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Design of observer for a class of discrete-time uncertain cellular neural

networks with time delay
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This project is concerned with the problem of observer design for a class of
discrete-time uncertain cellular neural networks with time delay. The interconnection
matrix and the activation functions are assumed to satisfy the global Lipschitz
conditions. The parameter uncertainties are assumed to b time-varying norm-bounded,
and appear in all the matrices of the system model. Attention is focused on the design
of an observer which ensures global robust stability of the neuron states of estimation
for all admissible uncertainties. A sufficient condition for the existence of such an
observer is given in terms of a linear matrix inequality (LMI). When this LMI is

feasible, the explicit expression of a desired observer is also presented. Up to date,



however, no results on design of observer for a class of robust discrete-time cellular
neural networks with time delay is available in the literature, this problem is still open
and remains challenging. A numerical example is provided to illustrate the
applicability of the proposed design approach.
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1. Preliminaries
Consider the following discrete uncertain cellular neural network with a constant

delay described by non-linear differential equations of the form
X(k +1) = =x(k) + (A+ AAK)) f (x(K) + (As + A Ag (K) F(X(k =7)) +V 0]

where

x(k) =[x, (k), x,(K), -+, xa(K)]' € R" denotes the state vector of the cellular neural
network and n is the number of neurons,
f(x(k)=[f,(x;(kK)), f,(x2(kK)),--, fn(xn(k))]T is the neuron activation function,
720 represents the transmission delay which satisfies 0<7<7, A={g;} and

A = {aijd} are the interconnection matrices representing the weight coefficients of

the neurons, and V =[V,,V,, -,V ]T is the constant external input vector.

AA(k) and A Aq(k) are unknown matrices representing time-varying parameter

uncertainties, and are assumed to be of the form

[AA(K) A Aq(k)]=DF(K)[E, E.l, (2)
where D, E, and E, are known real constant matrices and F(-):R — R*! is an
unknown real-valued time-varying matrix satisfying

FT(KFk)<I, vt. 3)

Assume further that all the elements of F(k) are Lebesgue measurable. AA(k) and
A Ag (K) are said to be admissible if both Egs. (2) and (3) hold.

Throughout this paper it is assumed that the activation function satisfies the
following assumption.

Assumption 1 (Lipschitz condition):
There exist positive constants ¢;, 1=1,2,---,n such that

|fi(:1)_ fi(§2)|ﬁai|é’l—é’2, gligzﬂ i=1-,n, 4)




forall £, and §, eR.

In fact, the information about the neuron states is incomplete from the network
measurements (outputs). That is, only partial information about the neuron states is
available in the network measurements. In other words, the network measurements
are subject to nonlinear disturbances. Accordingly, an effective observer algorithm is
developed in order to observe the neuron states from the available network outputs.

The neural network measurements are as
y(k) = Cx(k) + Gg(x(k)), )

where Yy(k) € R™ is the measurement output, C and G are known real constant
matrices, g:R"— R" is known nonlinear function and satisfies the following

Lipschitz condition

la(x) = 90| < |54 (i — %) (6)

and hence

2
9

"< 2[s,(x—x.) (7)

lg(x)-9(x.)

where S, € R™ is known real constant matrix.

The objective of the present analysis is to design a state observer such that the error
dynamics is globally asymptotically stable for all admissible uncertainties and the

addressed nonlinearity. More specifically, the observer design is of the form
R(k +1) = =%(K) + Af (R(k)+A, F (XK —1)+V + L[y(k) - CR(k)-Gg(x(k)]  (8)

such that the error dynamics is globally asymptotical stability, where the observer
gain L is to be determined, X(k) is the estimation of the neuron state.

Define the error state

e(k) = x(k) — R(K) . (9)

From (1), (5) and the observer (8), it is easy to show that



e(k +1) = (LC — De(k) + Al f (x(k)) — f (R(k))]+ AAK) f (x(k))

+ Ad[f (X(k=2) = F(R(k = )]+ A Ag F(X(k = 7))+ G(g(x(K) — g(R(K))).
(10)
The main purpose is to design a state observer L such that the error dynamics
remain globally asymptotically stable for all admissible uncertainties and the

nonlinear disturbance.
3. Main Results

This section explores the globally robust stability of error dynamics given in (10).
Specially, an LMI approach is employed to solve the robust stability if the system in
(10) is globally asymptotically stable for all admissible uncertainties AA(k) and
A Ag(K). The analysis commences by using the LMI approach to develop some
results which are essential to introduce the following Lemma 1 for the development of

our main theorem.

Lemmal: Let D andS be real matrices of appropriate dimensions. Then the
following statements hold for vectors X, y € R"

2x'DSy<x'DD"x+Yy'STSy. (11)

To study the globally robust stability of error dynamics, the following theorem

reveals that such conditions can be expressed in terms of LMIs.

Theorem 1: Consider the discrete uncertain delayed cellular neural network (1)
satisfying Assumption 1. If there exist matrices P and Q such that the following

LMI holds

O Q. Qs Qo Qs Qs Qi Qs |
Q, -P 0 0 0 0 0
Q, 0 -1 0 0 0 0
Q}, 0 0 -P 0 0 0 0 <0 (12)
Qs O 0 0 -1 0 0 0
Qs 0 0 0 —1 0 0
Q, 0 0 0 -1 0
Q0 0 0 0 0 -P]




, then a robust observer is given by (8) with L = p~'Y , where

Q,=-P+Q, le=\/§(CTYT_|)= Ql3:(CTYT_I)M: Ql4:25£GTYT’

Qis=SIG'Y", Qs=SIG'Y'M, Q,=2ITA'PM, Q=221 AP,
where T, =diag(ai1, a2, 13- > a1a) >0 and S is known real constant matrix.

Proof: Consider the following Lyapunov function candidate for the system in (10)
v, =ek) Pek)+ ek —i)Qe(k —i). (13)
i=1

Then the difference between the Lyapunov function candidates for two consecutive

time instants is as follows

AV =V (e(k + 1)) -V (e(k))

=e" (K)((LC = 1) P(LC — 1) =P +Q)e(k) — e (k —7)Qe(k —7)

+2e" (K)(LC = 1) PAAK) f (x(k)) +2e" (K)(LC = 1) PA A4 (k) f (X(k — 7))

+2¢" (K)(LC — 1) PTACT (x(K) = F (kD) + Aq (F (x(k =2)) = F(R(k —7))]
+2¢" (K)(LC = 1) P(g(x(k)) = g(R(K)) + £ (x(kDA AT (K)PAA(K) f (x(K))

+2 £1(x(k)A AT (K)PA A (K) f (x(k - 7))

+2 £T(x(k)DA AT (K)P [ACF (x(K) = F(R(K))) + Aa (F(x(k = 7)) = f (R(k = 7)))]
+2 £7 (x(K)A AT(K)PLG(g(x(K)) - g(R(K)))

+ £7(x(k=2)A AL (K)PA Aq (K) f (x(k 7))

+2 T (x(k = 7)A AL ()P [ACT (x(K) = F(R(K)) + Ag (F(x(k = 2)) = F(R(k = 7)]

+2 £ (x(k —7))A Al (K)PLG(g(x(K)) ~ g(%(k)))
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+LACE (x(K)) = FRKD) + A (F(x(k =2) = F(R(k—2)] P

LA (x(k) = F(X(K))) + Aa (F(x(k = 7)) = T (X(k —7)))]
+2[ACF (x(K) = F(&KD) + Aa (F(x(k =) = F(Rk—2)T

-PLG(g(x(k)) - g(x(k)))

+(g(x(k)) = g(X(k)))' G" LT PLG(g(x(k)) — g(R(k))). (14)
Accordingly, it follows from Lemma 1 and Assumption 1

26" (K)(LC = 1)" P[ACT (x(K)) ~ F (R(K)) + As (F(x(k = 2)) = f (R(k = 7))]

<e" (K)(LC = 1) P(LC - )e(k)

+2(e" (KT ATPAT (k) +e" (k—7)T3 AT P AsTre(k — 1)), (15)

where Ty =diag(ai1, o s> > am)  and T =diag (o, a2»> @2 > @)  and

ai>0 and g, >0, 1=1,2,3,---,n are given in Assumption 1,

26" (K)(LC ~ 1) P(g(x(k)) ~ g(X(k)))

<e" (K)YLC - 1) P(LC - e(k) +¢ (k) SgG' L'PLGS,e(k), (16)

where S, 1is known real constant matrix,

2 £ (x(kDA AT (K)PLACE (x(K)) = F(R(K)) + Ag (F (x(k = 2)) = F(R(k =7))]

< T (x(K))NT N, F(x(k))

+2(e"(K)TT ATPM MTPAT e(k)+e' (k—7)T3 At PM MTP AT e(k—17)),  (17)



2 £7(x(k)A AT (K)PLG(g(x(k)) — g (X(K)))

< fT(x(K)NT N, F(x(k))+e' (k)SgG' L' PPLG s e(k), (18)

2 T (x(k —7)A AT(K)P [ACF(x(k)) = f(R(K))) + A (F(X(k—7)) = F(R(K —7)))]

< FT(x(k =) NI N, F(x(k —7))

+2(e" (k)T ATPM M PAT e(k) +e" (k—7)T3 AlLPM MTP AT e(k = 7)), (19)
2 £ (x(k = 7))A AL (K)PLG(g(x(K)) — g(X(k)))

< fT(x(k=7))NT N, f(x(k—=7))+e" (K)S;G" L"PM MTPLG Se(k), (20)

2[ACF (x(K) = F (R + Ag (F(x(k =) = F(RK =)
-PLG(g(x(k)) - g(x(k)))

<2(e" (k)11 A"PAT e(k)+e" (k—7)T3 AP AgToe(k — 7))

+e' (k)SgG' L' PLG Sge(k), 21

2[ACF(x(K) = F(R(K)) + Ag (F(x(k =)~ f(R(k =) P
LACE(x(k) = F(X(K))) + A (F (x(k = 7)) = T (X(k —7)))]

<4@e" (K11 ATPAT (k) +e" (k—7)T3 AP AsThe(k — 7)), (22)

2(g(x(k)) - g((k)))' G" L" PLG(g(x(k)) — g(%(k))

<2e"(k)S§G' LT PLG s e(k), (23)



26" (K)(LC — 1)T PAAK) f (x(K)) + 2" (K)(LC — 1) PA A, (K) T (x(k 7))
=2e" (K)(LC — 1) PMF(K)[N, NoI[f'(x(k) f (x(k=2)]
<¢" (K)(LC = 1) PM MT P(LC - De(k)

+IN, F(x(k) + N Fx(k=2) T[Ny F (k) + N f(x(k = )], (24)

T (x(k)A AT (K)PAAK) f (x(K)) +2 f7 (x(k)A AT (K)PA As (k) f (x(k ~ 7))

+ £ (x(k =2)A AT (K)PA A (K) f (x(k —7))

: : FING f(x(K)
=|f k)) f k — P|AAK) A Ay(k
(17 (xcky) 17 (x( T))]_AAE (k)} [AAK) M()]{f(x(k_r))}
T T NI, f (x(k)
<[tk 1 (X(k—f))]_NJM PMN, Nz]{ f (X(k_r))}, (25)

Substituting (15)-(25) into (14), it can be shown that (14) reduces to
AV <TT" (K ZTI(K) (26)

where

(k) =[e"(k) e"(k—7) f (x(k) Fxk-c)T,

i 00 0

0 0 0
s 22 ’ (27)
0 0 ¥ Zu

0 0 =L Iu
where
211:3(LC—|)T P(LC-1)-P+Q+81] ATPAT,+41] A"PM M " PAT,

+S3G'L'PM MTPLGS,+45;G"L'PLGS,+S;G' L' PPLG S,

9



+(LC-1)PM MTP(LC -1),

Y =-Q+8M ATP AT, +4T5 AsPM M P AI T,
Y53=N{M"PM N;+8N{ N;, Z3s=N{M'PM N,+8N/ N>,
D= N;MTPM N2+8N;N2-

By the Schur complement, (26) is equal to

T=[0 3, 0 : (28)
0 0 Su—SuXuly

On the other hand, error dynamics (10) is asymptotically stable for all admissible
uncertainties which implies 2 <0, and hence AV, <0.

Eq. (28) yields ¥,,<0, $,<0 and 33;3—3uYuiu<0. Therefore, by the
Schur complement, 3, <0 guarantees (12). Therefore, it can be concluded from the
Lyapunov-Krasovskii functional that the error dynamics expressed in (10) attains
globally asymptotically robust stability. This completes the proof of Theorem 1.

Two numerical examples are now presented to demonstrate the usefulness of the

proposed approach.
V. Examples

Example 1: Consider the following discrete uncertain delayed cellular neural network

X(k+1)==x(t)+ (A+ AAK)) F (X(K) +(As + A A (K) T (X(K=7))+V , (29)
y(k) = Cx(k) + Gg(x(k)), (30)
where

-1 0 09 -12 0.3 0.2 0.1 0.2
A = ) Ad = ) C = s G = >
-0.5 -1 005 -09 0.5 0.4 0 0.3

10



[0.1 0 0.02 0.02 -0.07 0.3
D = s El = ° EZ = s
0 0.3 -0.1 0.2 -0.01 02

o0 g |0 03 vop If
D=l 02l > 7 o1 02" ' 7 I

In this example, the time delay is assumed 7 =1. Utilizing Theorem 1, the robust
observer design is considered. By resorting to the Matlab LMI Control Toolbox and
solving the LMI (12), it is found that the solution is as follows

—0.0498 1.1568 -0.0167 2.3260

4.6797 0.2715
0.2715 4.0060 |’

{ 1.9242 —0.0498} { 3.1306 —0.0167}

Therefore, by Theorem 1 the robust design problem is solvable and a desired observer
is givenas L=p7'Y 0.8362
v = = .

8 0.4250
Example 2: Consider the discrete uncertain delayed cellular neural network (29) and

(30) with parameters as follows

[0.05 025 0.05 0.75 0.75 095 03 02 0
A=(0.10 0.05 015, As=| O 050 0.75 ], C=|0 02 0.1,
10.15 015 0.05 0.15 095 095 02 0.1 02

0.2 0.1 0.2 0.1 0 0.1 002 0.02 0
G=/0.1 02 0(,D={0 03 0.1}, E;=|-0.1 0.1 0.1],
10 02 0.1 0 01 02 0.1 0 0.1
0.02 -0.02 0 0.1 0 0 0.1 02 0.1
E.=|0.1 -0.1 01, ;=0 02 0|, S4=/01 02 0.2},
0.1 0 0.1 0 0 03 0.1 03 02

r=2,V=[1 1 1.

Utilizing Theorem 1, the robust observer design is considered. By resorting to the

11



Matlab LMI Control Toolbox and solving the LMI (12), the corresponding solution is

found as follows

2.0633 —-0.1040  0.1169 0.7819 0.0220 0.1238
P=|-0.1040 22178 —-0.0988|, Q=|0.0220 0.6672 0.1512|,
0.1169 -0.0988  2.1552 0.1238 0.1512  0.5604

2.1411 -0.1219 -0.5484
Y=|-0.1219 23370 0.0817].
—-0.5484  0.0817  2.0990

Therefore, by Theorem 1 the robust design problem is solvable and a desired observer

0.7454
is givenas L=p7'Y =|1.1215 |.
1.2744

®

This report has investigated the problem of observer design for a particular class of
discrete uncertain delayed neural network. A sufficient condition for the solvability of
this problem, which guarantees the asymptotic stability of the error dynamics, has
been derived using the Lyapunov-Krasovskii functional and the LMI approach. Two
numerical examples have been presented to demonstrate the effectiveness of the
proposed approach. It should be pointed out that the solvability conditions provided in
this paper are delay-independent, which may be conservative; one way to reduce the
conservatism is to develop delay-dependent conditions, which could be a future

research topics.
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1. This project addresses the problem of observer design in discrete uncertain
delayed cellular neural networks.
2. Two numerical examples are now presented to demonstrate the usefulness of the

proposed approach.
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