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Abstract

This paper deals with the problem of robust stability and robust F, control for a class
of uncertain neutral systems. The nonlinearities are assumed to satisfy the global Lipschitz
conditions and appear in the term of perturbation. Attention first is focused on investigating a
sufficient condition for designing a state feedback controller which stabilizes the uncertain
neutral system under consideration. Robust stabilization is dependent on delay. Then, we
show that guarantees an /. -norm bound constraint on the disturbance attenuation. The
proposed results are given in terms of linear matrix inequalities. Two examples are worked

out to illustrate the validness of the theoretical results.
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I . Introduction

Time-delay frequently appears in many control systems (such as aircraft, chemical or
process control systems, distributed networks) either in the state, the control input, or the
measurements (see [1]-[5] and the references therein). Time-delay is, in many cases, a source
of instability. The stability issue and the performance of linear control systems with delay are,
therefore, of theoretical and practical important.

Since the late 1980s, the H. control problem has also attracted much attention due to
its both practical and theoretical important. Various approaches have been introduced and a
great number of results for continuous systems as well as discrete systems have been
investigated in the literature; seem, for instance, [6]-[7]. Very recently, interest has been
focused on FH, control problem for delay systems. Lee et al. [8] generalized the H .,
results for continuous systems to systems with state delay, which was further extended to
systems with both state and input delays in [9] and [10], respectively. In the context of
discrete systems with state delay, similar results can be found in [11] and references therein.

Recently, increasing attention has been paid to the discussion of the theory of neutral
delay systems and some issues, such as stability and stabilization, related to such systems
have been studied [12]-[17]. To date, however, very little attention has been draw to the
problem of robust H ,, control, for stochastic neutral delay systems with dependence of delay,
these are more complex and still open.

In the present paper, we study the robust H, control for stochastic neutral delay
systems dependent of delay. Then, we address the robust [, control design problem such
that the stabilization of the closed-loop feedback system is guaranteed with a prescribed
H., -norm bound constraint on disturbance attenuation for all admissible uncertainties.
Throughout the paper, the main thrust stems from a Lyapunov-Krasovskii functional
approach. In terms of a linear matrix inequality [18], then, a sufficient condition for the
existence of F, state feedback controller is presented.

Notation:

Most notations used in this paper are fairly standard. R" and R denote the n
dimensional Euclidean space and the set of all n xm real matrices, respectively. The 4"
denotes the transpose of matrix A. The "A” denotes the standard Euclidean norm of
matrix A. . (P) stands for the operation of taking the maximum eigenvalue of P .

II. Preliminaries

Consider the uncertain nonlinear stochastic neutral differential delay equation

d[x(t) + Cx(t - )]
=[(4+AA(@)x(#) + (A4y+ A 4, (O))x(t = h) + F(x(2), x(t — 1)) + Bu(t) + E, v(¢)]dt
+[G(x(D), x(t = h)) + E>v()] dw(?),

z(t) = Lx(t) + L, x(t — h), 4)
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where x(¢) € R" is the state vector, u(¢) is a control input with appropriate dimensions,
v(¢) is the noise signal which belongs to [,[0,00) with appropriate dimensions, w(f) is
P), z(t) is the

controlled output with appropriate dimensions, 4, B, C, 4,, E, and [E> are known

a scalar Brownian motion defined on the probability space (22, F,{F,}

202

constant matrices with appropriate dimensions, /4 are time-invariant bounded delay times
satisfying O0<h<h . AA(t) and A 4,(t) are unknown matrices representing
time-varying parameter uncertainty , and are assumed to be of the form

[A4(6) A 4,(0)]= MF@)N, N, )
Fact 1 (Mao [26]): The trivial solution of a neutral stochastic differential equation

d[x(t) = G(x(t = h)] = f(t,x(¢), x(t = h))dt + g(¢, x(¢), x(t — h))dw(¢), (6)
with f:R.XR'XR">R", :R.XR'XR'">R"™ and G:R"—> R" sufficiently

differentiable maps, is globally asymptotically stable in probability if there exists a function
V(t,x)e C,(R,*xR") which is positive definite in the Lyapunov sense, and satisfies

_oV(t,x—G(y))
- ot

LV(t,x,y) +gradV(t,x —G(y)) f(t,x,y)

b0 9015, 1) 8 (0,3,3) HessV (63— G() <0 )

for x # 0. The matrix HessV is the Hessian matrix of the second-order partial derivatives.
This fact is analogous to the well-known theorem of Lyapunov for deterministic systems.
Assumption 1 (Lipschitz condition):

()F(0,0)=0, G(0,0)=0
(2) ||F(Xla x2) = F(yy, yz)” = ||g1 (1 — y1)|| + ”gz (x2— yz)”
3) ”G(xl > X2) - G(y1 > yz)” < ||g3 (xl - y1)|| + ||g4 (XZ - yz)”

for all x;, x», y,, y,€R", where g,, g,, g, and g, are known real constant
matrices.

II. Main Results

In this section, we first state robust stabilization problem for the stochastic time-delay
system with v(¢) =0 and u(?) = Kx(¢) . Equation (4) can be written in the following form:

dLx(6) + Cx(t = h)+ 4, [x(s)ds)]

=[(A, + An+ AA(0)) x(1) + A 4, x(t = h) + F(x(t), x(¢ — h)]dt
+G(x(0), x(t = h)]dw(2), ()
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where

A;=A+BK.

Define the operator Z : C([—h = max{j;},0], R") > R" as

Z(x(2))=x(t)+Cx(t—h)+ 4, jx(s)ds ) 9)

t—h
We have the following results.

Remark 1: The operator Z is stable if the difference-integral system

X(6)+ Cx(t = h) + Ay [x(s)ds =0 (10)

t—h

is asymptotically stable. Using the terminology in Courtemanche et al. [27], such an equation
is known as an integral delay equation.

The stability of (9) is equivalent to the fact that there exists a ¢ >0 such that all
solutions A of the associated characteristic equation

det{I+C-e‘°’h+Ai ?esgde}zo, seC (11)
—hi
satisfy Re(4) < -0 <0(0 > 0). A sufficient condition is that the inequality (12) holds
Ce™+ 4, ?he“’de <| ||+ A4 < 1. (12)
Lemma l:Let xe R", yeR", S€R™ and >0

2x"Sy<ex"x+g'y STSy. (13)

3.1 Robust feedback stabilization

Theorem 1:

Given scalar & > (), system (8) is robustly stable in probability, if the operator Z is stable
and there exist symmetric positive-definite matrices X, R , @ scalar constants a >0,

g>0,i=1---3, p>0,such that the following LMI holds:
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9 I Q X X o o M X N{
1 - & 0 0 0 0 0 pXCc'™M XN?
of 0 - 0 0 0 0 phX 4 0
X 0 0 R 0 0 0 0 0 , (13)
X 0 0 0 —h0)' 0 0 0 0 |<0
Q) 0 0 0 0 -3 0 0 0
oF 0 0 0 0 0 -3, 0 0
M" (pXC"M) (phX 47)" 0 0 0 0 -q° 0
MX N X 0 0 0 0 0 0 —a
where

Q=BY +Y BT +(A+ 4)X + X(A+ 4,)
) 1 41 _
Q=[Xg Xgl 5 = diag(C e+ pert pes) 1,5(p> N,

Q.= pX(A+4,) C+py"B'C,

Qs = phX(A+ 4,) A+ phY" B" A,
22:R—ngICTC_Z(&+P€2+ph€3)g§gz_2pgig4’
=0~ pes' Ay An)-

Then, a suitable stabilizing control law is given by u(¢) = Kx(t)=Y X 'x(¢), Y € R™",
where

K=Yx"'.

Proof:
t
Let Z(x(¢)) = x(t) + Cx(t —h) + A, [x(s)ds)and consider the proposed
t~h
Lyapunov-Krasovskii type functional Kolmanovskii [29]

V = 27 GOWPZG) + |5 ORAO0+ | [ (DRx(p)pdp. (14

—ht+p

Along trajectories of (8) and making use of the It0 -differential rule Khasminskii [25], then
one has the generator LV for the evolution of V" as

LV = x"()Rx(t) = x" (t = h)Rx(t = h) + h x" ()Ox(t) - _jth (B)OX(B)dp

t

+ 2{x()+Cx(t—h)+ 4, Ix(@)d&] }T P{(A+ BK + 4, + A(1))x(¢t)
+A A4, (Ox(t = h) + F(x(t), x(t — h)}
+[G(x(?), x(t—h)] PLG(x(?), x(t — h)]. (15)
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From (15), one has

2xT (OPAA)x(t) + 2 x" () PA 4,(0)x(t —h)+2x" (t —h) C" PAA(t)x(1)

L2476 = h)CT PA 4y x(t—h) +2 [ (0) AL PAA(D)x(1)dO
t—h

+2 [27(8) 4L PA 4, (0)x(£)d6

. x(1)
—— (¥ @) ¥ ¢=h) X (O]T| x(t—h)|d6, (16)
h t—h
x(6)
where
PM N{
T={c"PM |F(O)[N, N, O]+| NI |F@OM™ P M"PC hy" P 4,).
h Ay PM 0
Using Assumption 1, we have
|F(x(0), x(t = h))| < g, x(0)] + | g, x(t = ). (17)
and
|G(x(e), x(t = h)| < g, x(0)| + g, x(t = ). (18)
hence
|F o), x(t=h))| < 2||g x| +2]g.x—n) . (19)
and
|GCx(0), x(t—h)| < 2||g, %) + 2| g, xR . (20)

By Lemma 1 and P < pl , we can find that

x(1)
LV < %tjh[xT @) x"(t=h) x" (9)](U +I) {x(f - h)}d@j 1)

x(6)

where
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g P P
U= ¢21 ¢22 ¢23 )
Py Pn P

where

¢, =P(A+ 4,)+(A+ 4,)" P+ PBK +(PBK)' + &' PP
+2eit peat phe)g) g +2p g g5+ RO,

¢, =, = P(A+ 4,+BK) C,
S ¢3T1 = ph(A+Ah+BK)T A
b=-R+pey' C"C+2g1+per+phe) gy, +208, 84

¢23:¢§2:0v ¢33=_hQ+,08§1hA£Ah-

From (4), we obtain

U+I'<O0, (22)

It follows from the Schur complement that (22) is equivalent to

® P <) I I e e PM N

P — & 0 0 0 0 0 pc'™M N}
o 0 -5 0 0 0 0 phai O , (23)
I 0 0 -R" 0 0 0 0 0

I 0 0 0 —(h0)"' 0 0 0 0|<0

ol 0 0 0 0 - 0 0 0

ol 0 0 0 0 0 -3 0 0

M (pC"M)Y (phai) 0O 0 0 0 -a' 0
N N> 0 0 0 0 0 0 -a

where

©=P(A+ A4,)+(A+ 4,) P+ PBK +(PBK ),
. 1 4 1 _
e =Ilg gl 5 = diagl- (s1+ P2t P s) 1’5(") 1,

©,=p(A+ 4,+BK) C, ©;=ph(A+ 4,+BK)" 4,,
32 =R—pe'CTC—2gi+per+Phes) gy~ 2084 €4
S:=hQ—-pei' di A).
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Pre- and post-multiplying both sides of (23) by diag(p™',1,1,1,1,1,1,1,1) and denoting
X =p"', Y=KX vyield (13). We show that (13) guarantees the negativeness, which

immediately implies that the closed-loop stochastic neutral nonlinear time delay system (8) is
robustly stabilizable.

3.2 Robust A, performance

In this section, we extend the robust stabilization results developed in the previous
section to the case of robust /H, performance problem, we consider the (4) as above.

Theorem 2:

Given scalar 4 > 0, system (4) is robustly stable in probability, if the operator Z is
stable and there exist symmetric positive-definite matrices X, R , Q scalar constants

a>0, g>0,i=1,---3, p>0,such that the following LMI holds:

I3 I 8 X X XI''6, 6, E M XN

I . 0 0 0 0 0 0 0 1, XN}

o 0 -5 0 0 0 0 0 0 I 0

X 0 0 —-rp' 0 0 0 0 0 0 0 , (24)

X 0 0 0 —(hQ)"' 0 0 0 0 0 0

LX 0 0 0 0 -I 0 0 0 0 0 <0

o 0 0 0 0 0 -5 0 y 0 0

O 0 0 0 0 0 0 -5 v, 0 0

El 0 0 0 0 0 wYow: -5, 0 0

MToIf m 0 0 0 0 0 [ ——— 0

NX N.X 0 0 0 0 0 0 0 0 -«
where

Q=BY +y B +(A+ 4)X + X(A+ 4,),

B 1 1

O =[Xg Xgil, 5\ = diagl_ (51 par+ pss) 1,5(/0) 1,

O, =pX(A+4,) C+X["L,+pY B'C,

O, = pPhX(A+ 4,) A+ phY" B" An,
S:=R-p&'CTC-2e1+pes+phe)g, g~ LiLa—2p(+ ) g, &,
§3:h(Q_P8§IAITzAh)-

S, =7 T—p(+eVESE, » Th=pXC'M , TL=phX 4 , W,=pC E ,
‘PzzphAiT,El-

Then the state feedback controller

u(t)=Kx(t)=Y x'x(¢) (24)
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stabilizes system (4) and guarantees that the [, norm bound of the closed-loop has a
prescribed level y > 0.

Proof: Applying the controller (24) to the (4), we obtain the resulting closed-loop system in
the following

d[x(t)+ Cx(t—h)]
=[(4;+A4(@0))x() + (A5 + A 4, (0))x(t = h) + F(x(2), x(t = h)) + E, v(1)]dt
+[G(x(2), x(t = h)) + Exv()] dw(?),

z(t) = Lx(t) + L, x(t — h), (25)
where

Ar=A+BK.
For ¢t >0, set

J0)= EL ©)20) -7 OW(O))6}. (26)
since
EW @)} = E{iLV(H)d@} , 27)
therefore, one has
J(t) = E{i [2' (0)2(0) - "V (O)(O) + LV ()10} ~E{V (1)}
< B[ 0)2(0)- "V (0)40) + LV (6)1d0}

SE{Q[XT«?) A (O-h) ]

IV. Examples

Example 1. Consider a linear stochastic neutral interval delay system [30]

dlx(r) + z (Ci+ACH(E — )]

= [40x(0) + X Ax(t = ) Yt + [ADx(2) + AEx(t ~ )] dw(?). (26)
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where

[-2 1 [1 005 [or o [o1 005
A= ol A 00s 12T o 01l ©Tloos o1

[0.05 0

= aA i— L7 Cims im)izlaza A =L Dms> Dml> AE =[- ms Lim
C» OO'OS}C[CC] D =[=Du Dl [=Ews Enl]

o1 o o1 o fo1 0 _for 0o
Clm_ O 01 s C2m_ O 01 s Dm_ O 01 s Em_ O 01 H 1= Y 5

h, =1.0. Applying Theorem 1, by the software package LMI Lab., we find the solutions of

the LMI as
03052 0.2422 _[0.1268 0.0170 [ 0.1087 -0.0037
“lo2422 07342 BT 00170 015160 27200037 0.1336]

0=0.1167, 0=0.1167, y =18.8752, a=4.1492.

Therefore, this implies (26) is asymptotically stable in probability for any

hi €[0,0.33] and A, €[0,1.0].

Example 2. Consider a two—dimensional stochastic neutral interval differential equation [30]
2

dDx(t) + 2 (Ci+ AC)X( — h)]

=[Ayx(t)+ iA,-x(t — h;) + Bu(t) Jdt +[ADx(t) + AEx(¢t — 7)) dw(2), (27)

where
-2 1] o 1 _[or —oos] o f10
A= AT ol 2T 00s 01 T 1
o o02]  Jo1r o0 o1 0 o0
o2 o710 0119l o o1l T o o1l
o1 0 o1 0
D=l g 01 B2l 0 01|

Using Theorem 2 to this uncertain stochastic neutral interval delay equations, it is found that
this system is robustly stabilizable for any time-delay /4, €[0,0.4] and j, €[0,0.89] and

the correspondent robustly stabilizing control law is
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—-0.0290 -0.6914
x(1).
-11794 -0.0535

V. Conclusion

This paper has addressed new results and presented insights into the problems of robust
stability analysis and robust feedback synthesis for a class of linear neutral interval systems
with state delays. The cases of delay-dependence are introduced. Moreover, it has been
established that controllers are capable of guaranteeing the closed-loop system stabilization

by a linear matrix inequality formulation.
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