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本論文探討一組不確定時變時延系統飽合致動器的穩定化準則。根據李亞普若夫汎

函與結合線性矩陣不等式技巧，簡單且改善時延相關強健穩定準則被提出。一個數值範

例說明這方法的有效性與可應用性。 
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Abstract 

 
This paper provides new stabilization criteria for a class of uncertain linear time-delay 

systems with saturating actuators for time-varying delays. Based on Lyapunov-Krasovskii 
functionals combined with LMI techniques, simple and improved delay-dependent robust 
stability criteria, which are given in terms of quadratic forms of state and LMI, are derived. A 
numerical example is given to illustrate the effectiveness and applicability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Index Terms- time-delay systems, delay dependence, actuator constraint, linear matrix 
inequality.    
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I. Introduction 

Time delays and/or saturating actuators are frequently encountered in various 
engineering systems, and their existence is often the source of instability. Therefore, it is very 
desirable for the control system design to investigate the problem of the stabilization of 
systems with time delay and/or saturating actuators. The stabilization problem of time delay 
systems has been of interest to researchers over the past decade [1]-[2]. In control system 
design, the limited power supply is in the form of a saturating actuator in a practical system, 
hence the actuator is nonlinear. Several authors have discussed the problem of stabilization of 
the system with saturating actuator [3]-[5]. 

A major subject in the analysis of linear dynamical systems with time-delay is related to 
the stability. The criteria for asymptotic stability of such systems can be classified as the one 
of  delay independent, which do not include any information on the size of delay, for 
example, [6]-[7]. Tarbouriech and Garcia [7] presented to study the problem of stabilization 
of neutral systems with saturating state-feedback control law. The approach adopted is based 
on the use of some Lyapunov-Krasovskii functionals with delay-independent stabilization of 
linear time-invariant time-delay systems. The delay dependent includes such information on 
the size of delay, for example, [8]-[9]. Han and Ni [9] addressed uncertain saturated systems 
with pointwise and distributed time-varying delays. More precisely, using the 
Lyapunov-Razumikhin function approach proposes the upper bounds on the time varying 
delays such that the uncertain system is robustly asymptotically stabilizable. The stability 
criteria have been proposed via LMI approach [2], [10]-[12]. Niculescu [13] proposed a 
new H ∞  memoryless control and α stability constraint for time delay systems via 
Lyapunov-Krasovskii functional and LMI approach.  

 This paper provides new stabilization criteria for a class of uncertain linear time-delay 
systems with saturating actuators for time-varying delays. The system parameter uncertainties 
are unknown but bounded, and the delays are time-varying. Based on Lyapunov–Krasovskii 
functionals combined with LMI techniques, we obtain simple and improved delay-dependent 
stabilization criteria. Our results, which are given in terms of quadratic forms of state and 
LMI, are more informative. The proposed schemes in the paper are applicable to robust 
control design. 

 

II. System Description 

Consider the following uncertain time-delay systems with saturating actuator described by  
 

(1)                                                                         ))(()),((             

))(()),((            

)()),(()( 

1

00

tuSattxBB

thtxtxAA

txtxAAtx  

ii

k

i
i

∆++

−∆+∑+

∆+=

=

&

            



㆔㈩㆒期 工業教育與技術㈻刊  156  

   
 h,0t    (t), tx ][)( −∈∀= φ ,                                           (2)      

                                   
where Rtx n∈)(  is the state vector and k,1, 0,j A j Λ=, , are known constant matrices 
with appropriate dimensions, ),( txA j∆  and ),( txB∆ ,, k,1, 0,j Λ= are matrix functions 
representing the uncertainties in the matrices A j  k,1, 0,j Λ=, ,  and B . 
             

k,,1,j EtxFDtxA jjjj Λ0,),(),( ==∆ ,                               (3)                  
 

EtxFDtxB b),(),( 00=∆ ,                                             (4)  
                      

where RtxF gk
j jj×∈),(  are unknown real time-varying matrices with Lebesgue measure 

elements bounded by 
  

,,),(),( k,0,1,j t, ItxFtxF j
T
j Λ=∀≤                                       (5)      

 
and D j , E j  and Eb  are known real constant matrices, ,,),( k,1i thi Λ=  are the 
unknown time-varying delay terms, but bounded hthi ≤≤ )(0 , 1)( <≤ dth ii& , (t) φ  is a 
smooth vector-valued initial function in 0≤≤− th . The operation range of nonlinear 
saturation ))(( tuSat i is considered inside the sector 1] ,[α i , which means that the graph of 
nonlinearity lies between two straight lines passing through the origin with slopes α i  and 1, 
respectively, where 10 ≤≤α i , m,1,i Λ=, . Let uih  and uil  be the saturating values, 
such that 
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where the values of uu ilih   and   are chosen corresponding to the limitations with the 
following properties. 
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this implies that  
 

)()())(( tuTtWutuSat ′∆=− ,                             (8)                               
 
where 
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Where t i′∆  is a real number which varying between )1(
2
1 and  )1(

2
1

aa ii ′−′−− , where 

  
  1<′< aa ii .                                          (9)                

    
We assume ),( BA  is controllable. In this paper, we pay attention to the following state- 
feedback controller 

 
)()( tKxtu −= ,                                       (10) 

 
where the state feedback matrix K  has the appropriate dimension. 
   From (1), (8) and (10), we can obtain the resulting of uncertain time-delay systems with 
saturating actuator 
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The main aim of this paper is to develop delay-dependent criteria for robust stability of the 
uncertain time delay system (1). More specifically, our objective is to determine bounds for 
the time delay by using different Lyapunov-Krasovskii functionals and LMI methods.                        

        The following matrix inequality will be essential for the proofs. 

 
Lemma 1 [14]: 

Let ED  ,  and F be real matrices of appropriate dimensions with 1≤F , then we 
have the following: 

       
 ,1 EE DD DFEDFE TTTTT εε +≤+ −                               (12)                    

for any scalar 0 >ε . 
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Ⅲ. Main Results 

    In this section, we describe our method for determining the robust stabilization criteria 
of uncertian time-delay system (1)-(3) and (11). The main results are given in the following 
theorems. 

 
Theorem 1: Consider the uncertain delay system 
(11) k,,1,j EtxFDtxA jjjj Λ0,),(),(with ==∆ , EtxFDtxB b),(),( 00=∆ , 1≤F j , 
for all delays ],0[)( hthi ∈ . For given 0 >α , this system is robustly stable if there exist 
symmetric and positive-definite matrices k,1,i R  P i Λ=>> ,0,0 , and scalar 

k1jj ,,,0,0 Λ=>ε , such that the following LMI holds:                               
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Proof: Via the state transformation matrix 
    

 0t  txetz t >= ),()( α                                  (14)                 
 
where 0 >α  is stability degree, transform (1) into 
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First, let us consider the time-delay system of (1), using the Lyapunov-Krasovskii functional 
candidate in the following form [15]-[17], then we can write 
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The time derivative of (16) along the trajectory of (1) is given by 
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Using Lemma 1, we have  
     

,0<Ω≤ UUV T&                                        (18)                  
 
where 
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Finally, letting PX 1−=  and KXY =  and using the Schur complements, with some 
efforts, we can show that (13) guarantees the negativeness of V& whenever U  in (19) is 
not zero, which immediately implies the asymptotic stabilization of the system (1). 
 
Remark 1:  

If we let 1=k , then system (1) is a single state-delay system, and the (13) can be 
transformed into (24) as LMI problem on a single state delay 
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Remark 2: 

In Theorem 2, we will consider stabilization criteria via a different choice of 
Lyapunov-Krasovskii functional combined with LMI techniques.  
 
Theorem 2: Considering the uncertain delay system (11), for all delays ],0[)( hthi ∈ . For 
given 0 >α , this system is robustly stable if there exist symmetric and positive-definifte 
matrices  k,1,i  QR P ii Λ=>>> ,0,0,0 0  and scalar k,0,j ,j Λ=> 0ε , such that the 
following LMI holds:  
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Proof: Considering the time-delay system of (1), using the improved Lyapunov-Krasovskii 
functional candidate in the following form, we can write 
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Using Lemma 1, we obtain 
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negative-definite [18], we have  
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Finally, letting PX 1−=  and KXY = , using the Schur complements, with some efforts, 
we can show that (25) guarantees the negativeness of V& whenever U  in (30) is not zero, 
which immediately implies the asymptotic stabilization of the system (1). 
 
Remark 3: 

If we let 1k = , then system (1) is a single state-delay system, and (25) can be 
transformed into (35) as LMI problem on a single state delay, 
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IV. Example 

Consider the following uncertain time delay system:          
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and )(0 tA∆  and )(1 tA∆  are uncertain matrices satisfying 
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The nonlinear saturating characteristic belongs to the sector 13.0 <≤ ai .                                 
    Applying Theorem 1 to this uncertain time-delay system, if we choose 5.0=′a i , it is 
found, using the software package LMI Lab, that this system is robustly stabilizable for the 
time-varying time delay )(th , 0813.4)(0 ≤≤ th , with a feedback control 

]7212.4   1926.5[=K . However, from Theorem 2, we get )(th ,  4206.4)(0 ≤≤ th  and 
a control ]3031.1   2209.0[=K . Thus, Theorem 2 improves stabilization criteria mentioned 
in Theorem 1. The simulations of the above closed loop system are depicted in Figure 1 and 
Figure 2, respectively. 

 

V. Conclusion 

This paper deals with the problem of robust stabilization criteria for a class of uncertain 
linear time-delay saturating actuator systems. Based on Lyapunov-Krasovskii functionals 
combined with LMI techniques, simple and improved delay-dependent robust stabilization 
criteria are derived. The robust stabilization criteria do not involve any supplementary 
constraints on the system matrices and are analytical from the system parameters. A 
numerical example shows that the presented method is feasible and effective to robust control 
design. 
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Figure 1. The simulation of Theorem 1 for 08.4)( =th  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The simulation of Theorem 2 for 42.4)( =th  
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