3)
AB(x,t) = Do Fo(X,1) Ey 4)

where F;(x,t) € R*¢/ are unknown real time-varying matrices with Lebesgue measure
elements bounded by

Fr(x,0)F,;(x,0) <1,V j=0,1A ,k, (5)

and D;, E; and E, are known real constant matrices, j,(t),i=1,A ,k, are the
unknown time-varying delay terms, but bounded 0< p, (1) <h, gt)<d, <1, ¢(t) isa
smooth vector-valued initial function in —/4 <¢<0. The operation range of nonlinear
saturation Sat(y; (¢)) is considered inside the sector [¢;,1], which means that the graph of
nonlinearity lies between two straight lines passing through the origin with slopes ¢; and 1,
respectively, where 0< ¢, <1, ,i=1,A ,m. Let y; and 3, be the saturating values,
such that

i I 0<u; (1) <uy,
Sat(u; () =u; @) i iy <u; @) <up > (6)
wa i wi () <uy <0

where the values of 3, and 3, are chosen corresponding to the limitations with the
following properties.

Sat(u ()5 1+ a) (1)

= A (0,1 =120 m, )
this implies that

Sat(u(t))—Wu(t) = AT'u(t), (8)

where
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Sat(u(t)) = [Sat(u, ()),A , Sat(u, ()],

1 1
W= dlag[_ (1 + al)aA ) _(1 + am)]a
2 2
AT’ = dlag[AtH ,A 5 At’m] .
_ ) _ 1 1
Where A¢'; is areal number which varying between Y (1-¢';) and 5 (1-4';), where

ai<a'i<1- (9)

We assume (A, B) is controllable. In this paper, we pay attention to the following state-
feedback controller

u(t) =—Kx(t), (10)

where the state feedback matrix K has the appropriate dimension.
From (1), (8) and (10), we can obtain the resulting of uncertain time-delay systems with
saturating actuator

8t) = (Ao + Ado(x,1))x(t)
k
+ 2 (A, + Ad; (x,2))x(t — h; (7))
i=1
+ (B + AB(x,t))[Sat(u(t)) —Wu(t)]
+ (B + AB(x,t))(Wu(t))
= (Adr + Adr (x,0))x(2)
k
+ 2 (4, + A4 (x,0)x(t = hi (1)) (11)
i=1
where
Ar= 40— BW + AT)K,
Adr (x,1) = Ao (x,8) = AB(x,t)(W + AT")K.
The main aim of this paper is to develop delay-dependent criteria for robust stability of the
uncertain time delay system (1). More specifically, our objective is to determine bounds for

the time delay by using different Lyapunov-Krasovskii functionals and LMI methods.
The following matrix inequality will be essential for the proofs.

Lemma 1 [14]:
Let D,E and F be real matrices of appropriate dimensions with ||F || <1, then we

have the following:

DFE+E"F'D'<¢'DD"+&¢E"E, (12)
for any scalar ¢ > 0.
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. Main Results

In this section, we describe our method for determining the robust stabilization criteria
of uncertian time-delay system (1)-(3) and (11). The main results are given in the following
theorems.

Theorem 1: Consider the uncertain delay system

(1) with A 4, (x,0)= D, F,;(x,0) E;» j = 0,1, A ,k,AB(x,1) = Dy Fo (x.1) Es . |F || <1,
for all delays j;(¢) €[0, h]. For given « > 0, this system is robustly stable if there exist
symmetric and positive-definite matrices P >0, R, >0,i=1,A ,k, and scalar
g;>0,j=0,1,A ,k,such that the following LMI holds:

'S M. Mi M, M|

Mgy —No 0 0 0

M 0 N 0 0 |<o, (13)
M; 0 0 - N> 0

M0 0 0  —N

where

S=Ar X"+ A% X +20X
+ X" (ﬁllR,- +go0 Eo E))X
—a Y [EJAT +W)] [E, (AT + W)Y,
X=p', Y=KX,
Mo=Do> No=g0s Mi=Dos Ni=&1» M2=[Di,A Dy,

N>= diag[€72Qh e\ e 5k+1]9 M= [eah AiA e Ak]a
N, =diagl(1-d)R,~ £, ET E,
A (1_dk)Rk_€k+1E£Ek]-

Proof: Via the state transformation matrix
z(t)=¢e*" x(t), t >0 (14)

where a >0 is stability degree, transform (1) into
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Ket)=a " x(t)+ "' Kt)
=(4r+AAr+al)z(?)

+ileahf<f> (A, + A A4)z(t - hi (1), (15)

First, let us consider the time-delay system of (1), using the Lyapunov-Krasovskii functional
candidate in the following form [15]-[17], then we can write

V(z(t),z(t = hi (1))
=z ()Pz(t)

+Y [ (O)Rz(0)d6. (16)

=l =pi(1)

The time derivative of (16) along the trajectory of (1) is given by

e & (H)P(t) + 2" (1) P&t + z ) R 2(1)
=2 (1RO (¢~ () R 2= 1, (0). (17)

Using Lemma 1, we have

< T QU <0, (18)
where
U=[Z"®).z" t=m@®).A 2" (=], (19)
M G’
Q= . 20
L; L} 20
where

M=4,+al) P+P(4r+al)
k
+Y Ri+(s0—&)P Do Do P+ &5 Eo Eo
i=1

— e [ESAT +W)K] [E, (AT +W)K]

k
+ 26‘1‘11 ezahiPDi DiTP’ (21)
G =[e“"PALA e P4y, (22)
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L =—diagl1-d))R,- & ET E\
A, (I-d) Ri— e  ELE4.- (23)

Finally, letting X = P! and Y =KX and using the Schur complements, with some

efforts, we can show that (13) guarantees the negativeness of & whenever U in (19) is
not zero, which immediately implies the asymptotic stabilization of the system (1).

Remark 1:
If we letk =1, then system (1) is a single state-delay system, and the (13) can be
transformed into (24) as LMI problem on a single state delay

'S M, M\ M. M|
Mo —No 0 0 0
M. 0 N 0 0 |<o, (24)
M> 0 0 -N, 0
_1\72 0 0 0 —Ns|
where
S=Ar X"+ AL X +20X
+ X" (Ri+ e EbE) X
—a Y [E,(AT'+W)] [E,(AT" + W)Y
X=p' Y=KX,
M():DOa Nozé'oa MlzDOa N1:81 9 Mzlea
]sze_zahé‘za ]\73:eahA1a
]V3:(1_d1)R1_82E1TE1-
Remark 2:

In Theorem 2, we will consider stabilization criteria via a different choice of
Lyapunov-Krasovskii functional combined with LMI techniques.

Theorem 2: Considering the uncertain delay system (11), for all delays j;(¢) €[0,4]. For
given « > 0, this system is robustly stable if there exist symmetric and positive-definifte
matrices P>0,R,>0,0,,>0, i=1,A ,k and scalar g;>0, j=0A ,k, such that the

following LMI holds:
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R 7 AR Y SR 7
To -Ny 0 0 0
7 0 N 0 0 |<o, (25)
Ag 0 0 _Nz 0
_AT3 0 0 0 _N3_
where
3
=Ar X'+ A X +20X

k
+XT(ZR,‘ + 80E(€E0)X
i=1
— e Y LE,(AT'+W)] [E, (AT + W)]Y
k
+2h0,
i=1

X=p', Y=KX,
M():DO’ ],\\70:809 M12D09 legla Mzz[DlaAaDk]a
Nz = diag[e_zah &2 aA ’e—Zah 5k+1]’ M3 = [eah A ’A ,eah Ak]’

N3 = diag[(l—dl)Rl - & El E
aA 5 (l - dk)Rk - 5k+1E1€Ek]

Proof: Considering the time-delay system of (1), using the improved Lyapunov-Krasovskii
functional candidate in the following form, we can write

V(2(0).2(t - 1y (1))
— T OP)+Y [ (O)Rz(0)d0

0]

#3110 )0, 20 Mo dp. 6)
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e & (1)P2(1) + 2 (1) P&t + ézf () R, 2(0)
-0 (= h(O) R 2= h () +
ZzT @) hi(t) Q,y2(2) — Z IzT(ﬁ') 0,,z2(B)dp +

i=l—p(t)

Zh‘fl(t) I 2 (p) 0, z(p)dp. (27)

t=hi(t)

Using Lemma 1, we obtain

B YT TX -3 [7(B)0,2(B)dp

i=li—py(1)

+ Zi&(t) I 2 (p) 0, z(p). (28)

t=hi(t)

Since the last two terms — jZT(,B) 0,,z2(B)dp + Z 24 jZT (p) O, z(p)in (28) is

i=1¢—p(t) t—h(t)
negative-definite [18], we have

K< T QU <0, (29)
where
U=[Z"0),2" t=m@),A 2" (= h ()T, (30)
_ [ T
Q- L; g } 31)
v
=(4d,+al) P+P(4r+al)

k

+> Ri+ (g —&l)YP Do DS P+ g0 ES Eo
i=1

— al[Es(AT"+W KT [E, (AT + W)K]

k
+z€:-:lezah[PD[D{P+ghiQiO’ (32)

i=1

G =[e"" P 4 A L™ P 4], (33)

Z:_diag[(l_dl)Rl_<€‘2E1TE1
A, (I=d)R,~ &1 ELEd)- (34)
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Finally, letting X = p~' and Y = KX , using the Schur complements, with some efforts,

we can show that (25) guarantees the negativeness of & whenever U in (30) is not zero,
which immediately implies the asymptotic stabilization of the system (1).

Remark 3:
If we let k=1, then system (1) is a single state-delay system, and (25) can be

transformed into (35) as LMI problem on a single state delay,

S iy M M. M
Mo —No O 0 0
M0 N 0 0 |<o, (35)
A71§ 0 0 _ﬁz 0
G0 0 0 R
where
5
=Ar X"+ AL X + 20X

+X " (Ri+&EoE) X
— &Y [ESAT'+ W] [E, (AT + W)Y
+hQ,
X=p', Y=KX,
M02D09 ﬁozgoa M1:D09 leglﬂ Mzlea
~ 2

_ h ~ h
N,=e agza M3_€a Ala

Ni=(1-d)R,— &, El E,.

IV. Example

Consider the following uncertain time delay system:

&) =[Ao+ A Ao (D]x(0) +[ A1 + A 4 (D)]x(t — h(?))
+ BSat(u(t)), (36)

where
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[-2 0 -1 o] ,_[o
A= 3P AT 0 ) BT

and A 4,(¢) and A 4,(¢) are uncertain matrices satisfying

|A 40(0)]<0.2, [A4()|<02, Vi
102 0 1 0
Do=D1= 0 02|’ Eo=E = 0 1k

The nonlinear saturating characteristic belongs to the sector 0.3 <4, <1.
Applying Theorem 1 to this uncertain time-delay system, if we choose ', =0.5, it is

found, using the software package LMI Lab, that this system is robustly stabilizable for the
time-varying time delay A(f) , 0<h(t)<4.0813 , with a feedback control

K =[5.1926 4.7212]. However, from Theorem 2, we get h(t), 0<h(t)<4.4206 and

acontrol K =[0.2209 1.3031]. Thus, Theorem 2 improves stabilization criteria mentioned

in Theorem 1. The simulations of the above closed loop system are depicted in Figure 1 and
Figure 2, respectively.

V. Conclusion

This paper deals with the problem of robust stabilization criteria for a class of uncertain
linear time-delay saturating actuator systems. Based on Lyapunov-Krasovskii functionals
combined with LMI techniques, simple and improved delay-dependent robust stabilization
criteria are derived. The robust stabilization criteria do not involve any supplementary
constraints on the system matrices and are analytical from the system parameters. A
numerical example shows that the presented method is feasible and effective to robust control
design.
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Figure 1. The simulation of Theorem 1 for /(¢) = 4.08

Delay Time 4.08 sec

1.5

x1
0.6}

State X1,X2

x2

Time (sec)

Figure 2. The simulation of Theorem 2 for A(¢) =4.42
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Delay Time 4.42 sec
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