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Abstract

.

We extend the vector cross-product to a mapping from F* x Fn»
to F™, where F' = R or C. We derive the generalized Hurwitz matrix
equation and an equivalence relation of the generalized Hurwitz-Radon
matrices from the matrix representation of the mapping with respect
to orthonormal bases. Then we use the basic matrix techniques to
classify the Hurwitz-Radon maitrices and the total invariants under

this equivalence relation.
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Introduction

~ B. Eckmann [1] introduced the Hurwitz-Radon matrices; he considered a
system of linear transformations y = A;z (1 =0,1,---,s) on R™ which have
the property

(Aiz, Ajz) =8; 0<4,j<s
or equivalently fulfill the Hurwitz matrix equation

AlA; + AL A; = 26,E

where A} is the transpose of A; and E' is the n x n identity matrix. Such
matrices Ay, Ay, -+, A, are called Hurwitz-Radon matrices. The original
problem considered by Hurwitz [3] and Radon [4] around 1920 concerns the

“ composition of quadratic forms”

5 9 n 5 fi
2
(24 (St)- 2
=0 =1 =1
where the 2z, are complex bilinear forms of zg,---, 2z, and ¥, -+, y.. They
determined for given n the maximum number s + 1 for which such bilinear
forms exist.

Hurwitz-Radon Theorem: If n = ng-16%.2°, 8 = 0,1,2,3, ng is odd,
then Smax = 8+ 28 — 1.

However we prove that s,,, = 8a + 28 + 1, which is better than the

known result.

Eckmann(1] also introduced a generalization of the vector cross-product
in R™ a bilinear product a x 3 (o, 8 € R") satisfying the norm product rule

| x 812 = |a|?|8]?, but not necessarily the commutative and associative laws.

2



An equivalent formulation of the norm product rule is
n 9 T 2 n
(Sa) ()54
i=1 j=1 £=1
where z; are bilinear of z; and y;.
In 1898 Hurwitz proved that such a “ composition of quadratic forms”

having bilinear functions z; of z; and y;, with real or complex coefficients,

can exist for n = 1,2,4,8 only. The classical examples for n = 1,2,4 and 8

are
R' = R
R = C
R* = quaternion algebra H
R® = Cayley numbers or Octonion algebra.

In this paper we generalize the vector cross-product to a bilinear mapping
from F* x F™ to F™ (F : R or (), which satisfies the norm product rule.
Then we derive the generalized Hurwitz matrix equation. Since the choice
of the bases is irrelevant to the mapping, there is an equivalence relation
between the matrix representations of the mapping with respect to different
sets of orthonormal bases. Eckmann[1] used group representation theory to
find canonical forms of the Hurwitz-Radon matrices. In constrast, we em-
ploy basic matrix techniques to give not only a complete classification of the
Hurwitz-Radon matrices but also their total invariants, and a complete clas-
sification of the generalized Hurwitz-Radon matrices for a special case. For

this and related subjects, see a recent survey(2].



81.Generalized Vector Cross-Product and Hurwitz-Radon
Matrices.
Let s,n, m be positive integers. We define the generalized vector cross-
product as a mapping from C* x C" to C™ which fulfill the conditions
(aq + @&) x f=ala x §) +a(a x §) (1)
a x (b8 + bf) = b(a x B) + b(a x B)

and the norm product rule
la x f] = |al|f] (2)

for all a,8,b.b € C, a,a € C*, 8,5 € C"
Here, the commutative and associative laws are not required.

Suppose that with respect to the standard orthonormal bases, the coor-
dinate vectors of @, 8 and a x B are z = (zy,- -, Z5), ¥ = (¥1,- -, ¥n) and
z=1(z1, -, %), respectively.

From (1) we have

z=fi(z,y) =2Qu" i=12--m,

where Q; are s X n cdmplex matrices, and y* = ¥’ the conjugate transpose of

Y.

Condition (2) gives rise to “the composition of quadratic forms”
Jaff 4o foml? = (21 4+ )3l + - + f1al”) (3)
Writing (3) in the matrix form, we have

S |2 Quy'[? = (i ny*yQI)w‘ — (o)),
1=1 =1

4



Since z is arbitrary, we have
m
D Qi =ywE Wyeclh
i=1

where E (or E; if the sizes is to be emphasized) is the s x s identity matrix

and @} is the conjugate transpose of @;, or equivalently

n m n
> Tk, QigjeQf = (Z yjﬂj) E,
k=1 1

=1 Ng=1
where ¢;, ; are the standard basis of C™.

Hence we have

> Qil€jer + eie;)Q; = 26,4E, (4)
i=1

where 4, is the Kronecker symbol.

Put
m
A=Sde@  (G=12m), ©)
i=1

where ¢; € C™, e; € C™ (the standard bases).
Then (4) yields

A;Ak + AfA; = 263'};E (1 <3, k<n) (6)

This equation is called the generalized complex Hurwitz matriz equation, and
the complex m x s matrices Ay,---, A, are called the generalized Hurwitz-
Radon matrices if they fulfill equation (6). In particular, when s = m the
m X m matrices Ay, -, A, are (complex) Hurwitz-Radon matrices.

Now, e:A; = e;Q;, Aje; = (i€} and it is clear that
A;e;ek = Qie;-ek vk

5



Since x is arbitrary, we have
m
2.QuyQ =yw'E  Vyecn
t=]

where E (or E; if the sizes is to be emphasized) is the s x s identity matrix

and Q) is the conjugate transpose of Q;, or equivalently

T m 7

> Time ., QiejerQ) = (Z yj??j) E,
Fik=1 =1 J=1
where e;, e, are the standard basis of C".

Hence we have

m

ZQ((E}B;: + ELEJ')Q: = Z(SjkE, (4)

t=1

where 4, is the Kronecker symbol.
Put
m
AJZEe:eJQ: (J= ]‘321!”)! (5)

i=1

where ¢; € C™, e; € C" (the standard bases).
Then (4) yields )

AjAg + ApA; = 24E (1< j,k<n) (6)

This equation is called the generalized complez Hurwitz matriz equation, and
the complex m x s matrices A;,---, 4, are called the generalized Hurwitz-
Radon matrices if they fulfill equation (6). In particular, when s = m the
m X m matrices Ay, - -, A, are (complex) Hurwitz-Radon matrices.

Now, e;A; = €;Q;, Aje; = Qi€ and it is clear that
Ajeier = Qe vk

5



Thus
n
Qi=) Ajeiey, (1 <i<m) (7)
k=1

Substituting (7) for @; in (4), we can get (6). So (4) and (6) are equivalent.

In the above discussion, we see that generalized Hurwitz-Radon matrices
can be derived from the generalized vector cross-product. Conversely, given
generalized Hurwitz-Radon matrices A4),---, 4., put Q; = Zn:A;e;ej (1<
i <m) and z = zQ;y* (Vz € C*,y € C™), we can obtain vec;:;;s a, 3 and v,
whose coordinates are x,y and z, respeetively, fulfilling v = a x 8.

Next we discuss the change of matrix forms of the generalized vector
cross-product under different orthonormal bases.

Let U,V, W be unitary change-of-coordinate matrices of size s, n and m,
respectively. Let z,Z = zV be coordinate vectors of o € C*, analogously, v,
y =yW and 2, Z = zU be coordinate vectors of § € C* and y = ax § € C™,
respectively. A

Suppose that z = (2;,-- -, %) with z; = zQ;y" and Z = (%, - -, %,,) with
z; = ZPy*. Then from Z = zU we have

(ﬂ:Qly*: Tty $me*)U =z = (jplg*a tS,f:ng*)

= (gVPW'y', ... VP, Wy*)

SO
‘TVPJ'W*y* = (le'y*: Ty mey*)U(j) = Z(iny*)e,-Ue;
i=1
Therefore, the relationship between P; and Q); is
Py=3 (eUey)VQW (1<j<m). (8)
i=1

6



n m
Suppose that A; = 2 ¢e;Q; and B, = > ele;Pr. Then
i=]

i=1
n n
—_ * 7 _ * 7
= =1

From (8) and (9) we have

m

Po= Z(e,Ue %% (ZAke e )W

i=1

= ZV*AkZe elel)e W

i=1

= ZV*A};Ue;-ekW
k=1
Hence
Piey = Y VA UeserWe,
k=
nl -
= > (eWe) VAU,
k=1
On the other hand, Pie! = ZBte €y = Ble). Thus

Z (et W* U Ak

(9)

(10)

which shows the change of the generalized Hurwitz-Radon matrices derived

from the generalized vector cross-product with respect to different orthonor-

mal bases.



§2. Complex Hurwitz-Radon Matrices

Given m % s Hurwitz-Radon matrices A;, -, A,. Then as shown above
these matrices give rise to a generalized vector cross-product C* x O —
C™ : (o, B) = a x 3, and conversely under some orthonormal bases of C*,
C™ and C™ this generalized vector cross-product can produce another set of
generalized Hurwitz-Radon matrices By, -, B,. Ay,--+, A, and By, -+, B,
have the relation (10). Now we would like to find a set of orthonormal bases
such that every summand U*4,;V in (10) has as simple a form as possible.
In this section we shall do this for the case of s = m.
Note that equation

AGAL+ AcA; = 20, E

is just an equivalent formulation of (6). Obviously A; are unitary. Firstly,

we consider the equivalence relation
A= UAV j=1,2,---,n : (11)

with UV and V unitary. Without loss of generality, we may assume that
A, = F then U*A,V = A, implies that U = V. Take k = 1 and j > 2 we see
that A; + A7 = 0; that is, A; are unitary skew-Hermitian matrices. Hence

there is an unitary matrix U such that -

E,
U*AU = /-1
—Emmr

Now, we may assume that

AIIE



E,
Ay = VI
N _Em—r

For j > 3, we have AjA; + AjA; = 0. Partition A; into 4 blocks with (1,1)

block of size r. A simple calculation shows that A; = ( 0 G ) and C}
-C; 0

(=3, - ,n) fulfil

{ CiCi+ O} =2pBr

C;Cy + CiCj = 2051 Em;
When j =k we have C;C} = E;,sor <m—7,C;Cj = Ep_p,som—1 <1,
Therefore m = 2r is even.
On the other hand, if unitary matrix U fulfills U*A\U = 4; and U*4,U =
Az then U=diag(U, Uz), where Uy and U; are both unitary and of size Z.
So the equations U*A;U = A; for 7 > 3 yield U;C;U, = C; for 7 > 3. In
other words, the similarity relation A; ~ U*A;U reduces to C; > U C;ls,

where U,, U, are of size 7. Continuing the same process, we can show that
m=2"t1M forsome MEeN

and Ajs have the canonical forms Ry, ---, R, as given below.

Theorem 1. Suppose that A, -, A, are complez m x m Hurwitz-Redon
matrices. Then

(i) there exists a positive integer M such that

n—

m = 2l 21]M,




where {z] denotes the Gauss integer of z,
(i) there exist unitery matrices U and V such that UA;V = R; (j =
1,---,n), where Ry = F

{ Ez 0 )
) 0 -'—Eg._

Rojp1 =

forj=1,2,---,[2]

(#ii) when n is even,

R(p)
R,=v-1
R(p)
where R(p) = diag{1,---,1,-1,---,—=1) for 0<p< M.

» M-—p
(iv) if n is odd, the set of canonical forms {R,,---, R} 18 unique;

10



(v) if n is even, there are M + 1 sets of canonical forms, and the total in-

variants under the equivalence relation (11} is p, where 0 < p < M.

Proof: What are left to show is (v).

Suppose that R),- -, R,_, R, and Ri=Ry, - Ry = R,_,, R, ard
two sets of canonical forms, where R, and R, are determined by nonnegative
integers p and 3, respectively. If there are unitary matrices U and V such
that

" UiRVo=R, i=12,--,n

A direct calculation reveals

Ro = RuR}RsR; -+ Ry B = (—v/—1)3diag(R(p), -, R(p))
Fio = BB R - Rocs I, = (—V"D)Hdiag(R(P), -, R(P).
Because Ry = Us By,
diag(R(p),--, R()) = Ugdiag(R(p), -, R(p))Us
= Uj'diag(R(p), -, R(p))Us.
That is to say diag (R(p),- -, R(§)) and diag (R(p),---, R(p)) are similar.
Hence they have the same number of 1‘)ositive eigenvalue 1, so = p, and
R; = R; (1 € i < n). This shows that, under the equivalence relation (11),

the total invariants are nonnegative integers p = 0,1,---, M. The proof is

complete.

Next, consider the canonical forms and the total invariants of the complex
Hurwitz-Radon matrices A, - - -, A, under the equivalence relation (10), we

have

11



Theorem 2. 7y, canonical forms of A, (¢t =12. s n)under the equiv-

alence. relation (10) are stil) Ry, R, given in Theorem 2.1. Moreover,

-they are unigue when n s odd; otherurse, the total invariants are p €

{[—A%"i] M} and in foet i two sets Ry, - Ry and B) = Ry,-- R, | =

R._1, R, are equivalent under (10) then p = porp=M_p,

Proof. Suppose there are unitary matrices W, U,V such that

By =Y (ewehrrry <j<n
i=1

RR3R, .. - Ry R

= Y (W )e,wey.. (a6 e Wel U R, Ry, .

11,2, iy =1

RU

If4; = 4;,, then &iR;j+l =E= Ry R, and the coeflicients which involve

with §; =4, ¢ {1,2,--,n} are 0, for
Z (“-‘ W, )(“3:, +1) = g;e ;+1 =0.
fi=ij4=1
Hence
R Ry
= Ly, (1 W€ Yo,y W) . (. Wep)U* R, Ry, - /LU,

where 1, i, -, 1, are pairwise distinct.

Since AA; = —AjA; and A4y = ~A;A} for i # j we have RfR; = _

and R,R“ = —1;R} for { # J. Therefore
f?lft;---}?n_IJ?;:AU‘RIIB;---R;U

12
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where A = Ysign(iyia---in) (e W*ej Ye;,Weh) - (e, Wel,), the summa-

tion runs over all permutations of S, and

sign(iyie - - - iy) =

1 if (i, ---43) is an even permutation
—1 otherwise

Clearly A € C. As in the proof of Theorem 2.1, we have

On the left-hand side, there are 2(*7) blocks of R(p), hence the number of
eigenvalue 1 is 2[”7_1]15, and the rest of the diagonal entries are —1. Similarly,
there are 2[n_;1‘]p many A and 2[“T_1](M — p) many —A in the diagonal ma-
trix of the right-hand side. Therefore we have shown that either (1) A =1
and p=por (2) A = —-1and p = M — p. In order to give a complete

set of canonical forms, we may choose p > M — porp> -}gf-; that is, pick

p € {[%), ..., M}. We complete the proof.

£3. Real Hurwitz-Radon matrices
In this section we give a complete classification of the real Hurwitz-Radon

matrices. Let A,, ..., A, be real m x m Hurwitz-Radon matrices, fulfilling
A:AJ + A;A, = 26,‘jE 1 < Z', j <n (12)

As in theorem 1, from the fact that 4; (j > 2) are skew-symmetric and

orthogonal, we may show easily that 2 | m, and there exist real orthogonal

Ez 0

. 0 —En
matrix U such that U'A,U = ( : )

13



. 0 -En
Now, assume that A, = E, Ay = ( o 07 ) and partition A; (j > 3)
) E3

X; Y
Uy v
1,2), we conclude that X} = —X; = V; and Y] = =Y; = U; = —Uj; 1e,

into 4 square blocks, say A; = ( . From AjA; + AlA; =0 (1=

X. Y;
A= ( YJ ;{ ) Set Z; = X; + v/—1Y; then Z} = —Z;, hence Z; is
i TA5

complex skew-symmetric, and (12) is equivalent to

Xij + Xka -+ Y;‘Yk_+ YkY; = —25jkE1;_1
Xij - YJX;; + XkYJ - Yka =0

This brings on the Hurwitz matrix equation
Z;Zk + Z;:ZJ = 2(5_1kE% j,k > 3.

Since the orthogonal matrix U fulfills

0 -En 0 -—-En
U’ VU= T,
E% 0 Emi. 0

P
U has the form ( 0 ?3 ), where P, @ satisfy

(P +v-1Q) P+J"Q -vV-1Q".

- i % 7
Moreover, let A; = U'A;U with 4; = ( 7 ;{ ), then
i

=

X; = P'X;P - QY;Q - PY;Q - @X;@,

and

ﬁ:PWﬁ—Q%Q+PEP+Q&R

14



Thus
7y = X+ VI, = (P + V7IQ)'Z,(P + V=1Q) = W'Z,W.

So we have

Lemma 1. Let A, = E, Ay, -+ -, A, be m x m real Hurwitz-Radon matrices.
Then

(i) 2 | m and there exists an orthogonal matriz U such that

/ . 0 _E% ' _ Xj YJ . .
U'AU = JU'AU = forj>3;
En 0 Y; —X;

(1,?,) let Zj = XJ' + \/—-1Yj then Z; = —Zj and

Z;Zk + Z;ZJ = ZéjkE for i,k 23,

(iii)ingz(; —f),thenUhasthefom( P Q);

. @ P
(iv) let W = P+ /=1Q then W is unitary and the equivalence relation

A; m U'A;U is transformed into Z; W Z;W.

The following two results, due to Hua, will be needed later. Since there

are rare English references to these, we give the proofs here.

Lemma 2. Let A be n x n complez matriz, U be unitary. If UA = AU’

then there is an unitary matriz V such that VA = AV and V 2=U.
l

13



Proof: U is normal, there is an unitary matrix U, such that
VLUV, = diag(e¥=™%,... ¥/710n) = p

Put V = Uidiag(e™=",---,e“3™)Ur, then V2 = U. From UA = AL
we have UlDU;A = x‘l([]ll)(]ik)'r = Aﬁl.DU{, and DUfAﬁl = UnglD If
! V=18, \/—_192-

U*AU, = (bij) then (e‘/_—w" - e‘/‘_lg")bij = 0,80 (672 —e 7 )bi; = 0.
Therefore

Y=18; Nt _ . =00 /Top
diag(e T soen, e z YUT AU, = Ui’AUldiag(eszo e )
or
VA = Udiag(e™=>, -, e A
_ v=T /=T
= AU diag(e > e e UL = AV,

Lemma 3. Let A be m x m unitary matriz.

(1) If A" = A then there is an unitary matriz U such that U' AU =F.

(#) If A" = ~A then 2 | m and there is an unitary matriz U such that
0 -F

U'AU =
E 0

Proof: (i) There is an unitary matrix P such that
PAP* =D =diag(A;, M, -, A,) with Ay > Ay > .. 2> A, > 0.

Clearly (P'P)A = A(P'P)'. By lemma 2, there is an unitary matrix V such
that V* = P'P and VA = AV". Set U = V'Pdiag(, -, A=). Then

et

U'AU = diag( PV AV' P*diag( y=E

1 1 1
\/‘)\_1: ’m) _\/'3—71 )

3

16



(if) Since det(A4) # 0 and det(4) = det(A4') = (=1)™det(A), m must be even.

0 1 1
Set U, =diag( ( ), TP ( 0 ) ) Then
; -1 90 -1 0

(U:4°) A = AU, 4°)

By lemmma 2 there is an unitary matrix V such that V2

=UA" VA= AV,
and

| 0 1 0 1)
VAV':U1=dzag . .
-1 0 -1 ¢

Interchanging rows and corresponding columns such that VAV’ is unitarily

congruent to E . That is, there is an unitary matrix U such that
0

0 -F
UAU' = .
E ¢

Lemma 4, Let 1, .., Tpy be my x my compler Hurwits-

Radon matrices and
T; be skew-

symmetric. Then there erists positive integer M such that
Moreover, there is g unitary matriz U such that

UT;U = B\R; for j= L,2,--- ng,
where By, - - -, R, are the canonical forms given in theorem 2, By is orthog-

onal and

| C, 0 0 -B
By=| " , Ci= L e=12,...
0 -G By 0

17



This is a recursive block~sz’mplzfyz’ng process of By, and there are 8 cases of
reaching the final block of the process:

(z) fnyg=8r—3 the final block unit is By = E;

(i) if ng = 8r — 2, the final block unit is B,, - E;

(111) if ng = 8r — 1, the final block unit is C,, = E;

(i) if ng = 8r, the final block unit is Fy = ( ; B ), and p = —2"’1
0
. | o 0 -F
(v) if ng = 8r + 1, the final block unit is By = ( )
E 0

(vi) if ng = 8r + 2, the final block unit is

0 -F
E Q0
pxp
E 0
(M—p)x{M—-p)

(vii) if ng = 8r + 3, the final block unit 'is By o=E
(viti) if ng = 8r + 4, the final block unit s Byyo=F andp = ¥

B2r+1 =

When ng is even, the total mvariants is p.

Proof: Consider the my Xm; complex matrices TN, -, 17T, Since

Ty, ,T,, are Hurwitz-Radon matrices, we have

Tl*TI =F
ML) (BT) + (T T) (TT) = 26,E

By theorem 2, there exists positive integer M such that my = QIEDJ—IIM and

there exists unitary matrix U such that U (T} T,)U = R;, where R; are given

18



in theorem 2. Under the equivalence relation T, —s U'T,U =T, we have
Tl*f‘j = (UNUY(UTU) = U"T{ﬁU’i’"jU = U"(T'T;)U = R;

Hence 'f} = Tle for j =1,2,---,n. WriteT} = By, then we have shown the
first part of the theorem.

Next, we determine B;. So far we have
B = -By, BBy = E,
B\Ry; = Ry; By, B\ Ryj41 = —Ry;.1B) and
BiRyjRyj = Ry BiR;j = Roj(=BiRyj1) = Ry Ry By
Partitioning B; into 4 square blocks and from condition Bl =-B), BiR; =

Ry By and B, R; = — R3 B, we know that B, must be of the form 001 (; ) )
T §

Analogously, partitioning C| into 4 square blocks and applying B Ry = Ry B,

0 -B
and B R; = —RsB;, we know that C; must be of the form ( 5 0 2 ),
22

~ C 0
and soon. If k = {Eﬁf-l} then we have By =Ty, B, = ( 0‘ ) and

C
C, = 0 . ~Bey
By 0

Moreover, it is just a routine work to see that

for£=1,2,...,k.

(1) when ng = 4k + 1, the final block unit is Bgy;:
C 0
(2) when ng = 4k + 2, the final block unit is By, = tH , Wwhere
0  Dep
Cririsp x pand Dyyy is (M — p} x (M - p)

19



(3) when ng = 4k 4+ 3, the final block unit is Ciar.

D
(4) when ny = 4k + 4, the final block unit is Cit1 = ( DO w2 ), where
) k42 0

Disy ispx (M -p), Diys is (M —-p)xp
From condition B, + B| = 0 we have

Céq = C?q: C§q+1 = —Czq+1; Béq = B2q: B;’J,q+1 = -qu+1-

From condition BB, = E, we have C;Cy = E and BB, = E. Thus
(i)ifk=2r—1and Mo =4k +1=8r ~ 3, the final block unit is By = B,,,
where B) = B, and B;. By, = E;

(1) if k = 2r and Mo =4k+1 = 8r 41, the fina] block unit is Bey1 = By,
where B;Hl = —~By.; and B 1By = E;

(i) if k = 2r — 1 and Mo =4k +2=8r — 2 the final block unit is

Cy 0

By =B, =
+1 r 0 Dzr

), where C), is p x p and Cy = Cyr, CL.Cyp = E;
while Dy, is (M —p) X (M — p) and Dy = D,,, D3 Dy, = F,

(iv) if k = 2r and Mo = 4k+2 = 8742, the final block unit is Byyy = Bypyy =

Caryr 0 ; '
y Where Czr+1 = —02T+1) Ci.;r-i-lc2f'+1 = E, D27‘+1 = —-D2T-|-'1)
0 D2r+1 .

D; 11 Doryy = E;

(v)ifk=2r—1and My = 4k+3 = 8r —1, the final block unit is Cry1 = Cyy,
where G = C,,, C}.0,, = E;

(vi)ifk=2r and ng = 4k +3 = 8r + 3, the final block unit is Crt1 = Copyy,
where Cj | = ~Cary1, C3, 1 Cor iy = E;

(vii) if k = 2r - 1 and Mo = 4k + 4 = 8r, the final block unit is Cryy = C,,
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0 D2r+1 . .
= ) and Cg,. = C2r: 2,-02:- = E;
D2r+l 0

(viti) if k = 2r and ny = 4k + 4 = 8r + 4, the final block unit is Cyy, =

- A

0 D2r+2 ’ .

) where ch-{-l = —02,-+1, C2r+102,-+1 = F.
D2r+2 0 .

On the other hand, if an unitary matrix U fulfills R; =U'R;U, then U =
diag(U,,Uy,---,U,) where Uy is M x M. If no is even, Uy = diag(Uy, Uy,),
where Uy is unitary of size p and Uy, is unitary of size M — p. This has
brought about applying similarity relation, using Uy, to the final block units

of the above 8 cases. We complete the proof by lemma 3.

Theorem 3. Let Ay,---, A, be m x m real Hurwitz-Radon matrices . Then

there exists positive integer M such that m = 25 M. Let

n
Z: eiW'e)U'A;V

: . 0 -E
Then the canonical forms of A,,---, A, are P, = E, P= ( ' ),

E, 0
By Ry 0 0 —v—-18B,Ry;
FPojp = ( e Pyjro = e , where
0 -BiRy, ~VZ1B, Ry, 0
(1) Ry,Ry, -, R,_, are T x 3 complez matrices given by theorem 1, and

hence1<j< L if n is odd, 1<j<-’1——zfnzseven
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{(2)Ry_y = /<1 ' depends on the nonnegative integer p;

R(p)
(3) By is B x 2 real matriz defined by

C 0 0 -8B
By = ¢ , Cy = &+ f:l,Q,...
0 -C, Byyq 0

the final block unit is of the form.

(Jn=8r-1 B, = B,

(i) n=8r, By = E, M2p>2,

(i) n=8r+1, Cy = E;

(i) n=_8r+2 C, = (; ZJ), 2| M andp= %;

0 -E
vyn=8+3, By = ;
(v) ot 0

(vi)n:8r+4,M2p2%,2|p,2lM

. 0 —-F 0 -F
Bari1 = diag( ’ )i
E 0 E 0
pXp {M—p}x{M—p)

(vii) n = 8r + 5, Byt = E;
(viti) n = 8r +6, 2 [ M, p= -“21, Byyo = E.

Proof: Take ng =n - 2 in lernma 4,50m=2m, =2. AT = 2*F M,
We need only discuss the cases of n = 8r and 8r + 4, since the canonical
forms of the remaining cases are unique.

Let n = 8r. If canonical forms Py,--., P, and }51,-~,P,, are equivalent,
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where

]51 =P1,}52=P2,
~ Blégj_l 0 ~ 0 “'\/“131}:1)2_:{
sz+1 = A ,P2j+2 S
0 —-Blej_l —/ —131 jo 0
for1 <j<4r- 1, and 31, RQJ' are determined by nonnegative integer 3.
That is, there exist orthogonal matrices Wo, Uy and Vo such that

n
P, = Z(eiWJe})Ué}?%, 1<i<n,
j=1

Conditions BiRy; = Ry, B, BiRy;_, = ~Ry; 1By, By = Bl =-B, B! =
—E imply B\ R,; = Ry;B, BiRy_, = =Ry 1By, B! = B = -5, B2 =
—~F.

Therefore

PP 'ﬁn—lﬁri = Z (ex Wt;eh)( :Woeh) - - (€sn Woel ) U3 B, Py Ay

Jl: ,Jn—
As in theorem 2, we have BP.. -P,,_Iﬁ,; = AUy PPy - P,

A direct calculation reveals that

2-n RiR5..Ry 3R 0
(_\/"IJTPIPE"'Pn-IP,: - 15 R, 3ft;_,
' 0 3135"-&-31?;‘;_2

-n o~ o~ - - R * B R*—- 0
(V=D RB-..p_ 5 = | 1 Rk, ~
0 RI}Z;...RH_:;R;_Z

This shows that
diag(Es, —Ep_g, - -- ' Bs~E_z)
= Alpdiag(E,, ~Bmzpy, - B, ~En_py)Up
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Therefore, if A =1 then P=p,if A =—1 then p=M~p.

Conversely, if § = p then 153 = Fifor1 <j < if p = M — p, take
W = diag(l,---,1,-1). It is not difficult to show that {P,---, P,} and
{}31,---,}5n} are equivalent. Hence we may always assume that P> —"24
whenever 7 is even, and the canonical forms are uniquely determined by p.

A similar argument can be applied to the case of n = 87 -+ 4 O

In considering the composition of quadratic forms
§ 9 n 5 n 9
(ij)(zy:) = Zzz )
0 i N i
Hurwitz and Radon determined that for a given n the maximun possible

number of s is
Smaz = 8a+2F — 1 if n = odd - 16* . 98 ang B=0,1,23.

However, we prove the following result, in which our Smez 1S greater than

theirs,

Corollary 1. Given positive integer n, let s, be the largest s such that

Ao, Ay, Ag bethen x n Hurwitz-Radon matrices. Then
Smaz = 8+ 20+ 1,
whenever n = 16°2° M, M is odd and ﬁ € {0,1,2,3}.

Proof: By theorem 3, n = 2015 — 2EM, M € N. In order to have
Smaz, We take M to be odd. So [fm82) = 40 + 8. To reach the maximality,

take Smaz = 2t + 1, then ¢t = da + 8, and thus
Smaz = 2(da+ ) +1 =80+ 26 + 1 O
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Hurwitz also proved that the above “composition of quadratic form” exist
only when n =1,2,4,8. As an application of theorem 3, we give the explicit

canonical forms for the case of n = m. For convenience, let
1 0 0 -1 01
Jl = :J2 = * :J3 = .
0 -1 10 1 0

Theorem 4. The only possible forms for n x n Hurwitz-Radon matrices

A, Ay, A, are

(i)n=1,P =1;

(ii)n=2 P =F, P= Jo;

J2 0

0 -J

(2 7))
Ey, 0 Jo 0

(tv)n=8 P =E, P, = diag(Ja, —Jy, —Jy, J),

_ 0 -E 0 E,
P; = diag s s
Ey, 0 -E, 0

0 J 0 -7 0 —-FE
Py = diag 2, ‘1 p= t,
Jo 0 —Js 0 E, 0

We have

(iii)n=4, P,=E,, Py = ( ) = diag(Jy, —Jy),
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- 0 —J,
50

Proof: m = n = 2[25—11M, implies I < n < 8; indeed, if n > 8 then

2l*5 5 n, and it is impossible to find integer M. Moreover, the equality
holds only when n = 1,2,4,8. From theorem 3, we know that it is true for

n=1and n =2, and for n = 4, we have

0 -FE B 0 [ I
Ty=E, T, = lm=| = * 1
E, 0 0 -B —Jr 0
0 —-J
T4—'_- ' .
-Ji 0

. : N S
Pick W =diag(1,1,1,-1), U =V = % and set
Ji o4

4
By =3 (e;W'e)U'TV.
i=]
Then P, = U'TYU, P, = UnLU, P, = UL, P, = ~U'TyU. Hence
: J 0 0 -FE
the canonical forms are P, = By, b= " ), Py = ( ),

0 -J E QqQ

Fy = ( 0 {; ) Finally, let n = 8. We have

Jo
0 —-Ey
Ty = Ega = 4
Ey 0



B\R
Ty = s 0
0 ~B\ R

where

E.
By= 7| ™
0
0
R4=\/3(
Sy
0
&:m(
J3
Thus
T‘l - EB:T2=
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( s
Ty = ‘
=Ji .
()

PiCkP'l:Tl: P2:T3:PS:_TT}P4=T5$P5=T21PG:T4: P7:T3,and

Py = —T, or equivalently there are U = V = Ej and an orthogonal matrix W
such that P = 55_, (e;W'e})U'T; V. O
The following two corollaries are easy to derive.

Corollary 2. If A}, --, A, are n X n real Hurwitz-Radon matrices. Then

> Alleyes +ele)A; =Y Aj(ele, + €e.) AL = 26,
i=1

=1
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where e, e, € R 1<u,v<n.

Corollary 3. When n — 1,2,4, the canonical forms Py, P, have the
property that PPy = Z}C‘:l(ekﬂe;)Pk, for 1 <45 <n. Bu it fails when

n =8,

§4. Generalized Hurwitz-Radon matrices

In this section we discuss the canonical forms of the generalized Hurwitz-
Radon matrices for n = 1,2. Let A;, .-, A, be mxs complex Hurwitz-Radon
matrices, then AlA, = E;, hence m 2-5 and there are unitary matrices [J

and V such that
O(m-—s)xs

ESXS

U*AIV =

. . 0
Therefore, when n = 1, the canonical form is ( . ) When n = 2, we may

0 Lim_s)xs
assume that 4, = 5 | and 4, = (K Ixe | From AIA2+A§A1 =0,
XS5

we have K + K* = 0; From A3Ay = B, we have L*] + K*'K = FE.
Suppose unitary matrices Unxm and V,,, satisfy U*A,V = A, then
ULV '
U={" ") andveay( ¥
0 v V'KV

may assume that X = v —1diag(O,, /‘\q: Ey,~E,), where p + g+u+v=s,
N = diag(a,, -y Q) With a; # 0,+1,and a; > g, > ... > a.

. Since K is skew-symmetric, we

Since
L'L = E - KK = diag(E,, E — A%04,0,) >0, a2<1 for1l <i<q.

Write A = diag(h E,,, b By ), with1 > b, > by > ... > b, > —1and b; # 0.
Partition the columns of L in the way that s = p + Qi+ ...+ ¢ +u+wv and
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write [, as

L = (LOyLI;---;Lt;fI-f.,f/_)
Then from L*L = dzag(Ep’E — /\2’ O, O),
Lil; = (1 - b3S, E, 0 < 4,J < ¢, where bo
V= d?‘ag(‘/os Vi: o

we see that f,+ =0=7L_ and
= 0. Take unitary matrix
W, By, B,), then V'KV = K and

VILV = ULV UtLyy, ... ULV, 0, 0),

L=V 'Ly = GILV) Ly,

(UL LV (U L) = 1-8)E,, o0<ic< t, bo =0,

We may find unitary matrices Uy and V4, such that Uy LoV, = (

E
0
Sume that L, = (E )} then from LiL; = 0, (i =

0
). As-
§ ]

L2,---)8), we have
Li[ . . . .

Li= . 1 <i<y, Furthermore, LiLy =0 (if 4 # 7 L L =

(1-63)E, "1<ij<s

0 0 0 0
Therefore, there are Ut and V such that ULV = E, 0 00

Thus we have the following theorems:

Theorem 5. Suppose that the m X s ¢co

mplez matriz 4,
that AIA]

has the property
= E, thenm > 5 gng there are unitary matrice

s U and V such
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that

0
U"A1V= .
E

Theorem 6. Suppose that A1, Ay are m x s complez Hurwitz-Radon, matri-

ces, then m > s and there are unitary matrices U and V such that

0 L
U*AIV = and U"A2V =
E . K

where
0
0 0 00 ?
A
L=| E, 0 00| , K=v-1 !
By
0 (E-ADF 0 0

_Ev

Finally, we consider the canonical forms of the generalized Hurwitz-Radon
matrices under the equivalence relation (10) A4, — Yimi(eVe )W*AU.
We have

Theorem 7. Suppose that the m X s compler matriz A has the property

that A1A) = E then under the equivalence relation (10), the canonical form

0
is unique and is of the form ( g )

Theorem 8. Suppose that A;, Ay are m x s complexr Hurwitz-Radon matri-
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ces. Then under the equivalence relation (10), the canonical forms are

)

(0 0 0 0
E, i 0 0
. 0 (E-ADF (0 0
P = , P=q 0 0 0 0
E
0 Aq 0 0
0 0 E, 0
\ 0 0 0 —E,,)

where A = diag(ay, -+, a,) with0 < |a] < 1,1 < 3 < g, and s = p+g+u+v,
m22p+2q+u+tv, u>v. Ifu>v, the canonical form is unique; if u = v,

replacing A by —A in Py, and obtain two sets of equivalent canonical forms.

)

[0 0 0 0

E; 0 0 0

0 (E~ADE 0 o

Proof: Suppose that 151 = B, P, = 0 0 0 0
0 Arg 0 0

0 0 E; 0

0 0 0 —FE;

is another set of canonical forms, and there are unitary matrices Waya, Uy,
Vixs such that
e,W" JU'P;V, for i=12

Mm

Then

2
PPy = Z (e;, We) e, W* e,V PP,V = AV*P! PV
i1,72=1
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where 0 # ) € C. Now,
05 0,
A
= AV* !
E; E,
~E; -E,

where A = diag(b1Eq xgys -, beEgng) With 1> b > -+ > by >0 > by >
> b > -1, and Ay = dz'ag(alEq-lxi;,---,Bt-Eq-t.,@.) withl1> 8 > ... >
bo > 0> bggy > ... > by > —1.

Hence § = p and if (u,v)# 0 then (%, 7) # 0. Moreover, \ = 41
Hifx=lLa=uit=th=b;
WifA=-ld=vi=ui=t &, - by) = (=be, -y —byi1),

(Bt~ B) = (=buy -, ~by).

So we may say that u > v. Ifu > v then ) = 1, the forms are unique; if u = v
then A =1 or -1, and correspondingly replace A; by A and obtain the other

equivalent canonical forms. O

Especially, for the real case we have

Theorem 9. Let A, A; be m x s real Hurwitz-Radon matrices. Then m > s

and there are orthogonal matrices Unxm, Vixs such that
1] 0 t L
U AIV - 1 U Agv =
E K
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where

0 (E- KK}z 0

where

0 -E 0 -E
KO = d?,(lg(bl axa y Ty bt " ))
B¢ xq 0 E, 0

0<b <...<b <1 and

i -4
3:p+22qj, m22p+QQ‘0+4ZQj.
=0 j=1

Furthermore, it is unique under the relation (10)
Proof: As in theorem 8, we may partition the columns of I such that
L = (LO,LI,---,Lt,O), where Ly is (m — s) x p, L; is (m — s) x 2¢;, (i =
1,"',i), L:LJ =0 (2 7& j) and L:L; = (1 - b?)E2q.-x2q.~ with bo = 0 and
0<b <. <b < 1. Denote the (m — s) x s matrix
1
— 1 - 1 = - _—

Q - ( MLO: :ml’t ) - (LO) 1Lt)\/E___—A21

where

A= diag(_ngp, ey nggq‘).

Then Q'Q = E,. Namely, the column vectors of Q are pairwise orthogonal

unit vectors, it can be extended to a (m — s) X {m — s) real orthogonal unit

matrix Q, such that Q4Q = ( EO' ) Therefore
—_——— E
L = (LO:Lla"'aLho) = (Q E—A230) = (QU ( 0 ) VE—A230)
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Qo(m 0)'

0 0

) By applying a permutation matrix again, we complete the proof. O
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