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Describe Rings which can be a Finite Union
of Proper Subskew fields

Abstract

We characterize rings which is a finite union of proper subskew
fields. We have proven that such kind of rings must be semi-
simple right Artinian and is isomorphic to Z§, the kth (k > 2)
cartesian power of the two element field Zo.

The motivation of proposing the question of the title came from an in-
teresting paper [?] of C. Lanski. In there, Lanski gave a characterization of
those rings which can be a finite union of proper right annihilators. Though-
out this paper let R be an associative ring. Follows from a Lemma of B. H.
Neumann [4; Lemma p239], we show that neither a field nor a skew field can
be a finite union of its proper subskew fields. This shows that the question
s mot, trivial. Our main result gives a characterization of those rings which
can be a finite union of proper subskew fields.

For convenience, we state the Lemma of Neumann.

Lemma 1: Let the group G be the union of finitely many, let us say n,
cosets of subgroups Hy, Ha, ., Hp

G = U?:lﬂigi
Then at least one subgroup H; has finite indez in G.

Using this result, we can deal with the case of R being a field and a skew field.

Example 2: Neither a field nor a skew field can be a finite union of proper

subskew fields.
Proof. Let R be a field. Assume by way of contradiction that R = U Ry,

where R; is a proper subfield of R for all: =1,2, ..., n.
Let R* = R\{0} and R} = R\{0} forall: = 1,2,..,n. Then by Neu-
mann’s lemma, there exists 1 < j < n such that R;‘- is of finite index in
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R*. That is the factor group R*/R; is of finite order, say k. Given z € R*,
we consider the element =R} of R* /R;. Since |R*/R*| = k, we have that
(zR})* = R;. Thus, for all z € R we get that z* € R;.

We clalm that | By | < k. Assume that | R} { > k. Pick distinct elements
AL A2y o Appr in RS Take 7 in R\R;. Then (:r: + AR (x4 M) RS (2 4
)\k+1)R are elements in R*/R;. Since | R*/R; | = k, we see that (:1:-!—)\ VR,
1= .,k +1, can not be all distinct. We may assume without loss
of generahty that (x + A))R] = (z + A2)Rj. This implies that there exist
rr € R; such that

(IL' + /\1)7‘ = (Ll',' 4+ )\2)’]"
Hence
o —71) = dgr — A7

Since Ay, Ao, 7,7 are in R}, so the right hand side of the equation is in R;.
fr—7r =0, we get that A\; = A2. This contradicts to the assumption that
M#X. Sor—1 #0. Sincer —r' € R,z =(Xr —Air)(r—7)"' €Ry,
which contradicts to the fact that = € R\R;. Hence | R} | <k.

Recall that R* = US| C;, where the C; are the k distinct cosets of R.
Since all the C;’s are finite, we see that R is a finite field. Thus R* is a cyclic
group. Let B* = < r >, then r € R, for some [ € {1,2,...,n}, and hence
< r > C R,. We have R; = R, this lead to a contradiction.

Now if R is a skew field and suppose that R = U, R;, where R; is a
proper subskew field of R for all ¢ = 1,2,...,n. Recall that there exists
j € {1,2,...,n} such that | R*/R} | = k < oo, and for all z € R we have
z* € R;. In [?] Herstein give a brief proof of Faith’s Theorem which asserts
that if D is a skew field and A # D a proper subring of D. Suppose that for
every « € D, z"® € A where n(z) € N depends on z. Then D is commu-
tative. By this result, we see that R is commutative, hence R is a field. By
above, the assumption fails.

What can we say about a ring which is a finite union of its proper subskew
fields? Next lemma gives the necessary condition.

Theorem 3: If R is a finite union of proper subskew fields then R is a
semi-simple right Artinian ring.



Proof. Let B = UL,R;, where R; is a subskew field of R for all 1 =
1,2,---,n. Clearly R? # (0). Let p be a right ideal of R. Then p = U™, (pN
R;). Since R; is a skew field, pN R; = (0) or R;. Therefore there exists a
subset S C {1,2,--+,n} such that p = U;csR;. Hence R has only finitely
many right ideals, which implies that R is right Artinian.

To complete the proof we have to show that R is semi-simple. It is known
that J(R) (the Jacobson radical of R) is a nilpotent ideal if R is right Ar-
tinian. Let z € J(R), then z is a nilpotent element, say 2™ = 0 for some
positive integer m. Then z = 0 since it must be in some skew field R;. Hence
J(R) = 0. Thus R is semi-simple.

Thus if a ring satisfying the assumption, then it must contains a unity
since 1t is semi-simple right Artinian. Applying the Wedderburn and Artin’s
theorem we see that R is isomorphic to

Mm(Dl) .0 Mnk(Dk):

where the D); are skew fields and M, (D;) is the ring of all n; x n; matrices
over the skew field D; for all 4 = 1,2,..., k. Hence, the rings satisfying the
conditions of the title are those of the form:

M, (D) & ... @ My, (D).

Clearly M, (D;) have nilpotent elements if n; > 1. Since R has no nonzero
nilpotent elements, we see that all n; = 1, and we have

Corollary 5: If R is a finite union of proper subskew fields then R is iso-
morphic to

Dia&Dy®--- @Dy
where the D; are skew fields for alli=1,2,...,k.

By Example 2, we see that & > 2. Suppose that B = U | R; and n is
minimal; (i.e., Ul R # Rforall j = 1,2,..,n,), then n > k. We may assume
that all D; # 0. Then

;'1:1(Ri N Dl) == (U?le%) n D1 = Rﬂ D1 = Dl-
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Choose i such that R, N D, # 0. Since D, is an ideal of R, we have that
R; N Dy is an ideal of R;. Therefore

Ri=R,ND, CD,.

Hence Dy is a finite (< n) union of R; with R; N Dy # 0. Since a skew §alg
can not be a finite union of subskew fields, we have that there exists an i
such that Dy = R;. For simplicity we may assume that ¢ = 1;i.e., D, = R;.
If R;,nD; #0, then R; C Dy by the above observation. Therefore R; C Ry,
contradicting to the minimality of n. Similarly, we may assume that D; = R,
for all j < k. Moreover, the minimality of n implies that R, N D; #0if and
only if £ = j.

Let e; be the unity of D; for all j = 1,2,.--. k. If a2 = a for all a
n D;, then D; is a Boolean ring and so D; = Z,. Suppose that D; # Z,
for some j > 2, pick ¢ in D; with a # a®. We have e; + a € R, for some
i € {1,2,---,n}. Since D, D; = (0) we see that (e; + a)? = e, + a2 € R,.
Hence

0#a-a®=(e1+a)— (e +0a%) € RN D,

forcing that R; = D; and so e; € D;. This leads to a contradiction. Hence all
elements @ € D; have the property that a2 = a. Thus D; = Z,. Analogously
D, = Z,.

Recall that R = UL, R; = Z§ where k > 2. We see that R has exactly
2 elements since R = ZF. We claim that n = 2F — 1. Clearly a® = g for all
a € Z¥ and < a > Z,. Let, F be a subskew field of Z%. Then F is a subfield
and every element of F is a root of 2 — z. This implies that |F| = 2 and
F = Zy. Thus we see that all R; = Z, for all i = 1,2, -+, . Since R has 2¢
elements and each R; has exactly one nonzero element, we see that n = 26—1,

Therefore, we have our main result.

Theorem 5: Let R be a ring. If R = U, R; where R; is a proper sub-
skew field of R. Then R is isomorphic to Z¥ the kth cartesian power of the
two element field Zo with k > 2. Further n = 9% — 1.
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