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The phase properties of pair coherent states in the two-mode Jaynes-Cummings model are investigated
based on the Pegg-Barnett phase formalism. The general expressions of the properties for the phase-sum
operator of the two correlated fields are presented, in which the Stark shifts are considered. Analytic re-
sults are given in the strong-field approximations. It is found that the phase properties such as the vari-
ance of the phase-sum operator and the variances of the cosine and the sine of the phase-sum operator
exhibit characteristic periodic oscillations in which the period is determined solely by the Stark shifts.

PACS number(s): 42.50.Dv, 42.50.Ar

I. INTRODUCTION

The Jaynes-Cummings model (JCM) [1], which de-
scribes the interaction of two-level atom with single mode
of the quantized field, is considered to be one of the most
successful models in quantum optics. Several nonclassi-
cal phenomena, such as the spontaneous collapses and re-
vivals of the atomic population, sub-Poissonian photon
distribution, and field squeezing have been predicted and
discussed theoretically [2—6]. Recent advances in exper-
imental techniques have also made it possible to realize
the system inside a superconducting cavity, which led to
the observations of the aforementioned features [7].

In addition to the standard JCM, some generalized
models [8-11] have been constructed and extensively
studied. One of these generalizations (multilevels, multi-
photons) is to replace the mediated photon by a nonde-
generate photon pair, i.e., photons of different modes are
either emitted or absorbed in pairs by the atom. This
generalized JCM has been studied by several authors
[10-12]. Similar novel quantum features, such as the
collapses and revivals of the Rabi oscillations and sub-
Poissonian photon distributions, have also been found. It
is shown that the quantum dynamics of the two-mode
JCM depend crucially on the initial two-mode field states.
Especially for some nonclassical two-mode states such as
the pair coherent states and other SU(1,1) correlated
states, the quantum collapse and revival characteristics of
the two-mode JCM exhibit qualitatively different
behavior from those in the uncorrelated two-mode field
states [10—12].

Recently, Pegg and Barnett [13,14] have introduced a
new set of formalisms to define a Hermitian phase opera-
tor, and this has renewed considerable interest in study-
ing the phase properties of fully quantized radiation
fields. Using the Pegg-Barnett approach, phase proper-
ties of special field states such as the squeezed states [15],
pair coherent states [16], and other nonclassical ones
[17,18] have been reported. The same approach can also
be employed to the JCM and other related systems
[19-21]. In this paper, we use the Pegg-Barnett ap-
proach to study the phase dynamics of pair coherent
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states in the nondegenerate two-photon JCM. The joint
probability distribution for the phases of the two modes is
obtained and shown to depend explicitly on the sum of
the two phases. The variance of the phase-sum operator
and the variances of the cosine and sine of the phase-sum
operator are investigated. In particular, the influences of
Stark shifts on these phase properties are also studied.
The organization of this paper is as follows: In Sec. II,
the properties of the pair coherent states are described
briefly. In Sec. III, the field dynamics of the two-mode
JCM are presented, in which the Stark shifts are con-
sidered. In Sec. IV, the time evolution of the aforemen-
tioned phase properties for pair coherent states are inves-
tigated. In the strong-field approximations, some analyt-
ic results are shown and discussed. Finally, the conclud-
ing remarks are given in Sec. V.

II. FEATURES OF THE PAIR COHERENT STATES

The pair coherent states are closely related to the
SU(1,1) correlated states, which may be regarded as a
special type of SU(1,1) coherent states according to the
definition of Barut and Girardello [22] Lthe eigenstates of
the SU(1,1) lower operator]. Let @, (@) and @, (6;) be
the annihilation (creation) operators of modes 1 and 2, re-
spectively. Therefore, @,a, (ﬁllrﬁ;) stands for the pair an-
nihilation (creation) operator for the two modes. The
pair coherent states, denoted by |z,q), are defined as
eigenstates of the pair annihilation operator and the num-
ber difference operator, i.e.,

a,8,lz,9)=zlz,9) 2.1)

and

(ala,—ala,)lz,q)=qlzq) , (2.2)

where z is a complex number and g is the degeneracy pa-
rameter. Specifically, the pair coherent states can be ex-
panded as superpositions of the two-mode Fock states,
ie.,

lz,qg)=N, 3 2

n=0 mln+q’n> .

(2.3)
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The normalized constant N, is given by

o |z|2 -1

né() nl(n +g)!

— (2.4)

2:
N 1,2z’

q

where I, is the modified Bessel function of the first kind
of order gq.

The probability of finding n photons in mode 2 and
n +g photons in mode 1 is

|Z|2n
nln+q)’

which is sub-Poissonian. Accordingly, the mean photon
numbers (#, ) and (#,) for @, and @, are given by

P,=|{n,n+qlz,q)*=N? (2.5)

— A2 - nlz|*" =Iq+1(2|2|)
(#2) Ny n2="o nl(n +q)! Iq(2|z|) 2l - @7

In addition to the sub-Poissonian statistics, the pair
coherent states also possess other nonclassical features,
such as the correlation in the number fluctuations,
squeezing, and violations of Cauchy-Schwartz inequali-
ties. For detailed descriptions of these properties, see
Ref. [23].

III. FIELD DYNAMICS OF THE TWO-MODE JCM

The system considered is an effective two-level atom, in
which the transition between the excited state |e) and
the ground state |g ) is mediated by the two-cavity modes
with frequencies (2, and (2,, respectively.

In the two-photon processes, an intermediate state |i )
is involved which is assumed to be coupled to le) and
lg ) by dipole-allowed transitions with strengths g, and
g, Let 0w, <w;<w,, where @g,0,, and w; denote the
corresponding frequencies of the atomic energy levels
lg?, le), and |i), respectively. Consider the exact two-
photon resonance, i.e., »; —0, =Q;—A, 0, —©; =Q, +A.
If the detuning |A| is assumed to be off resonance from
one photon linewidth, then the intermediate state |i ) can
be eliminated adiabatically and the effective Hamiltonian
of the two-level atom can be written in the rotating-wave
approximation as [24]

@

Aq=3 Qala+ ~2~(§ee — 8,0 ) +B1S, a8,
i=1,2

+B88,.ala,+g(@,a,8,,+alals,,), (3.1)

PEmia)= 3 (n,n+q,k|00)p0)0N(0)lk,m +q,m)

k=g,e
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where o=o0,—w,,B;=¢1/|Al,8,=g3/|Al, and g
=g,8,/|A|. Here @ (a,) is the creation (annihilation)
operator of the cavity modes, and §jk=|j>(k| is the
atomic operator. This Hamiltonian describes the two-
photon transition between |g ) and |e ). The Stark shifts
are characterized by the effective coupling constants 3,
and (3, that give rise to the intensity-dependent energy
shifts of the two atomic levels.

For the subspace expanded by |e,n+g,n) and
|g,n +q +1,n +1), the eigenvalues of the corresponding
irreducible representation are

Aron,g)=A7—1DItQ7, (3.2)
where

Al=Q(n +q)+Qn+lo+Bn

D!=pByn—pB(n+qg+1)=g

= —rln+q +1>] . (3.3)
Qi=[LDiP+gXn+g+1)n+1)]"%,
and r=g,/g,.

Neglecting the free evolution terms in Eq. (3.2), which
give trivial phase factors only, the matrix representation

of the time evolution operator is expressed as

U, (n,q;t) Ugln,q;t)

Uln,q;t)= Up(ngst) Uglngst) | (3.4
where the matrix elements are
U,,( ) (Q2t) iDi (QJt)
we(n,q;t)=cos(QJt)— sin(Q9t) ,
n 2Qg n
iDI
Uge(n,q;t)=cos(Qft)+ 2Qqsm(Q,‘,’t) N
n
(3.5)

QI —(Dg)2/4)1?
Ugln,g;t)=—i 0

sin(QJt) ,

Uge(n,q;t)ZUeg(n,q;t) .

Assume that the effective two-level system is initi-
ally in an arbitrary state |4 )=pule)+v|g), and the
fields are in a general correlated two-mode state
|F>=Z,,R,‘{|n +g,n). The matrix elements of the re-
duced field density operator are given by

=|ul [ Up(n —1,@UL(m —1,)RI_|(RE _)*+ U, (n,@)UL(m,@)RHRA)*]
+uv*[Ug(n —1,US(m —1,@)RY | (RE)*+ U, (n,@) UL (m, ) RIRE 1 1)*]
Fu*v[Ug(n — 1, ) UL (m — L@)RIURE _)* + U,y (n, @ UL (m, )R 4 (RE)*]

+ V[ Ugg(n —1,9) U (m — 1, RIARL)* + U,y (n,q) U (m, @RI (RS +1)*] .
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In the following calculations, for simplicity, we assume that the atom is in the excited state initially. For the pair

coherent state with z=|z|lexp(i¢), the
Fi=W,|z|"/[nX(n +q)]'"%. Thus, Eq. (3.6) is reduced to

PE i =[Ug(n —1,9)UL (m

IV. PHASE DYNAMICS OF THE TWO-MODE FIELDS

In the Pegg-Barnett phase formalism [13,14], the phase
states |6,,) of a quantized mode are introduced, which
are defined on a finite (s +1)-dimensional subspace W
spanned by the photon number states |0),]1),...,]|s),

s
10,,)=(s+1)"'2 3 explinh,,)|n) ,
n=0
where 6,, =0,+2mm /(s +1) (m =0,1,...,s), and the
reference phase 6, is an arbitrary real number. Accord-
ingly, the Hermitian phase operator is defined as

(4.1)

s

=S 0,16,)(6, .

(4.2)

Note that the parameter s is taken to be infinity after all
J

coefficient

_l!q)fr‘x]—lfrzz—-l +Uee(n>q

R? can be written as RJZ=fJlexp(ing), where

YUL(m,g)f3fs e’ —m9 . (3.7)

[
expectation values are calculated.

Using Egs. (4.1) and (4.2), the unitary operator exp(i@)
can be constructed as a cycling operator in ¥, which is
described as

exp(i®)=[0) (1] +]1)¢2|+ -+ |s —1)(s]

+expli(s +1)8,]]s)<0| . (4.3)

For any physically realizable state, it is easy toAshow that
the average of the unitary operator exp(im®) can be
written as

(exp(imﬁ\)))=<2 [n){(n +m|> . 4.4)
n=0

In analogy with Egs. (4.1) and (4.2), the associated
phase states and phase operators for the correlaied two-
mode fields can be generalized straightforwardly by [16]

s
|9 6, ) [(s+q+1)(s+1)]" 172 Eoexp[i(n +q)9jl+in0j2]|n +q,n)
g
s
=[(s+q+1)s +1)]*1/2¢xp(iq9jl) 3 explin(6; +9j2)]}n +g,n), (4.5)
n=0
and
s N
=3 3 6,10,,0,,)€6,,0; |, (4.6)
j1=0j,=0
where 6, =04 +27j, /(s +1),j,=0,1,...,s, and i =1,2. Therefore, the joint probability distribution P(8, ,0, ) is given
Ji ]’ Iy 70
by
o AF
P(6;,0; )=Tr(p iej ,912)(912,9““
s i(mvnlej i(m~n)0j
=[(s+g+1(s+D]"" 3 pk, (e le 2
n,m =0
s i(m—n)(Gj +(9j —¢)
=[(s+g+Ds+D]"" S Znm,qg;t)fifie e 4.7)
n,m =0
f
where To be specific, we let 8)"=0'=¢ /2 —, so that the two
N phases are symmetrized with respect to ¢ /2. It is easy to
Z(n,m,q;0)=Upg(n,q; U, ¢ (1,951) verify that the joint probability distribution equation (4.8)
+U,,(n,q ;t)Uee(m’q 1) . is normalized, i.e.,
In the continuous limit, ie, 6,6, and f:/;”” "7 P(6,,6,)d0,d0,=1 . 4.9)

27w /(s +1)—d6;, the joint probability distribution be-
comes

0

> Z(n,m,q;t)fifle

n,m =0

_ 1 itm —n)(0,+0,—¢)
P(91,92)~z;2‘ v .
(4.8)

¢/2—

Obviously, the joint probability distribution equation
(4.8) depends explicitly on the sum of the two phases, i.e.,
P(6,,0,)=P(6=6,+0,). This interesting property re-
sults from the strong correlation of the two modes, which
makes the pair coherent states a partial phase state, and
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leads to the uniformity of the marginal phase distribu-
tions,

P(91)=fzfj:P(()l,Gz)de:TI;ZP(Bz) . (4.10)
According to Eq. (4.10), we have

(61>=f;’if_*ﬂ”elp(el)del:%’-:<&>2> @.11)
and
<<f>f>=f;’;j:efp(endelz%z+"§:<&>§> .

(4.12)

Consequently,

(B,—8,)=0, (&,+8,)=¢ (4.13)
and

<(A<T>1)2>=<(A<f>2)2>=”—2 : 4.14)

3

From Egs. (4.11) and (4.14), it is clear that the indivi-
dual phases 8, and 6, remain uniformly distributed as
time evolves. Moreover, the mean values of the phase
operators are not affected by the Stark shifts, this is quite
different from the results of Ref. [25] in which the initial
fields are assumed as the direct product of two uncorre-
lated coherent states. In this paper, instead of the two in-
dividual phases 8, and 6,, we examine the ﬂuctuatrons of
the sum of the two phases, 6=60,+6,. Let <I> <I>1+<I>2,
i.e., the phase-sum operator, and thus the variance of ®,

|

Z(n,m,q;t)=cos[g(n +1)t]cos[g(m +1)¢
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is given by
((A%,)7) = (A8 )?) +((A®, ) +2Cy 4 ,  (4.15)
where
o =<(f>]&>2>_<61><a\>2>
_ [e2+m 24T 2
= elezpwl,ez)deldef%
nt m
=—2Re Y Z(n,m,q;t)————; (4.16)
m>n (n—m)

is the correlation between the two phases. It is seen that
the variance of the phase- -sum operator ¢> as well as the
phase-difference operator, (I)d <I>1 <I>2, is determined
entirely by the correlation coefficient C 0,0," Since

Z(n,m,q;0)=1 1mplymg __negative  correlation
coefficient, the variance of <I> (®,) is smaller (greater)
than the sum of the two individual phase variances. For
|z| — o at t =0, Co,0, approaches —x2/3, indicating that

((A®,)?)—0 and ((Ad>d)2)—>47r2/3 Thus, in the ab-
sence of atom-field interaction, the phase-sum operator
<I> is a well-defined phase sum in the classical limit, and
is therefore considered as the physically relevent variable
in this paper.

In general, the joint probability distribution equation
(4.8) cannot be expressed as a simple closed form for arbi-
trary g and r. However, for the special case in which
g =0 and the Stark shifts are neglected, the joint proba-
bility distribution P(6,,6,) can be obtained exactly. In
this case, we have

)t]+sin[g (n +1)t]sin[g (m +1)t]

=cos[g(n —m)t] 4.17)
and
fA=[I,(2]z])]71/% . 4.18)
Thus,
P(0=06,+0,)=——= | 3 cos[g(n +1)t]e” @O0 +— | 3 sin[q(n +1)t]e™ =0 f?
4 n=0 4 n=0 i
— 1 [e2lz|cos(gt+¢—6)+e2\z|cos(gt—¢+9)] ) 4.19)
8m2I,(2]z])
Using the generating function for the Bessel functions I, (x), the variance of the operator (155 can be expressed as
o I,(2]z])
((AD,)2)y=""— 4 . cos(ngt) . (4.20)

3 T2z = n?

Apparently, the variance ((A@S )?) shows periodic temporal behavior with a period T =2 /g. The minima and the

maxima of the variance are

ppy -2 _ 4 3 LlkD
((AD,) )mm 3 IO(ZlZD n=1 n’
- 4 = L2lzh(—1)
AD,)? 3
{( ) )max 3 Io(zlzl) n=1 n’

at t=2Ilw/g ,

4.21)

at t=Q2l+1)w/g ,
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where [ =0,1,2,... . For the asymptotically large |z|,

exp(2]z|) 4n?—1
I,(2 o~ . — 4.22
W2l == 16/2] 4.22)
Hence, we have
‘llim ((AD,)?) in=0, Jim (A, ) =7 . 4.23)

In what follows, we derive the approximate form of Eq. (4.8) for generally ¢ and r. In the strong-field limit, for
n ~|z| >>|q/, the coefficient fZ can be well approximated by

Fomp 2 Bk L @)
" TvVnln+q) ThVin+1)---(n+gq) 7 nt|z|97? nWI,(2[z]) ’ ’
which has been verified in fair agreement with the exact onme by numerical calculations. Let a=r"'—r and
b=r"'+rq, such that the detuning can be expressed as
Di=g %—r(n +q+1)| =g [(n +1)a ~b] . (4.25)
Consequently, the Rabi frequency is given by
Qi=[HDI?+g*n+qg+1(n+1)]"
(r = r)? ab b2 |
=g | +12+ |¢g— L [+ D+ (4.26)
4 2 4
For n >>1, if r is finite, we have
Ql=glaln +1)+B]=x] , 4.27)

where a=(r"'+r)/2 and B=b /2.
Next, we examine the evolution term in Eq. (4.7), which can be decomposed into the real and imaginary parts, i.e.,

Z(n,m,q;t)=X(n,m,q;t)+i¥(n,m,q;t) , (4.28)
where
sin(QJt )sin(QJ t) DIDZ
X(n,m,q;t)=cos(Qt)cos(Q¢t)+ 007 gViin+qg+Dn+1)m+qg+1)(m +1)+—4-—
and
- D}
Y(n,m,q;t)= sin(QJ2 t)cos(QJt)— sin(QJ2t)cos(Q21¢) .

207 207

For n >>1, the following two approximations are feasible:

gVin+q+1)n+1) n+l+q/2 1 (4.29)
Q4 S an+DHB « -
and
D? — —r? —1-r2
On ntba—b_,(0=r)n+h=l=rq , (4.30)

Q¢ aln+D+B T (1+r2)(n+1)+1+rYg

where e=(1—r?)/(1+r?).
Using Eqgs. (4.24)—(4.30), the approximate form for P(6,,0,) in the strong fields is obtained, which can be written as
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1 0

U an2le

m =0

S {cos(x?t)cos(x4,t)+sin(xdt)sin(x? ) a 2 +€]

m+n
+ie[cos(xdt)sin(xd,t)—cos(x4,t)sin(xdt)]}eiln ~m4—0 |z

nlm!
_ 817-21 1(2|Z|) [(l_e)ezlzicos(agt+¢—0)+(1+6)ellz(cos(agt~¢+9)] . (4.31)
q
Consequently, the phase variance is given by
. 271 4(2]z]) 4 < I .(2|z])
(AD,)?) = — e cos(nagt)
; 3,21z 1,2l & 22 &
212 q? * cos(nagt) q*—n?
~T 1+ —4
3 al7] n§1 2 1+ alz] (4.32)
[

As a result of the strong-field approximations, both the
phase probability distribution and the phase variance ex-
hibit periodic temporal behavior. Using Eq. (4.30), the
variance of </I\>S is shown in Fig. 1 for the pair coherent
state with |z| =100 and ¢ =2. It is found that the phase
variance shows exactly periodic oscillations with a period
T=2m/ag. We notice that, although the results in Fig. 1
are illustrated in accordance with Eq. (4.32), it has been
shown that these numerical results are in fair agreement
(in an error of order |z| !) with those obtained by the ex-
act expressions (4.15) and (4.16). Equations (4.31) and
(4.32) reduce to the exact expressions (4.19) and (4.20), re-
spectively, in the case of r =1 and g =0. It seems that if
the two levels |g) and |e) are equally coupled (r =1),
then the Stark effects can be significantly eliminated in
the strong fields. According to our previous results [24],
the Stark effects are completely eliminated when r =1
and g=—1.

Although we have derived the periodic phase proper-
ties in the strong-field approximations, however, it is in-
teresting to point out that similar periodic behavior is
also observed in the presence of small fields. The vari-

10.0

(A82)

5.0

0.0

FIG. 1. The variance of the phase operator </I\>S as a function
of time. The pair coherent state is prepared with |z| = 100,q =2.
The dashed line is for the case of » =2, and the solid line is for
the case of r =3.

ance of ®, for the pair coherent state with |z|=5 and
g =2 is shown in Fig. 2, which are obtained via Egs.
(4.15) and (4.16). We see that the variance exhibit almost
the same behavior as plotted in Fig. 1, except the extreme
values which are determined by the mean photon num-
bers of the fields. In order to compare with the atomic
Rabi oscillations, in Fig. 3 we show the probability of
finding the atom in the excited state. The phenomena of
collapses and revivals (note that the stationary values of
the excitation probability are shifted due to the Stark
effects) are found in the Rabi oscillations, which appear
around the characteristic time ¢=Iw/ag, where
1=0,1,2,.... However, as the Rabi oscillations are not
periodic, these two oscillations are different in nature.
Basically, the atomic inversion are determined only by
the diagonal elements of the reduced field density opera-
tor. While in determining the phase properties of the
cavity fields, the off-diagonal elements of the reduced field
density operator are involved, which lead to the delicate
cancellation of ¢ in the oscillation frequencies.

We proceed to examine the properties of cos@s and
sin®,. Following Eq. (4.4), the expectation value of
exp(im <’I\)s) for the pair coherent state can be generalized
as [16]

FIG. 2. The same as Fig. 1, except |z|=5.
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(exp(im®,)) = (exp[im (D, +B,)]) = (exp(im D, )exp(im D,))

=Tr(p’|n+g,n){n+mn+qg+mh= pl,, ,..(1)
n=0

=em 3 Z(n+m,n,qg;t)fI . f1

Thus, the averages of cos(m@s) and sin(m @S) are given by

£

(cos(m®,)) =3 [cos(mp)X(n +m,n,q;t)—sin(m)Y(n +m,n,q;)1f34f2
n=0
|z|2"X (n +m,n,q;t)
n+gMn+m)(n—+g+m)

|z]2"Y(n +m,n,q;t)
(n+gMn+mMn +q+m)

= A2 |z|m S
q|z| COS(m¢)n§’0Vn

’

_N§]z|msin(m¢)n§0\/n!
(sin(m@s))= § [cos(m@)Y(n +m,n,q;t)+sin(md)X(n +m,n,q;t)]1fI, .1
n=0

i |z|2"Y(n +m,n,q;t)

o Vnln+g)n+mM(n+q+m)
|z|*"X (n +m,n,q;1)
n+qg)l(n+m)(n+qg+m)!

N2|z|mcos(m ¢)

+.N?I |z| ™sin(m ¢) nzo VT

In the strong-field approximations, Egs. (4.24)—-(4.30), we have
(cos(m®,))
(sin(m®,))

1,(2z))
Iq(2|z|)

cos(magt) esin(magt)
—esin(magt) cos(magt)

~

cos(m¢)]

sin(m¢)

Consequently, the variances of cos®; and sin®, are approximated by

((Acos®,)?) =(cos’®, ) — (cos®, )2=1L+L(cos(2®,)) —(cosd, )?

3239

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

2
1 I,2lz]) 14 | I,(2]z])
~= 4 - 2 2agt
5 ZIq(2|z|) 3 Iq(2|2|) cos(2¢)cos(2agt)
e [LClzh [l )? (26 )sin(2t)
2 | 1,2l |T, 20D | |Fne#sin(es
2 2
1—e2 | I,(2]z]) 1+¢ | 1,(2]z])
- e 2¢)+cos(2agt)]— s
2 |T,al) | leos@d)reoszag] ===\ 7 G0
and
((Asin®,)?) =(sin’®, ) — (sin®, )2=1—L(cos(2®,) ) — (sind, )2
L2z  14e [L2lzh) )
~1— - 2 2agt
! 21,212]) 2 1.l cos(2¢)cos(2agt)
e [ L2z [1,2lzh ) in(20 sin(20gt)
- - si sin(2a
2 |1,z |1, | ™" &
2 2
1—e? 11(2|Z|) 1+ €2 Il(zlzl)
4 | 1,20z [cos(2¢) = cos(2agt)] == 1,212
. . b
It is seen that in the presence of strong fields, the mean to
value and the variance of cos®; (or sin®,) are oscillating ((Acosd, )= 1—é?

periodically with the period T=2m/ag,w/ag, respective-
ly. In the limit of |z|— e, Egs. (4.37) and (4.38) reduce

4

[1—cos(2¢)][1—cos(2agt)],
(4.39)
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1.0
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] (a)
0.5
1.0
] (b)
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FIG. 3. The probability of finding the atom in the excited

state. The pair coherent state is prepared with |z| =5, =2. (a)
r=2;(b) r =3.

_ 2
((Asin®, 2y =1 [1+cos(2¢)][1—cos(2agt)] ,
(4.40)
and it is easy to show that
((A cos®, )?)
0= (4.41)

o o S1—¢
((Asind, )2y ~17°€

Thus, for particular ¢, the variance of cos®, (or sin®,)
always vanishes in the classical limit, and we have

((Acos®,)?)=0, for p=Im,

R (4.42)
((Asin®,)*)=0, for p=(I+1)m

where / is an integer. We also find that in addition to the
choice of particular ¢, the oscillation amplitudes in Egs.
(4.39) and (4.40) are greatly diminished when the two di-
pole constants g, and g, differ considerably in magni-
tudes.

Finally, according to Egs. (4.39) and (4.40), we obtain
the relations

1—é?

((Acos®,)?)+ ((Asind,)?) = 5

[1—cos(2agt)]

(4.43)

and
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R . 2
(Acosd, ) (Asind, )= 1—e sin(2¢)[ 1 —cos(2ag?)] .

(4.44)

V. CONCLUDING REMARKS

Using the Pegg-Barnett Hermitian phase formalism,
we have studied the phase properties for the pair
coherent states interacting with the two-mode JCM in
which the stark shifts are included. By virtue of the
strong correlation of photon numbers in modes, the non-
trivial quantity to describe the phase properties f\or the
pair coherent states is the phase-sum operator ®,. In
this paper, we have shown the general expressions for the
variance of <I> and the variance of cos<I> and smCD
Furthermore, in the strong-field approximations, the ana-
lytic forms for these properties are presented and found
to exhibit characteristic oscillations. The periods of these
oscillations are characterized by the factor a=(r"!
+r)/2 which is determined solely by the Stark shifts.

It is seen that the properties of the two individual
phases are not affected by the atom-fields interaction. We
have shown that the individual phases 6, and 0, are both
uniformly distributed despite the presence of frequency
shifts caused by the Stark effects. This interesting prop-
erty is reflected by the appearance of the parameter a.
We see that « is symmetric with respect to r (the ratio of
two dipole constants) and its reciprocal, i.e., a is invari-
ant under the exchange g,<>g,. This symmetry indicates
that the two dipole transitions |g)—i) and |i)—]|e)
play indistinguishable roles in determining the dynamical
phase properties of pair coherent states in the two-mode
JCM, and thus no peculiarity of the individual phases can
be singled out.

We have found the characteristic oscillations of phase
properties for pair coherent states interacting with an in-
verted two-level atom. However, for the correlated
SU(1,1) coherent states, which is generated with the
SU(1,1) analog of the displacement operator in accor-
dance with the definition of Perelomov [26], the charac-
teristic oscillations caused by the Stark shifts are also ob-
served [27]. It seems that the existence of the charac-
teristic oscillations in phase properties is owing to the in-
teraction of the correlated two-mode states with two-level
atom. Studies on the phase properties of the correlated
SU(1,1) coherent states in the two-mode JCM are planned
to be reported elsewhere.
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