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Abstract

We investigate the implementation of
several ctassical methods for solving parabolic
equations for higher (2 or 3) dimensions on
mukltiprocessors. The methods considered are
the Alternating Direction Implicit (ADI)
algorithms and the Alteating Direction
Explicit (ADE) methods. We focus on parallel
ADI methods which contains Gaussian
elimination, domain decomposition, and data
communication. Currently, we develop a
algorithm for periodic problems. The high
efficiency of the method is achieved by
carefully using local data and suitable data
passing,
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Today’s supercomputers which are
designed with multiprocessors and extra
large memory make it possible to tackle real
world problems. To avoid sequential
bottlenecks which is caused by excessive
communication requirements, scalable and
portable parallel algorithms are required for
these powerful machines. In this report, we
develop parallel algorithms for the alternating
direction implicit methods (ADI) which is
devoted for solving parabolic or elliptic partial
differential equations with higher dimensions,
The ADI methods have to sclve many
independent relatively small tridiagonal
systems of linear eguations whose coefficients
are distributed over each required processor
on the supercomputer. Here we focus our
methods for parabolic equations. For
convenience, a simple two dimensional
problem is discussed in the following.

The initial-boundary value problem is
given by: -

ux = af,(x,y)un +al(x’y)u}y
on 2 square, and initial and boundary value are
specified. Note that there is no term with a
mixed derivative. If we apply a scheme similar
to the Crank-Nicoison for the equation, with



discretization of both spatial derivatives, the
scheme is unconditionally stable, but the
inverted matrix at each time step is much
more difficult to carry out than the tridiagonal
matrices encountered in one dimensional
problem. The ADI method, which we now
present, is a way of reducing two dimensicnal
problem to a succession of one dimensional
problem.

Let A; and A4, be linear operators such
that

Alu = al (xa y)u:a:,

Au=a,(x, yp,,.

Under careful consideration, it lead to ADI
[2,3] methods, the Peaceman-Rachford
algorithm [10] and the Douglas-Rachford
method [4] are two of the most basic and
original schemes.

The Peaceman-Rachford algorithm 1is
formulaed as

N N

(I - i;- A ™ = (T + %A,,, Y2,

And the Douglas-Rachford method is
constructed as

(I_Mm)‘ﬁ;ﬂﬂ;z =({ +kd,, V"

(I ___kA/lh)vn*l — ’c;n—»l."l . kA"’Vn.
In above two methods, apparently, the two
steps alternate which direction is implicit and
which is explicit. The term ADI applies to any
method that involves the reduction of the
problem to one dimensional implicit problems
by solving the tridiagonal systems. The two
methods are unconditionally stable, as is easily
seen by von Neumann analysis for two
dimensions.

For large size problems, we have to
solve the tridiagonal systems on parallel
computer. There are many parallel algorithms
[1,5.6,9,11] for the solution of tridiagonal
linear systems. However, they all are designed
for two points boundary problems. Now we
have to develop a parallel scheme on periodic
boundary problems.
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ADI methods, the Peaceman-Rachford
algorithm or the Douglas-Rachford method,
together with periodic conditions, the finite
difference scheme at each time step (including
the intermediate time steps) produces »’s
linear systems of equations like

AX =B,
where X and B are ¥ column vectors and 4 is
a tridiagonal-like N XN matrix described as

(8, ¢ a,
a, b, ¢
a b ¢
Ay by Cyy
ay, by, o,y
Cx a, b, )

Solving this system consists of three
steps:

Stepl: Forward elimination of the sub-
diagonal elements, a., ..., ax.

Step2: Backward elimination to the super-
diagonal elements, cy.,...,c;. At the end of
Step 2, solve for the unknowns, X, X5, ..., xx.2.
Step3: Solve for x; and xy from

bx, +axy = d,,
cyX, +hyx, =d,.

The above non-pivoting elimination
method for solving the tridiagonal-like system
is stable if 4 is column diagonally dominant.

To solve the tridiagonal-like system in
parallel is more complicated. Our parallel
solver adapted the ideas in the solver for the
standard tridiagonal system. Assume that the
system is to be solved by P processor. For
simplification, suppose that N is divisible by P.

The parallel sotution is obtained from the
following steps:




Stepl: The first step is evenly distribution of
equations to each processor. There are N/P
consecutive equations which is assigned to
each processor. It means that each processors
i take equations numbered form (F-I)N/P+/
to iN/P.

Step2: This step is the simultaneous forward
eliminations by all processors. On each
processor i, the sub-diagonal elements of row
(i-[)N:P+2 through row IN/P are eliminated.
These eliminations on a processor require no
information from other processors.

Step3:. It is a process of the backward
elimination simultaneously. Processor 1,
i=2,..,P-1, eliminates the super-diagonal
elements of equations numbered iN/P-2 to (i-
DN/P. Processor 1 eliminates super-diagonal
elements for equations NP-2 to [/, and
processor P eliminates  super-diagonal
elements for equations N-{ to (P-1)N/P. Since
the super-diagonal e¢lement in the last
equation of processor 7, i=1,2,...,P-1, must be
eliminated by using the equation in processor
i+, interprocessor communication is needed
for processor i to get the updated row
INP+1.

Step4: Solve that the unknowns x;Xxup.
i=1,2, ..., P, in the system satisfy another set of
P-+1 equations like the original tridiagonal-
like system. The P-+/ tridiagonal-like
equations are distributed to the P
processors. The solution process of these
equations by the P processors is mainly
sequential. (It may also be processed by one
only processor by passing those equations to
the working processor.) However, since each
processor has only one equation, the solution
complexity is independent of the problem size.
The major work of this step is to solve the
P+ I equations by the sequential algorithm on
all processors (or one processor).

StepS: Solve that the other unknowns after
the unknowns x,Xap 1=1,2,...,P-1I, have
been solved. It is clear that each processor can
solve for the other unknowns by subtracting
multiples of the fill-in columns from the
equations it holds. The computations on
different processors can be done in parallel.

The only communication step is that the
unknown xa» calculated at step 4 by
processor i, i=1,2,...,P-1, has to be passed to
processor i+ before the solution process for
the rest of unknowns can start.
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Under current designed methods for
periodic boundary problems, together with
original parallel solver for tridiagonal linear
system, we can obtain parallel solutions of
higher dimensional parabolic differential
equations. However, Mattor et AL [9]
reported that the parallel solver can not reach
an efficient speedup on tridiagonal systems.
Now we have been trying to develop a new
algorithm which uses local data in stead of
communicating date. Therefore, the local
data generated by explicit methods are
required. It has to be much more efficient,
but it may losses unconditionally stable
property. We will report in near furture.
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