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Characteristic oscillations of phase properties for pair coherent states
in the two-mode Jaynes-Cummings-model dynamics
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The phase properties of pair coherent states in the two-mode Jaynes-Cummings model are investigated
based on the Pegg-Barnett phase formalism. The general expressions of the properties for the phase-sum
operator of the two correlated fields are presented, in which the Stark shifts are considered. Analytic re-
sults are given in the strong-field approximations. It is found that the phase properties such as the vari-
ance of the phase-sum operator and the variances of the cosine and the sine of the phase-sum operator
exhibit characteristic periodic oscillations in which the period is determined solely by the Stark shifts.

PACS number(s}: 42.50.Dv, 42.50.Ar

I. INTRODUCTION

The Jaynes-Cummings model (JCM) [1], which de-
scribes the interaction of two-level atom with single mode
of the quantized field, is considered to be one of the most
successful models in quantum optics. Several nonclassi-
cal phenomena, such as the spontaneous collapses and re-
vivals of the atomic population, sub-Poissonian photon
distribution, and field squeezing have been predicted and
discussed theoretically [2—6]. Recent advances in exper-
imental techniques have also made it possible to realize
the system inside a superconducting cavity, which led to
the observations of the aforementioned features [7].

In addition to the standard JCM, some generalized
models [8—11] have been constructed and extensively
studied. One of these generalizations (multilevels, multi-
photons) is to replace the mediated photon by a nonde-
generate photon pair, i.e., photons of difterent modes are
either emitted or absorbed in pairs by the atom. This
generalized JCM has been studied by several authors
[10—12]. Similar novel quantum features, such as the
collapses and revivals of the Rabi oscillations and sub-
Poissonian photon distributions, have also been found. It
is shown that the quantum dynamics of the two-mode
JCM depend crucially on the initial two-mode field states.
Especially for some nonclassical two-mode states such as
the pair coherent states and other SU(l, l) correlated
states, the quantum collapse and revival characteristics of
the two-mode JCM exhibit qualitatively difFerent
behavior from those in the uncorrelated two-mode field
states [10—12].

Recently, Pegg and Barnett [13,14] have introduced a
new set of formalisms to define a Hermitian phase opera-
tor, and this has renewed considerable interest in study-
ing the phase properties of fully quantized radiation
fields. Using the Pegg-Barnett approach, phase proper-
ties of special field states such as the squeezed states [15],
pair coherent states [16], and other nonclassical ones
[17,18] have been reported. The same approach can also
be employed to the JCM and other related systems
[19—21]. In this paper, we use the Pegg-Barnett ap-
proach to study the phase dynamics of pair coherent

II. FEATURES OF THE PAIR COHERENT STATES

The pair coherent states are closely related to the
SU(1,1) correlated states, which may be regarded as a
special type of SU(1,1) coherent states according to the
definition of Barut and Girardello [22] )the eigenstates of
the SU(l, l) lower operator]. Let ai (a i ) and az (a2) be
the annihilation (creation) operators of modes 1 and 2, re-
spectively. Therefore, a, a2 (a,a z ) stands for the pair an-
nihilation (creation) operator for the two modes. The
pair coherent states, denoted by ~z, q &, are defined as
eigenstates of the pair annihilation operator and the num-
ber difI'erence operator, i.e.,

and

a, a, ~z, q & =z~z, q & (2.1)

(a,a, —a,a, ) ~z, q & =q ~z, q &, (2.2)

where z is a complex number and q is the degeneracy pa-
rameter. Specifically, the pair coherent states can be ex-
panded as superpositions of the two-mode Fock states,
i.e.,

oo n

~z, q&=A, g, , ~n+q, n& .
0 [n!(n +q)!]'~ (2.3)

states in the nondegenerate two-photon JCM. The joint
probability distribution for the phases of the two modes is
obtained and shown to depend explicitly on the sum of
the two phases. The variance of the phase-sum operator
and the variances of the cosine and sine of the phase-sum
operator are investigated. In particular, the inAuences of
Stark shifts on these phase properties are also studied.
The organization of this paper is as follows: In Sec. II,
the properties of the pair coherent states are described
briefly. In Sec. III, the field dynamics of the two-mode
JCM are presented, in which the Stark shifts are con-
sidered. In Sec. IV, the time evolution of the aforemen-
tioned phase properties for pair coherent states are inves-
tigated. In the strong-field approximations, some analyt-
ic results are shown and discussed. Finally, the conclud-
ing remarks are given in Sec. V.
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The normalized constant JV is given by

oo 212

0 n!(n +q)! Iq (2
I
z

(2.4)

where I is the modified Bessel function of the first kind
of order q.

The probability of finding n photons in mode 2 and
n +q photons in mode 1 is

21tP„=
I (n, n+q Iz, q ) I'=A'

q n!(n+q)! (2.5)

which is sub-Poissonian. Accordingly, the mean photon
numbers ( 6', ) and ( 6'2 ) for a, and a2 are given by

(2.6)

A,
&

z(n, q) = A q —,'Dq+Q—q,

where

2 q=Q, (n +q)+Qzn+ ,'co+—p2n,

(3.2)

where co=co, c—o,f3&=g& /ID, I,P2=gz/Ib, I, and g
=g&g2/Ib, I. Here a; (a;) is the creation (annihilation)
operator of the cavity modes, and S~&

=
I j )(kI is the

atomic operator. This Hamiltonian describes the two-
photon transition between Ig ) and

I
e ) . The Stark shifts

are characterized by the effective coupling constants P,
and P2 that give rise to the intensity-dependent energy
shifts of the two atomic levels.

For the subspace expanded by I e, n +q, n ) and
Ig, n +q+ l, n +1), the eigenvalues of the corresponding
irreducible representation are

n Iz
I

2" Ie+ )(21zI )

n l(n +q)! J (2Iz I )
(2.7) Dq=P2n —P, (n +q+1)=g ——r(n +q+1) (3.3)

In addition to the sub-Poissonian statistics, the pair
coherent states also possess other nonclassical features,
such as the correlation in the number Auctuations,
squeezing, and violations of Cauchy-Schwartz inequali-
ties. For detailed descriptions of these properties, see
Ref. [23].

III. FIELD DYNAMICS OF THE TWO-MODE JCM

H, tt= g Q, a;a, +—(S„—S )+P,S &,d,

+P2S„d2a2+g(a,a2S,s+a, a 2', ), (3.1)

The system considered is an effective two-level atom, in
which the transition between the excited state Ie) and
the ground state Ig ) is mediated by the two-cavity modes
with frequencies 0, , and Qz, respectively.

In the two-photon processes, an intermediate state Ii )
is involved which is assumed to be coupled to Ie ) and
Ig ) by dipole-allowed transitions with strengths g, and
g2. Let co~ (co; &co„where co~, ~„and co, denote the
corresponding frequencies of the atomic energy levels
Ig ), Ie ), and Ii ), respectively. Consider the exact two-
photon resonance, i.e., co; —co~ =0,—6, ~, —co; =02+6.
If the detuning I XI is assumed to be off resonance from
one photon linewidth, then the intermediate state Ii ) can
be eliminated adiabatically and the effective Hamiltonian
of the two-level atom can be written in the rotating-wave
approximation as [24]

Qq=[ —,'(Dq) +g (n+q+1)(n+I)]'~

and r =g& /g2.

Neglecting the free evolution terms in Eq. (3.2), which
give trivial phase factors only, the matrix representation
of the time evolution operator is expressed as

U„(n,q;t) U, (n, q;t)
U(n, q;t)=

Us, (n, q;t) U (n q;t)

where the matrix elements are

iD~
U„(n, q; t) =cos( Qqt ) — sin(Q qt ),ll 2Qq

ia~
Us (n, q; t) =cos(Qqt )+ sin(Qqt),

2Qq

[(Qq)2 (Dq)2/4]1/2
U, (n, q;t)= i- sin(Qqt ),

(3.5)

U, (n, q;t)=U, (n, q;t) .

Assume that the effective two-level system is initi-
ally in an arbitrary state A )=pIe)+vIg), and the
fields are in a general correlated two-mode state
IF)=Q„RqIn+q,n). The matrix elements of the re-
duced field density operator are given by

p„.(t)= g (n, n+q, kIU(t)p(0)U (t)Ik, m+q, m)
k =g, e

= I@I [U, (n —l, q)U, (m —I, q)Rq &(Rq
&
)*+U„(n,q)U„(m,q)Rq(Rq )*]

+pv*[U, (n —l, q)U (m —I,q)Rq, (Rq )*+U„(n,q)U, (m, q)Rq(Rq+&)*]

+p* [Uv(n —l, q)U, (m —l, q)Rq(R q
&
)*+U, (n, q)Ut (m, q)Rq+&(Rq )*]

+ IvI [ U (n —l, q) U (m —I,q)R q(R q )*+U, (n, q) U, (m, q)R q+
&
(R q + &

)*] . (3.6)
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In the following calculations, for simplicity, we assume that the atom is in the excited state initially. For the pair
coherent state with z = lzl exp(ip), the coefficient R q can be written as R q =fqexp(in/), where

f, =~q lzl "/[n'(n +q).']' . Thus, Eq. (3.6) is reduced to

p„.(t)=[U, (n —1,q)Ut (m —1,q)fq ifq i+ U„(n,q)Ut, (m, q)fqfq ]e'" (3.7)

IV. PHASE DYNAMICS OF THE TWO-MODE FIELDS

In the Pegg-Barnett phase formalism [13,14], the phase
states I8 ) of a quantized mode are introduced, which
are defined on a finite (s+I)-dimensional subspace %'

spanned by the photon number states IO), I
1 ), . . . , Is ),

S

Ie ) =(s+ I) '~ g exp(ine )In ),
n=0

(4.1)

where 0 =Oo+2qrm /(s + I ) (m =0, I, . . . ,s), and the
reference phase 00 is an arbitrary real number. Accord-
ingly, the Hermitian phase operator is defined as

C= y 0 0.)(0. .
m=0

(4.2)

Note that the parameter s is taken to be infinity after all

I

exp(iC ) =—l0& & 1 I+ I
1 & &21+ Is —1)&s

I

+exp[i(s +1)00]ls ) (Ol . (4.3)

For any physically realizable state, it is easy to show that
the average of the unitary operator exp(imf&) can be
written as

(exp(im4))= X )n( +nmll .
n=0

(4.4)

In analogy with Eqs. (4.1) and (4.2), the associated
phase states and phase operators for the correlated two-
mode fields can be generalized straightforwardly by [16]

l

expectation values are calculated.
Using Eqs. (4.1) and (4.2), the unitary operator exp(i4& )

can be constructed as a cycling operator in 4, which is
described as

S

Ie, e )=[(s+q+1)(s+I)] ' g exp[i(n+q)0 +inc, ]In+q, n)
n=0

and

=[(s+q+1)(s+1)] '~ exp(iqe ) g exp[in(0 +0, )]In +q, n ),
n=0

(4.5)

c, = y y o, lo, , e, &&0, , 0, I,
jr=0 j2=0

(4.6)

where 0 =Oo~'+2qrj;/(s+ I),j, =0, 1, . . . ,s, and i=1,2. Therefore, the joint probability distribution P(0, 0 ) is given
t

by

P(0, , 0, ) =Tr(p 0, , 0, & & 0, , 0, I )

S i (m —n)0. i (m —n)0.
=[(s+q+1)(s+1)] ' g p„.(t)e 'e

n, m —0

S i (m —n)(0. +0. —P)
=[( +q+1)(s+I)] ' g Z(n, m, q;t)f„f e

n, m =0
(4.7)

where

Z(n, m, q;t) = U, (n, q;t) U~(m, q; t)

+U„(n,q;t)U„(m,q;t) .

In the continuous limit, i.e., 0. ~0,- and

2qr/(s+1)~de, . , the joint probability distribution be-
comes

P(ei, e~)= g Z(n, m, q;t)f qf q e
4~ „=0

(4.8)

f f P(0, , 02)d O, d 82=
P/2 —7). P/2 —m

(4.9)

Obviously, the joint probability distribution equation
(4.8) depends explicitly on the sum of the two phases, i.e.,
P(ei, ez)=P(e=ei+Oz). This interesting property re-
sults from the strong correlation of the two modes, which
makes the pair coherent states a partial phase state, and

To be specific, we let Oo"=Oo '=P/2 —qr, so that the two
phases are symmetrized with respect to P/2. It is easy to
verify that the joint probability distribution equation (4.8)
is normalized, i.e.,
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leads to the uniformity of the marginal phase distribu-
tions,

is given by

&(&@,)'& =&(&@,)'&+ &(&@,)'&+2C. ., . (4.15)

P(8, ) =f P(8„82)d82 = =P(82) .
P/2 —~ 2K

According to Eq. (4.10), we have

&4, &=j "B,P(8, )dB, =+=&e,&

(II) /2 —m. 2

(4.10)
where

c..., =&c,~, &
—&4, &&c,&

(4.11)

{e',&= I 82P(8, )dB, = ~ +
y/2 ~ 4 3

(4.12)

Consequently,

&C, —4, &=0, &a, +4,&=y (4.13)

(4.14)

From Eqs. (4.11) and (4.14), it is clear that the indivi-
dual phases O& and O2 remain uniformly distributed as
time evolves. Moreover, the mean values of the phase
operators are not affected by the Stark shifts, this is quite
different from the results of Ref. [25] in which the initial
fie1ds are assumed as the direct product of two uncorre-
lated coherent states. In this paper, instead of the two in-
dividual phases O& and O2, we examine the fluctuations of
the sum of the two phases, O=O, +O2. Let 4, =4, +4 2,
i.e., the phase-sum operator, and thus the variance of 4,

= —2Re g Z(n, m, q;t)
f tt

(n —m)
(4.16)

is the correlation between the two phases. It is seen that
the variance of the phase-sum operator N, as well as the
phase-difference operator, Cd=+, —42, is determined
entirely by the correlation coefBcient Cz . Since

1 2

Z (n, m, q;0) = 1 implying a negative correlation
coefficient, the variance of (I), (4d) is smaller (greater)
than the sum of the two individual phase variances. For
lzl ~ oo at t =O, C() () approaches —m /3, indicating that

&(b4, ) &~0 and &(Akd) &~4m /3 Thus, . in the ab-
sence of atom-field interaction, the phase-sum operator
N, is a we11-defined phase sum in the classical limit, and
is therefore considered as the physically relevent variable
in this paper.

In general, the joint probability distribution equation
(4.8) cannot be expressed as a simple closed form for arbi-
trary q and r. However, for the special case in which
q =0 and the Stark shifts are neglected, the joint proba-
bility distribution P(8„82)can be obtained exactly. In
this case, we have

Z(n, m, q;t)=cos[g (n +1)t]cos[g(m +1)t]+sin[g (n +1)t]sin[g (m +1)t]
=cos[g (n —m)t] (4.17)

(4.18)

T11us,

QO
2

P(B=B,+82)= g cos[g(n +1)t]e'"(~ 'f„+ g sin[q(n +1)t] 'e"'~ 'f„
4~ „—p 4m „—p

2)z(cos(gt + P —8) + 2 z(cos(gt —P+ 8)
]

gm'Io(2lzl )

Using the generating function for the Bessel functions I„(x),the variance of the operator 4, can be expressed as

(4.19)

2 2

& ~4, )'&= ', 4 " I (2lzl )
cos(ngt) .

I()(2 z )„,n2
(4.20)

Apparently, the variance & (AN, )2& shows periodic temporal behavior with a period T =2~/g. The minima and the
maxima of the variance are

- I„(2lzl)
at t =2ln/g, .

4 I„(2lzl)( —1)"
a« =(2&+1)~/g,

(4.21)
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where 1 =0, 1,2, . . . . For the asymptotically large
~
z ~,

exp(21 z
I ) 4& ' —I

&4~hz/

Hence, we have

lim ((b,f&, ) );„=0, lim ((bk, ) )t,„=sr
fz/~ ~ /gI~ ~

(4.22)

(4.23)

In what follows, we derive the approximate form of Eq. (4.8) for generally q and r In . the strong-field limit, for
n —z~ )& ~q~, the coefficient fq can be well approximated by

fq

&n!(n +q)! n!v'(n +1) . (n +q) n!~z
q" n!QI (2/z/)

(4.24)

which has been verified in fair agreement with the exact one by numerical calculations. Let a =r ' —r and
b = r '+ rq, such that the detuning can be expressed as

Dq=g ——r(n +q+1) =g (n +1)a b-n

r
(4.25)

Consequently, the Rabi frequency is given by

Q„=P(D„)+g (n +q +I)( n + I)]'~

=g (n+I) + q-(r '+r)
4

1/2

(n +1)+
2 4

(4.26)

For n ))1, if r is finite, we have

Qq=g [a(n + I)+p]—:gq, (4.27)

where a=(r '+r )/2 and 13=b/2.
Next, we examine the evolution term in Eq. (4.7), which can be decomposed into the real and imaginary parts, i.e.,

Z(n, m, q; t) =X( , nqm; t)+ i Y(n, m, q; t),
where

sin(Q qt )sin( Qq t )
X(n, m, q;t)=cos(Q„t)cos(Q t)+ g &(n+q+l)(n+1)(m+q+l)(m+1)+

QqQq 4

and

D~
Y(n, m, q;t)= sin(Qq t)cos(Qqt) — sin(Qqt)cos(Qq t) .

2Qq Pl
2Q q

(4.28)

For n ))1, the following two approximations are feasible:

and

g&(n +q+1)(n +1)
Qq

n +1+q/2 1

a(n +1)+f3 a (4.29)

Qq

(n +1)a —b (1—r )(n +1)—1 —r q=2
2

—2Ea(n+I)+P (I+r )(n+I)+I+& q
(4.30)

where e=(1 r)/(1+r ). —
Using Eqs. (4.24) —(4.30), the approximate form for P(8i, Oz) in the strong fields is obtained, which can be written as
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( q t)+stn(X.9 t )sin(Xm

m+"

(+9 t )cos Xm

(„)(y—~'t( tte t)sin(g„t))lq t )
—cos(rYm(~'E t )sl n (7m+jg cos n

+0)2~zj eos( agt-gl+( 1+e)eI
cos( &g~1

[(1—E)e
g~21 (2lzl

2, , )[
—'+~ ly fc(g=6I, +~~ =

4 2I, (2lzl) ., ='

(4.31)

1ven byhase varianc, the PConseq«n

2 2I, (2lz
( g4, )'& =

3I,(2lz )

e»g
I„(2lz

s(tI ~gt )
4 n

cos
Iq

(4.32)

(2lzl)
„

q
—ncos( n ~St 1+—4X n'

22

4zl
1+

n=&
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( exp(im k, ) ) = ( exp[im (k, +kz) ] ) = ( exp(imk, )exp(im kz) )

=Tr(p ln+q, n)(n+m, n+q+ml)= g p„+ „.q(t)
n=0

=e' ~ g Z(n+m, n, q;t)fq+ fq .
n=0

Thus, the averages of cos( m @,) and sin(m @,) are given by

(cos(mk, ) ) = g [cos(mp)X(n +m, n, q;t) —sin(mp) Y(n +m, n, q;t)]fq+ f q

n=0

I I
X(n+m, n, q;t)

0 &n!(n +q)!(n +m)!(n +q +m)!

(4.33)

Izl sin m j „=0&n!(n +q)!(n +m)!(n +q +m)!
(4.34)

(sin(mk, )) = g [c os( mP) Y(n +m, n, q;t) +sin( mP) X(n+m, n, q;t)]fq+ fq
n=0

~2
I

lm ( ~) ~ lzl "Y(n +m, n, q;t)
o &n!(n +q)!(n +m)!(n +q +m)!

( g Izl X(n +m, n, q;t)
„=o&n!(n +q)!(n +m)!(n +q +m)!

(4.35)

In the strong-field approximations, Eqs. (4.24) —(4.30), we have

o (m@s)& I (2 zl) cos(magt) @sin(magt)

(sin(mk, )) I (2lz )
—@sin(magt) cos(magt)

cos(m P)
sin(mP) (4.36)

Consequently, the variances of cos4, and sin+, are approximated by

((b,cosk, ) ) = ( cos~k, &
—(cos&b, &

=
—,'+ —,

' ( cos(2k, ) &
—(cosk, )

alld

cos(2$)cos(2agt )

I, (2lz )

I, (2lzl ) I, (2lzl)
[cos(2$)+cos(2agt )]-

Iq 2z 4 I 2z

+
2 2Iq (2

I
z

I )

Iz(2lzl )

2 I (2zl)
sin(2$)sin(2agt )

sin(2$ )sin(2agt )

((5 sink, ) ) =(sin~k, ) —(sink, ) =
—,
' —

—,'(cos(2k, ))—(sink, )

cos(2$)cos(2agt )

Iq(2lzl ) Iq(2 lzl )

I, (2lzl ) 1+e I, (2lzl )+
I I

[cos(2+)—cos(2agt)]—

(4.37)

(4.38)

It is seen that in the presence of strong fields, the mean
value and the variance of cos@, (or sinN, ) are oscillating
periodically with the period T=2m/ag, ~/ag, respective-
ly. In the limit of lzl ~ ~, Eqs. (4.37) and (4.38) reduce

I

to
1 2

((b cosk, ) ) = [1—cos(2$)][1—cos(2agt)],
(4.39)
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1 —E( b, cosk, ) ( 5 sink, ) = sin(2$) [1—cos(2agt)] .

(4.44)

0.5
1.0—

]( $~ft

0 5 ", & ~ 1 1 I

0 2 4 6 8 10 12

FIG. 3. The probability of ending the atom in the excited
state. The pair coherent state is prepared with ~z~ =S,q =2. (a)
r =2; (b) r =3.

2

( ( 6 sink, ) ) = [ I +cos(2$) ][1—cos(2tzgt )],
(4.40)

and it is easy to show that

((hcosk, ) ) ( $
2

((6sink, ) )
(4.41)

Thus, for particular P, the variance of cosN, (or sinC&, )

always vanishes in the classical limit, and we have

((b, cosk, ) ) =0, for /=le,
( ( 6 sink, ) ) =0, for P = ( I + —,

' )~,
(4.42)

(4.43)

and

where I is an integer. We also find that in addition to the
choice of particular P, the oscillation amplitudes in Eqs.
(4.39) and (4.40) are greatly diminished when the two di-
pole constants g& and gz differ considerably in magni-
tudes.

Finally, according to Eqs. (4.39) and (4.40), we obtain
the relations

2

((Acosk, ) )+((b.sink, ) ) = [1—cos(2agt)]

V. CONCLUDING REMARKS

Using the Pegg-Barnett Hermitian phase formalism,
we have studied the phase properties for the pair
coherent states interacting with the two-mode JCM in
which the stark shifts are included. By virtue of the
strong correlation of photon numbers in modes, the non-
trivial quantity to describe the phase properties for the
pair coherent states is the phase-sum operator N, . In
this paper, we have shown the general expressions for the
variance of 4, and the variance of cos+, and sinN, .
Furthermore, in the strong-field approximations, the ana-
lytic forms for these properties are presented and found
to exhibit characteristic oscillations. The periods of these
oscillations are characterized by the factor tz=(r
+ r )/2 which is determined solely by the Stark shifts.

It is seen that the properties of the two individual
phases are not affected by the atom-fields interaction. We
have shown that the individual phases 0, and Oz are both
uniformly distributed despite the presence of frequency
shifts caused by the Stark effects. This interesting prop-
erty is rejected by the appearance of the parameter a.
We see that a is symmetric with respect to r (the ratio of
two dipole constants) and its reciprocal, i.e., a is invari-
ant under the exchange g, ~g2. This symmetry indicates
that the two dipole transitions g ) ~i ) and li )~

l
e )

play indistinguishable roles in determining the dynamical
phase properties of pair coherent states in the two-mode
JCM, and thus no peculiarity of the individual phases can
be singled out.

We have found the characteristic oscillations of phase
properties for pair coherent states interacting with an in-
verted two-level atom. However, for the correlated
SU(1,1) coherent states, which is generated with the
SU(1, 1) analog of the displacement operator in accor-
dance with the definition of Perelomov [26], the charac-
teristic oscillations caused by the Stark shifts are also ob-
served [27]. It seems that the existence of the charac-
teristic oscillations in phase properties is owing to the in-
teraction of the correlated two-mode states with two-level
atom. Studies on the phase properties of the correlated
SU(1, 1) coherent states in the two-mode JCM are planned
to be reported elsewhere.
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