
A Process Pattern Mining Framework for the Detection of 

Health Care Fraud and Abuse 

 

A Thesis  

Submitted to the Faculty 

Of  

National Sun Yat-sen University 

By 

Wan-Shiou Yang 

 

 

 

 

 

 

 

 

 

In Partial Fulfillment of the  

Requirements for the Degree  

Of  

Doctor of Philosophy 

 

June, 2003 



 ii 

TABLE OF CONTENTS 

 

ABSTRACT… … … . . . … … … … … … … … … … … … … … … … … … … … … … … … v  

LIST OF FIGURES … … … … … … … … … … … … … … … … … … … … … … … … … .vi  

LIST OF TABLES … . … … … … … … … … … … … … … … … … … … … … … … … … viii 

 

1 Introduction… … … … … … … … … … … … … … … … … … … … … … … … … … … 1  

1.1 Motivation… … … … … … … … … … … … … … … … … … … … … … . … … … 1  

1.2 Problem statement and the proposed approach… … … … … … … … … … … … 2  

1.3 Overview of the research… … … … … … … … … … … … … … … … … … … … 3  

 

2 The Problem and the related work … … … … … … … … … … … … … … … … … … 4  

2.1 Health care fraud and abuse … … … … … … … … … … … … … … … … … … … .4  

2.2 Current status… … … … … … … … … … … … … … … … … … … … … … … … … 8  

2.3 Clinical pathways… … … … … … … … … … … … … … … … … … … … … … … .9  

2.4 Research framework … … … … … … … … … … … … … … … … … … … … … ...15 

 

3 Structure pattern discovery… … … … … … … … … … … … … … … … … … … … … .18 

3.1 Related works… … … … … … … … … … … … … … … … … … … … … … … … .19 

3.2 Formalization of structure pattern discovery problem… … … … … … … . . .…20  

3.3 Structure pattern discovery algorithms… … … … … … … … … … … … … … 23  

3.3.1 TP-Graph algorithm… … … … … … … … … … … … … … … … … … … 23  

3.3.2 TP-Itemset algorithm……………………………………………...…34 

3.3.3 TP-Sequence algorithm……………………………………………...36 

3.4 Performance evaluation… … … … … … … … … … … … … … … … … … … … 4 1  



 iii 

3.4.1 Generation of synthetic data… … … … … … … … … … . … … … . . .… .41  

3.4.2 Effects of minimum support thresholds… … … … … … … … … … … 43  

3.4.3 Effects of instance characteristics… … … … … … … … … … … … . . .…45  

3.4.4 Scale-up experiments… … … … … … … … … … … … … … … … … … 4 7  

3.5 Summary… … … … … … … … … … … … … … … … … … … … … … … … … … 4 9  

 

4 Feature selection… … … … … … … … … … … … … … … … … … … … … . … … … … 50  

4.1 Related works… … … … … … … … … … … … … … … … … … … … … … … … 5 1  

4.2 Formalization of feature selection problem… … … … … … … … … … … … .53 

4.3 Feature selection algorithms… … … … … … … … … … … … … … … … … … 5 7  

4.4 Performance evaluation… … … … … … … … … … … … … … … … … … … … 6 7  

4.4.1 Data collection and preprocessing … … … … … … … … … … … … … ...68 

4.4.2 Induction method … … … … … … … … … … … … … … … … . . . … … … 6 9  

4.4.3 Evaluation criteria… … … … … … … … … . … … … … … … … … … … .71 

4.4.4 Evaluation results… … … … … … … … … … … … … … … … … … … .72  

4.5 Summary… … … … … … … … … … … … … … … … … … … … … … … … … … 7 8  

 

5 Model Revision… … … … … … … … … … … … … … … … … … … … … . … … … … 80  

5.1 Related works… … … … … … … … … … … … … … … … … … … … … … … … 8 1  

5.2 Formalization of model revision problem… … … … … … … … … … … … … 84  

5.3 Model revision algorithms….. … … … … … … … … … … … … … … … … … 8 5  

5.3.1 Selecting unlabeled examples… … … … … … … … … … … … … … ..86  

5.3.2 Combining resulting classifiers… … … … … … … … … … … … … … 93  

5.4 Performance evaluation… … … … … … … … … … … … … … … … … … … … 9 4  

5.4.1 Data collection and induction algorithms… … … … … … … … … … .94 

5.4.2 Evaluation results … … … … … … … … … … … … … … … … … … 9 5  



 iv

5.5 Summary… … … … … … … … … … … … … … … … … … … … … … … … … 101  

 

6 Conclusion… … … … … … … … … … … … … … … … … … … … … … … … … …..103  

6.1 Summary… … … … … … … … … … … … … … … … … … … … … … … … … 103  

6.2 Contributions… … … … … … … … … … … … … … … … … … … … … … … … 104  

6.3 Limitations … … … … … … … … … … … … … … … … … … … … … … … … 105  

6.4 Future works … … … … … … … … … … … … … … … … … … … … … … … ...106  

 

APPENDIX A… … … … … … … … … … … … … … … … … … … … … … … … … … ....108 

LIST OF REFERENCES… … … … … … … … … … … … … … … … … … … … … .109  

LIST OF PUBLICATIONS … … … … … … … … … … … … … … … … … … … … … .115 

 



 v

ABSTRACT 

 

With the intensive need for health insurances, health care service providers’ fraud and 

abuse have become a serious problem. The practices, such as billing services that 

were never rendered, performing medically unnecessary services, and misrepresenting 

non-covered treatments as medically necessary covered treatments, etc, not only 

contribute to the problem of rising health care expenditure but also affect the health of 

patients. We are therefore motivated to investigate the detection of service providers’ 

fraudulent and abusive behavior.  

 

In this research, we introduce the concept of clinical pathways and thereby propose a 

framework that facilitates automatic and systematic construction of adaptable and 

extensible detection systems. For the purposes of building such detection systems, we 

study the problems of mining frequent patterns from clinical instances, selecting 

features that have more discriminating power and revising detection model to have 

higher accuracy with less labeled instances. 

 

The performance of the proposed approaches has been evaluated objectively by 

synthetic data set and real-world data set. Using the real-world data set gathered from 

the National Health Insurance (NHI) program in Taiwan, the experiments show that 

our detection model has fairly good prediction power. Comparing to traditional 

expense driven approach, more importantly, our detection model tends to capture 

different fraudulent scenarios.  

 



 vi

LIST OF FIGURES 

 

Figure 2.1 A pathway of cholecystectomy… … … … … … … … … … … … … … … … 11  

Figure 2.2 Research framework … . … … … … … … … … … … … … … … … … … . . . …16  

Figure 3.1 Example of a clinical instance and the corresponding temporal graph…22 

Figure 3.2 Examples of subtraction operation… … … … … … … … … … … … … … .25 

Figure 3.3 Three example temporal graphs of size 3 … … … … … … … … … … … … 26  

Figure 3.4 Two candidate temporal graphs … . . … … … … … … … … … … … … … … . 27 

Figure 3.5 Hash-tree for candidate temporal graphs of size 3 … … … … … … … ..31  

Figure 3.6 Examples of two clinical instances … … … … … … … … … … … … … .34  

Figure 3.7 Examples of clinical instance and quasi-sequence… … … … … . … … 39  

Figure 3.8 Experimental results: effects of minimum support thresholds… … … … 45  

Figure 3.9 Experimental results: effects of instance characteristics… … . … … … … 4 6  

Figure 3.10 Results of Scale-up experiments… … … … … … … … … … … … … … … 48  

Figure 4.1 Instances and their translated examples… … … … … … … … … … … … … .54 

Figure 4.2 A graphical representation… … … … … … … … … … … … … … … … … … .72 

Figure 4.3 Effects of feature subset selection … … … … … … … … … … … … … … … 73  

Figure 4.4 Sensitivity and specificity of the detection model with the first stage of 

feature subset selection… … … … … … … … . … … … … … … … … … … … … … … … … 74  

Figure 4.5 Sensitivity and specificity of the detection model without the first stage of 

feature subset selection… … … … … … … … … . … … … … … … … … … … … … … … 7 6  

Figure 4.6 Comparisons of detection models… … … … … … … … … … … … … … … 77  

Figure 5.1 Pictorial representation of a data set… … … … … … … … … … … … … … .87 

Figure 5.2 An example illustrating SelectUnlabeledData() … … … … … … … … … … 91  

Figure 5.3 The performance of the co-training algorithm… … … … … … … … … … … 97  



 vii 

Figure 5.4 The performance of self-training procedure… … … … … … … … … … .98 

Figure 5.5 The performance of the combination of base classifiers… … … … … … 100 

Figure 5.6 Comparisons of the proposed Co-training algorithm and EM algorithm.101 

 

 



 viii 

LIST OF TABLES 

 

Table 3.1 Parameters and default values for synthetic data generation… … … … … .43 

 



 1

Chapter 1 

Introduction 

 

1.1 Motivation 

Health care has become a major focus of concern and even a political, social, and 

economic issue in modern society. The medical resources required to meet public 

demand for high-quality and high- technology services, with consequent higher 

expenditures, are substantial, especially since the average length of life is increasing. 

People rely on government-sponsored and -managed health insurance systems, such 

as in Australia, France, and Taiwan, private health insurance systems, or both to share 

the expensive health care costs.  

 

With such an intensive need for health insurances, fraudulent and abusive behavior, in 

the meantime, became a serious problem. For example, according to a report [WA96] 

to Congress by the General Accounting Office (GAO), health care fraud and abuse 

cost United States around 10% of its annual spending on health care. Since the annual 

national health care expenditure reached up to a trillion dollars in the US, the loss due 

to fraud and abuse is as high as $100 billions. Similar problem is reported in the 

health insurance programs of other developed countries [LLM97]. 

 

Health care fraud and abuse involve three parties, namely service providers, insurance 

subscribers, and insurance carriers. The practices such as billing services that were 

never rendered, performing medically unnecessary services, misrepresenting 

non-covered treatments as medically necessary covered treatments, and 

misrepresenting applications for obtaining lower premium rate, clearly contribute to 



 2

the immense problem of rising health care expenditure. 

 

Of the three parties that participate in the health care fraud and abuse, service 

providers seem to cause the greatest damage, according to a report [NHCAA02] by 

National Health Care Anti-Fraud Association (NHCAA). Some types of fraud 

schemes (e.g., surgeries, invasive testing, and certain drug therapies) even place their 

trusting patients at significant physical risk and affect patients’ health. For all the 

reasons mentioned above, we are motivated to investigate the detection of service 

providers’ fraudulent and abusive behavior, and thereby propose this research. 

 

1.2 Problem statement and the proposed approach 

Detecting service providers’ fraud and abuse needs intensive medical knowledge, and 

currently this task is often conducted by experts that manually review insurance 

claims and identify suspicious ones. Most computerized systems that are intended to 

help detect the undesired behavior still rely on experts’ experiences in selecting 

statistically significant features so as to develop the core of detection models. As a 

result, the process of claim reviewing or system developing is a time- consuming 

effort, which is especially true in the case of large-scaled insurance systems, such as 

national insurance systems. 

 

In this dissertation, we seek to develop an automatic approach so that the manual and 

ad hoc elements of the detection can be eliminated to a large extent. This approach 

must also be general such that the same set of developed tools can be readily applied 

to different data sources. We consider the health care fraud and abuse detection as a 

data analysis process. The central theme of our approach is to apply data mining 



 3

techniques to the gathered data to compute models that accurately capture the normal 

and fraudulent behavior (i.e., patterns) of clinical instances. We develop a prototype, 

for Mining Clinical Instances for Health Care Fraud and Abuse Detection, abbreviated 

as MCI HCFAD. Using MCI HCFAD, the inductively learned model replaces the 

manual detection task. This automatic approach eliminates the need to manually 

analyze and encode patterns, as well as the guesswork in selecting statistic measures. 

It is a general approach in that the same set of tools can be applied to other data 

sources that exhibit similar features. 

 

1.3 Overview of the research 

The rest of this dissertation is organized as follows. Chapter 2 examines in more detail 

the problems of health care fraud and abuse. We review the representative research 

efforts in this context, and briefly describe our research ideas and framework. Chapter 

3 describes the algorithms for mining frequent patterns from clinical instances, with 

an emphasis on the clinical pathways structure analysis. Chapter 4 discusses how to 

analyze and select translated features automatically. Chapter 5 develops a hybrid  

detection model that works for cases with a small number of labeled instances. In 

Chapter 6, we summarize the contributions of this research and point out the 

limitations of the proposed approaches. 

 



 4

Chapter 2 

The problem and the related Work 

 

In this chapter, we first examine the problem of health care fraud and abuse so as to 

clarify our research and application scope. We then review representative practice and 

research efforts in this context. Subsequently, our research ideas, which are 

principally derived from the concept of clinical pathways, are described. Based on the 

research ideas, we propose a framework for detecting service providers’ undesired 

behavior.  

 

2.1 Health care fraud and abuse 

As described in Chapter 1, there are three parties involved in the processing of health 

insurance. The service providers, which are comprised of the medical doctors, the 

hospitals, and even the ambulance companies, give health care services. The 

insurance subscribers, or the patients, receive health care from the service providers. 

The insurance carriers receive regular premiums from their  thousands of subscribers, 

and make the commitment to pay health care cost on behalf of their subscribers. 

 

With the existence of the three parties, working definitions about health care fraud 

and abuse were developed by National Health Care Anti-Fraud Association’s 

(NHCAA) Board of Governors and published in their 1991 Guidelines to Health Care 

Fraud [NHCAA91], which are quoted below. 

 

“Health care fraud is an intentional deception or misrepresentation made by a 

person, or an entity, with the knowledge that the deception could result in some 



 5

unauthorized benefit to him or some other entities.” 

 

“Health care abuse is the provider practices that are inconsistent with sound 

fiscal, business, or medical practices, and result in an unnecessary cost, or in 

reimbursement of services that are not medically necessary or that fail to meet 

professionally recognized standards for health care.” 

 

From the above definitions, it is easy to see that the undesired behavior could be 

performed by any of the three parties. Common fraudulent and abusive behaviors 

pertaining to each party are listed below [NHCAA02]. 

 

(1) The service providers’ fraud and abuse, including:  

- Billing services that were never rendered. 

- Performing more expensive services and procedures. 

- Performing medically unnecessary services solely for the purpose 

of generating insurance payments. 

- Misrepresenting non-covered treatments as medically necessary 

covered treatments for purposes of obtaining insurance payments. 

- Falsification of patients’ diagnosis and/or treatments histories. 

 

(2) The insurance subscribers’ fraud and abuse, including:  

- Misrepresenting application for obtaining lower premium rate. 

- Falsification of records of employment/eligibility. 

- Falsification of medical claims. 

 

(3) The insurance carriers’ fraud and abuse, including: 



 6

- Falsification of reimbursements. 

- Falsification of benefit/service statements. 

 

According to NHCAA [NHCAA02], of the three kinds of fraud and abuse behaviors, 

the one committed by service providers take the greatest toll in the United States. The 

same conclusion is also supported by the investigations in other countries [HWGH97].  

Even worse, the perpetrators of some types of fraud schemes (e.g., surgeries, invasive 

testing, and certain drug therapies) deliberately and callously place their trusting 

patients at significant physical risk. Based on these two reasons, we chose the 

detection of service providers’ fraudulent and abusive behavior as our research target. 

 

We further investigate current health insurance programs. As stated in [Glaser91], 

current health programs can be classified into three kinds in accordance with their 

payment methods:  

 

(1) Fee-for-service. This is the traditional form of billing in both 

ambulatory and hospital inpatient services, in which care provider 

itemizes each service on a bill after the completion of care. Since more 

items demand more payments, the health insurance programs  that adopt 

this payment method, have the most serious damage from service 

providers. Due to its simplicity, fee-for-service is still the most popular 

payment method adopted in today’s private and national insurance 

programs, such as the Medicare in Australia and the National Health 

Insurance (NHI) in Taiwan. 

 

(2) Case payment. In this billing form, a fixed amount is paid for 



 7

providing all necessary care to each type of diseases, classified by 

diagnosis. Though a fixed payment reduces the possibility of wasting 

service, it has been occasionally used by subscribers and carriers to pay 

for certain predictable care, such as normal deliveries in obstetrics. In 

practice, few insurance programs use this method to pay certain care 

services.  

 

(3) Global budget. This is a new form of billing, in which service 

providers have prepared budgets of all operating costs expected during 

the next year. After the committee rate regulator, and the insurance 

carrier examine it and accept the estimates of clinical work load and 

costs, the carrier pays the annual total in installments. Global budget has 

been welcomed by insurance carriers as the most effective method of 

cost containment, since the financial payments of service providers 

cannot exceed the financial capacities of the system and thus have little 

abusive behavior. They soon, however, fear that their subscribers could 

be underserviced, and seek some mechanism to monitor care quality. 

Currently, some insurance programs (with some extent of experiments) 

adopt this method.  

 

In cost containment systems− case payment and global budget, service providers 

receive payments (or a budget limit) before giving care services. Instead of fraud and 

abuse, underservicing behavior thereby becomes the major concern of such insurance 

carriers. Our approaches will be suitable in health insurance programs adopting 

fee-for-service payment method, since our goal is to detect service providers’ fraud 

and abuse. 



 8

 

2.2 Current status 

Currently, detecting service providers’ fraud and abuse heavily rely on knowledge  in 

medical domain. In practice, carriers in nearly every insurance program around the 

world employ experts, who are pre-eminent in their specialty, to detect suspicious 

claims in their programs. Therefore, experts review medical claims, and according to 

patients’ conditions and expedience of care services, verify the necessity of each 

service. Clearly, the task performed by human experts is a time-consuming effort, 

which is especially true in the case of large-scaled insurance programs, such as NHI 

in Taiwan.  

 

In some research work [Sokol98, SGWRJ01, HWGH97, Hall96], statistic features are 

identified by experts’ consultants and used in the subsequent development of 

induction schemes. The research work described in [Sokol98, SGWRJ01] and funded 

by Health Care Financing Administration (HCFA) and the Office of the Inspector 

General (OIG), was to discriminate between normal and suspicious claims. For each 

care service, such as chiropractic services, lab/radiology procedures, and preventive 

medical services, a distinct set of features is identified. An inductive model is 

accordingly developed to detect suspicious claims of a particular care service.  

 

The goal of the work described in  [HWGH97, Hall96] by the Health Insurance 

Commission (HIC) of Australia, was to detect service providers who are practicing 

inappropriately, such as those who service their patients by performing more services 

than necessary, see their patients more often than warranted, or even bill non-rendered 

services. In this work, after discriminating features are available (typically 25-30 



 9

features identified by specialists), a fuzzy- logic, neural-network-based induction 

algorithm is used to produce the detection model. The detection model is then used to 

tag suspicious service providers.  

 

While the inductive schemes of above researches reduce the workload of human 

experts to some extent, an enormous knowledge engineering task of identifying 

statistic features still remains. Restricted by the manual and ad hoc nature of the 

development process, the resultant prototypes have limited extensibility and 

adaptability.  

 

2.3 Clinical pathways 

Healthcare professionals, managers and administrators, always seek to provide timely, 

high quality health services. However, as stated by John Ovretviet [Guinane97], the 

many potential benefits often fail to be realized due to poor project planning and 

management. 

 

“People and perfect processes make a quality health service – a poor quality 

service results from a badly designed and operated process, not from lazy or 

incompetent health care workers.” 

 

To meet the need of providing high quality health services, managed care plans are 

desirable. The concepts of clinical pathways (or integrated care pathways) were thus 

initiated in the early 1990, and can be defined as below [HAIPAP98, Ireson97].  

 

“Clinical pathways are multidisciplinary care plans, in which diagnosis and 



 10 

therapeutic intervention are performed by physicians, nurses, and other staffs for 

a particular diagnosis or procedure.” 

 

For example, Figure 2.1 shows a pathway of cholecystectomy [Guinane97]. The 

pathway begins with the preadmission process, which mainly involves preadmission 

testing and anesthesia consult, goes though a number of assessments, surgery, and 

physicians’ orders, and ends with a follow-up visit in the surgeon’s office.  



 11 

PreadmissionAdmission Pre-op Surgery
Immediate
Post-op

Post-op careDischarge

Follow-up in

Physician's

Office

Surgeon schedules

patient for surgery

Patient is given
date and time for

preadmission

The pathway for

cholecystectomy

is used

Patient is
provided with a

patient-education

pathway

Patient arrives for

preadmission

testing and
anesthesia consult

Results sent to

surgeon and

admitting
departmentPatient admitted

on the D.O..S

The medical

record contains

the clinical
pathway

Patient taken to
the nursing unit

Assessment

completed

All orders

completed

Patient prepared

for surgery
Assessment and

prep completed

Surgery

performed

Patient sent to
PAR for recovery

Patient meets all

recovery criteria

Patient

transferred to

nursing unitCare delivery
occurs

Patient meets

criteria for
discharge

Patient
discharged home

Patient
examined by

surgeon

Another

appointment

made

Departments/Functions/Services

P
r
o
c
e
s
s
 
S
t
e
p
s

 

Figure 2.1 A pathway of cholecystectomy 

 

Clinical pathways, as the one shown in Figure 2.1, are driven by physician orders, and 

clinical industry and local standards of care. Once the pathways are created, they are 

viewed as algorithms in that they offer a flow chart format of the decisions to be made 



 12 

and the care to be provided for a given patient or patient group. Therefore, clinical 

pathways are developed for the following purposes [Guinane97]: 

 

- Provide explicit and well-defined standards for care. 

- Help reduce variations in patient care (standardize care). 

- Help improve clinical outcomes. 

- Support training.  

- Provide a means of continuous quality improvement in healthcare.  

- Support clinical audit. 

- Support the use of guidelines in clinical practice. 

- Help empower patients. 

- Help manage clinical risk. 

- Help improve communications between different care sectors. 

- Disseminate accepted standards of care. 

- Provide a baseline for future initiatives. 

- Not prescriptive: don't override clinical judgment. 

 

The application of clinical pathways is an efficient approach to analyzing and 

controlling clinical care processes. In today’s competitive health care environment, 

due to the fact that competition advantage of a healthcare institution relies not only on 

outstanding professional quality but also on the agile clinical care processes, the 

concept of clinical pathways attracts much attention of managers in large hospitals 

around the world [Ireson97]. 

 

From the discussion above, it can be seen that clinical pathways aim to have medical 

staffs doing the care services in the right order [NELH]. Take the cholecystectomy 



 13 

pathway in Figure 2.1 as an example. Care activities are sequenced on a timeline so 

that physicians can make suitable orders in accordance with the test results in the 

preadmission step; anesthetic can be executed during the performance of surgery on 

the basis of anesthesia consult. Best practice, without rework and resource waste, 

performs if the arrangement is in the right order. 

 

This concept of clinical pathways shows great promise on detecting service providers’ 

fraud and abuse. A care activity is very likely to be fraudulent if it orders suspiciously. 

For example, since physicians perform treatments in terms of test results, treatments 

following no diagnosis/test activities are doubtful; since physicians prefer performing 

simple, noninvasive tests before performing more complex and/or invasive tests, there 

is a high possibility tha t the same set of care activities performed in a different order 

is fraudulent or abusive.  

 

Extensively, to accurately estimate the likelihood of a care activity performed on a 

particular patient, we must take into account the other activities performed on the 

patient. For example, while single ambulant visit is normal, repeating events are 

problematic, especially in the case that averaging length of pathway instances is small. 

On the contrary, a kidney transplant that rarely occurs should not be considered so 

unlikely if the patient has already undergone a series of diagnostic tests typically used 

to detect kidney disease.  

 

Such observation, therefore, initiates an interesting idea that the clinical structures, 

including care activities and their execution orders, has the potential to discriminate 



 14 

between normal and fraudulent practices. Explorative analysis of our dataset1 

supports this argument. In our data set, for example, about 40% fraudulent instances 

contain a structure of repeating ambulant visits while only 6% normal instances do so. 

In this research, we are thus motivated to exploit the discriminating power of clinical 

structures. 

 

Confusion often arises over the differences between clinical pathways and packages 

of care. Clinical pathways are elements, or chunks of care service. Each chunk of 

service is developed into a clinical pathway, setting out detailed processes, i.e., a 

collection of activities, and done as a whole [NELH]. A Package of Care may contain 

one or more clinical pathways selected for a particular patient or target patient group. 

It describes the whole range of care given to that patient or patient group, usually for 

one episode of care. 

 

Many factors, such as patients’ conditions, physicians’ preferences, and management 

cost may influence the selection of clinical pathways in a package of care given to a 

particular patient. Besides, different medical institutes often enforce different 

pathways, as there does not yet exist a universally best practice for a disease. 

Therefore, each patient may have a different practice (an instance). For our 

purpose−exploiting the clinical structures to discriminate between normal and 

fraudulent instances, it is necessary to find structures from practice instances since a 

complete definition of care package does not exist.  

 

Therefore, we conceive to discover structures from practices−normal and fraudulent 

instances. To exploit the discriminating power of the discovered structures, we adopt 
                                                 
1 Detailed descriptions of the data set are given in Chapter 4.4. 



 15 

an induction scheme to construct the detection model. Based on the detection model, 

new coming instances can be detected automatically and systematically. In this 

research, we explore the advantages of knowledge discovery, rather than knowledge 

engineering, to detect service providers’ fraud and abuse.  

 

2.4 Research Framework 

Motivated by the concept of clinical pathways, we propose a framework for detecting 

service providers’ fraud and abuse. Generally, as shown in Figure 2.2, two sets of 

clinical instances, which are labeled as normal and fraudulent, serve as the input of 

structure pattern discovery module. The structure pattern discovery module produces 

a set of frequently occurred structure patterns, which then serve as features of clinical 

instances. Each clinical instance is seen as an example that comprises an assignment 

of features and a class label (normal or fraudulent). The resultant data set is further 

filtered by a feature selection module to eliminate redundant and irrelevant features. 

The selected features and the dataset are finally used to construc t the detection model, 

performed by the induction module. The detection model will be used to detect the 

incoming instances that are fraudulent.  

 

 



 16 

Normal
clinical
instances

Fraudulent
clinical
instances

Normal
Patterns

Fraudulent
Patterns

Structure
Pattern
Discovery

Feature
SelectionFiltered

Dataset

Model
Induction

Discriminating
features

Detection
Model

 

Figure 2.2 Research framework 

 

In the research framework, we thereby identify three issues and form our series of 

investigations as below.   

 

(1) The problem of how to discover structure patterns from clinical instances. As 

shown in Figure 2.1, a clinical pathway typically comprises a set of care activities. 

These activities, each appears over a temporally extended interval, may execute in 

a particular transition way, such as sequentially, concurrently, or repeatedly. A 

clinical instance, which consists of care activities from one or more clinical 

pathways, is thus formed as a set of activities in process. How to take these 

characters into account and design methods to efficiently discover structure 

patterns is the first problem we faced.  

 

(2) The problem of how to select relevant features. Clearly, it is not the case that all 

discovered patterns have discriminating power. A certain percentage of patterns 

can be found in both normal and fraudulent cases and thus are irrelevant with 

respect to the detection problem. Also, a certain percentage of patterns are 



 17 

correlated and thus form redundant features. How to efficiently eliminate these 

redundant and irrelevant features to improve the performance of the subsequent 

(induction) model construction is the second problem in which we are interested.  

 

(3) The problem of how to revise the detection model when the number of labeled 

examples is small. The input to the proposed research framework consists of two 

sets of labeled instances, those classified by experts as normal and fraudulent  

cases. In practice, requiring a large number of labeled training examples to learn 

accurately is often prohibitive. Therefore, it is necessary to revise the existing 

detection model that is constructed from only labeled instances because they tend 

to learn less accurately for a small set of data. How to integrate other sources, 

such as unlabeled instances, to improve the accuracy of the detection model is 

another important issue in our research. 

 

We investigate the issues listed above in order and report research results in the 

subsequent chapters. 

 



 18 

Chapter 3 

Structure pattern discovery 

 

In order to construct the detection model described in antecedent chapter, we need to 

extract patterns in a way amenable to represent structures of clinical instances. In this 

chapter, we explore the entrance problem: the structure pattern discovery.  

 

Typically, a clinical instance, as described in Section 2.3, is a process instance 

comprising a set of activities, each a logical unit of work performed by a medical staff. 

For example, a patient treatment flow may involve measur ing blood pressure, 

examining respiration, and medicine treatment, just to name a few. These activities, 

each appearing over a temporally extended interval, may execute sequentially, 

concurrently, or repeatedly. For example, before giving any therapeutic intervention, 

diagnosis activities are often executed to verify conditions of a patient. Also, in order 

to gain better curative effect in some cases, it is necessary to execute a number of 

therapeutic interventions concurrently. 

 

As a result, if we want to extract structure patterns from clinical instances, we need to 

take structural characteristics of process−temporally extended intervals and various 

transition ways−into consideration. We accordingly use a temporal graph to represent 

a clinical instance in our research. Detailed definitions of temporal graph and 

corresponding algorithms for discovering patterns are described in this chapter. The 

experimental results in evaluating performance of the proposed algorithms are also 

reported. 

 



 19 

3.1 Related works 

The works reported in [AGL98, Datta98, HY02] deal with the problem of discovering 

a process model from a set of process instances and assume the existence of a process 

model (i.e., control dependencies between activities) underlying a given set of process 

instances. In this vein, such discovery, using a directed graph [AGL98, HY02] or a 

finite state machine [Datta98] for representing process instances, aims at discovering 

a process model that best describes the set of process instances. Our study 

significantly differs from the process model discovery in that we do not assume the 

existence of an underlying process model but is designed to identify frequently 

observed temporal dependencies within process instances rather than control 

dependencies that are presumably genuine in the process instances. 

 

Our work is closest to sequential pattern discovery that discovers frequent sequential 

occurrence of activities (e.g., items purchased) across transactions of the same entity 

(e.g., customer) [AS95, SA96]. The sequential pattern discovery is to find the 

maximal sequences among all sequences that have a certain user-specified minimum 

support. The work on sequential pattern discovery assumes that a transaction contains 

a set of activities occurring at the same time and that transactions of the same entity 

are sequentially ordered. While we assume that an activity appears over a temporally 

extended interval, two activities may overlap or occur in sequence, making sequential 

pattern discovery inappropriate because grouping activities into transactions cannot 

capture all possible temporal relationships between activities. 

 

In addition, graph-based mining techniques are proposed in [CH00] that identifies 

interesting and repetitive substructures within structural data. Representing structural 



 20 

data as a labeled graph, the substructure discovery techniques aim at finding all 

possible substructures from the graph. By its nature, the techniques discover only 

substructures that are regionally connected subgraphs and disregards transitive 

relationships among objects, limiting its applicability to our structure pattern 

discovery problem, where transitivity in temporally sequential relationships prevails. 

 

Finally, [BWJ98] deals with the discovery of frequent-event patterns in a time 

sequence that consists of a set of time-stamped events. The discovery process starts 

with a user-specified event structure that consists of a set of variables representing 

events and temporal constraints between variables. Its goal is to identify instantiations 

of variables in the event structure that appear frequently in the time sequence. The 

event pattern discovery differs from our work in several ways. First, it assumes an 

event appears at a time point rather than over a time interval. Second, it searches for 

instantiations of a user-specified event structure rather than discovering all possible 

frequent temporal relationships among events within a time sequence. 

 

3.2 Formalization of structure pattern discovery problem 

A clinical instance comprises a set of activities, each of which is an execution unit 

that leads to the transition of state in the instance. The execution of an activity spans a 

temporally extended period. Each activity may also be associated with such 

information as execution entity(s) involved, execution location and execution 

outcome. However, since the main intent of this research is to discover frequent 

activities and their associated temporal dependencies, we make use only of the 

starting time and ending time of an activity execution. Our view on a clinical instance 

can be formally described as below. 



 21 

 

Definition 3.1 A clinical instance I is a set of triplets (Vi, st, et), where Vi uniquely 

identifies an activity, and st and et are timestamps representing the starting time and 

ending time of the execution of Vi in I, respectively. 

 

Given a clinical instance, the temporal relationship between any activity pair can be 

classified into two types: followed and overlapped. 

 

Definition 3.2 In a clinical instance I, an activity Vi is followed by another activity Vj 

if Vj starts after Vi terminates in I. 

Definition 3.3 In a clinical instance I, two activities, Vi and Vj, are overlapped if Vi 

and Vj incur overlapped execution durations in I. 

Definition 3.4 An activity Vi is directly followed by another activity Vj in a clinical 

instance I if Vi is followed by Vj in I and there does not exist a distinct activity Vk in I 

such that Vi is followed by Vk and Vk is followed by Vj in I. 

 

To represent temporal relationships between activities in a clinical instance concisely, 

a temporal graph is defined as follows. 

 

Definition 3.5 The pertinent temporal graph of a clinical instance I is a directed 

acyclic graph G = (V, E), where V is the set of activities in I, and E is a set of edges. 

Each edge in G is an ordered pair (Vi, Vj), where Vi, Vj ∈ V, Vi ≠ Vj, and Vi is directly 

followed by Vj. 

 

Transforming a clinical instance into its corresponding temporal graph representation 

is straightforward. We first traverse the activities in the given clinical instance by the 



 22 

ascending order of their starting times. For each activity a, the set F of activities that 

directly follow a are identified. Subsequently, edges connecting a to each activity in F  

are created. As shown in Figure 3.1(a), activity B will be processed first due to its 

earliest starting time among all activities in the instance. Activities C and D directly 

follow B; thus, two edges are created from B to C and D, respectively, as shown in 

Figure 3.1(b). The subsequent traversal of this clinical instance processes activities A, 

C, D, and E in sequence. The resulting temporal graph corresponding to this instance 

is graphically illustrated in Figure 3.1(b). From a given temporal graph G, it is evident 

that an activity Vi is followed by another activity Vj if there exists a path from Vi to Vj 

in G, and Vi and Vj are overlapped otherwise. As shown in Figure 3.1(b), activity B is 

followed by E since there exists a path from B to E. In contrast, activities A  and B are 

overlapped since there does not exist a path that connects them. 

 

A

B E

D

C

(a) An instance

B

A

C

D

E

(b) Temporal graph for the instance in (a)
 

Figure 3.1 Example of a clinical instance and the corresponding temporal graph 

 

A structure pattern can also be represented as a temporal graph that has a certain 

user-specified minimum support. 

 

Definition 3.6 A temporal graph G is said to be supported by a clinical instance I if 

all followed and overlapped relationships that exist in G are present in I. 

Definition 3.7 A temporal graph G is said to be frequent if it is supported by no less 

than s% of the clinical instances, where s% is a user-defined minimum support 



 23 

threshold. 

Definition 3.8 A temporal graph G=(V, E) is a temporal subgraph of another 

temporal graph G’=(V’, E’) if V⊆V’ and for any pair of vertices v1, v2∈V, there is a 

path in G connecting v1 to v2 if and only if there is a path in G’ connecting v1 to v2. If 

G is a temporal subgraph of G’, then G’ is a temporal supergraph of G. 

 

Problem statement: Given a set of temporal graphs, each of which represents a 

clinical instance, the structure pattern discovery is to find all frequent temporal graphs. 

Each such temporal graph is referred to as a structure pattern. 

 

3.3 Structure pattern discovery algorithms 

In this section, three different algorithms, namely TP-Graph, TP-Itemset, and 

TP-Sequence, are proposed for the described structure pattern discovery problem. 

TP-Graph directs its discovery process directly based on the temporal graph 

representation. On the other hand, TP-Itemset extends the Apriori algorithm that finds 

frequent itemsets [AS94] discovers patterns from a set of clinical instances, each of 

which is represented as a set of temporal relationships. Finally, in the TP-Sequence 

algorithm, each clinical instance is represented as a quasi-sequence where the 

overlapping and followed-by relationships of clinical instances are properly preserved. 

Accordingly, a sequential pattern discovery technique, specifically the AprioriAll 

algorithm [AS95], is extended to discover patterns from the set of quasi-sequences. 

 

3.3.1 TP-Graph algorithm 

As with association rule [AS94] and sequential pattern [AS95] algorithms, the 

TP-Graph algorithm exploits the downward closure property of the support measure 



 24 

to improve the efficiency of searching for frequent temporal graphs. The downward 

closure property suggests that if a temporal graph G has support of at least s%, any 

temporal subgraph of G must have a support of at least s% or, conversely, if a 

temporal graph G has a support of less than s%, any temporal supergraph of G 

definitely will have support of less than s%. Accordingly, we adopted an iterative 

procedure similar to that in the Apriori [AS94] and AprioriAll [AS95] algorithms. 

Specifically, potentially frequent temporal graphs (or called candidate temporal graph) 

of size k can be constructed from joining frequent temporal graphs of size k−1. The 

clinical instances are then scanned to identify frequent temporal graphs of size k from 

the set of candidate temporal graphs of the same size. This procedure is iteratively 

executed until no further frequent temporal graphs can be found. Let Ck and Lk denote 

the set of candidate temporal graphs and the set of frequent temporal graphs of size k, 

respectively. Each iteration k performs the following two steps whose challenges and 

solutions are detailed in the following subsections, respectively. 

1. If k=1, Ck is the set of all single-activity temporal graphs. Otherwise, join in 

pair-wise the frequent temporal graphs of size k−1. 

2. Scan the clinical instances to determine Lk from Ck.  

 

Joining frequent temporal graphs 

Intuitively, two frequent temporal graphs of size k−1 can be joined if they differ only 

in one activity and contain the same temporal relationships for any pair of common 

activities. However, this simple-minded joining process will result in many redundant 

candidate temporal graphs. Consider the following example. Suppose the set of 

frequent temporal graphs in iteration 2 be {A→B2, B→C, A→C}. Any pair in the set 

                                                 
2 This simplified representation differs from the temporal graph representation defined in Definition 
3.5. Here, A→B denotes a temporal graph consisting of activities A and B where A is directed followed 



 25 

can be joined to form the candidate temporal graph of A→B→C. That is, three 

identical candidate temporal graphs of size 3 will be generated. In the following, a 

joining algorithm is proposed to eliminate or control such redundancy. 

 

Definition 3.9 Let G be a temporal graph and v be a vertex in G. The operation of 

substracting v from G, denoted as G−{v}, deletes v and its associated edges from G. 

In addition, transitive edges via v are reconstructed by connecting each source vertex 

of incoming edges of v to each destination vertex of outgoing edges of v.  

 

This subtraction operation can be illustrated as follows. Figure 3.2(b)-(f) show all of 

the temporal subgraphs resulted from subtracting a vertex from the temporal graph G 

shown in Figure 3.2(a). When the vertex B is subtracted from G, edges A→C and 

A→D are reconstructed as shown in Figure 3.2(b). As shown in Figure 3.2(c), the 

deletion of the vertex C from Figure 3.2(a) does not introduce any new edge in G  

since C does not have any outgoing edge. Figure 3.2(d), (e), and (f) illustrate the 

remaining temporal subgraphs derived from Figure 3.2(a) by deleting D, E, and A, 

respectively. 

 

(a) Temporal Graph G

B

A

C

D

E

B

A

C

D

E

(b) G−{B}

A

C

D

E

A

C

D

E

(c) G−{C}

B

A
D

E

B

A
D

E

(d) G−{D}

B

A

C

E

B

A

C

E

(e) G−{E}

B

A

C

D

B

A

C

D

(f) G−{A}

B
C

D

E

B
C

D

E

 
Figure 3.2 Examples of subtraction operation 

 

Observation 3.1 Let s be a vertex without incoming edges (called a source vertex) 

                                                                                                                                            
by B. 



 26 

and e be another vertex without outgoing edges (called a sink vertex) in a temporal 

graph G. If G is frequent, both G−{s} and G−{e} must be frequent.  

 

Based on this observation, to determine whether two frequent temporal graphs can be 

joined, only their source vertices and sink vertices need to be considered. Accordingly, 

we formally define joinable temporal graphs as follows. 

 

Definition 3.10 Two temporal graphs Gi and Gj are said to be joinable, if there exists 

a source vertex s in Gi and a sink vertex e in Gj such that Gi−{s} = Gj−{e}. 

 

Consider the temporal graphs shown in Figure 3.3. Designating vertex B as a source 

activity of G1 shown in Figure 3.3(a) and vertex D as a sink activity of G2 shown in 

Figure 3.3(b), these two temporal graphs are joinable since G1−{B} = G2−{D}. The 

temporal graphs G1 and G3 or G2 and G3, however, are not joinable. 

 

B

A

C

(a) Temporal Graph G1 (b) Temporal Graph G2

A

D

C

(c) Temporal Graph G3

D

A

C

 
Figure 3.3. Three example temporal graphs of size 3 

 

Given two joinable temporal graphs Gi (with s being a source vertex) and Gj (with e 

being a sink vertex), the temporal relationship between any pair of activities (except 

that between s and e) present in Gi or Gj will be preserved in a resulting candidate 

temporal graph. Since more than one permissible temporal relationship between s and 

e may exist, the joining of two joinable temporal graphs of size k–1 can lead to 



 27 

multiple candidate temporal graphs of size k. The temporal relationship between s and 

e in a candidate temporal graph can be: 1) no edge exists between s and e or 2) an 

edge connects s to e. Note that the case where an edge connects e to s needs not be 

considered, as it results in a temporal graph with s and e not being source and sink 

vertices respectively. From Observation 3.1, it is clear that if a temporal graph G with 

a source vertex s and a sink vertex e is frequent, both frequent temporal graphs G−{s} 

(where s is a source vertex in G) and G−{e} (where e is a sink vertex in G) must be 

joinable. Formally, the join set of two joinable temporal graphs Gi (with s being the 

source vertex) and Gj (with e being the sink vertex) is composed of 

1. Gi ∪ Gj
3, and 

2. Gi ∪ Gj ∪ {s→e} if there does not exist a path from s to e in Gi ∪ Gj. 

 

Consider the two joinable temporal graphs G1 and G2 shown in Figure 3.3. The join 

set of G1 (with B being a source vertex) and G2 (with D being a sink vertex) includes 

two candidate temporal graphs of size 4 as shown in Figure 3.4. 

 

(b)

B

C

D

A

(a)

B

C

D

A

 
Figure 3.4 Two Candidate Temporal Graphs Resulting from Joining G1 and G2 in 

Figure 3.3 

 

The described downward closure property can further be exploited to reduce the set of 

resulting candidate temporal graphs. A candidate temporal graph G of size k will not 

be frequent if any of its temporal subgraphs of size k−1 is not in Lk-1 and, hence, 

                                                 
3 The union of two graphs Gi=(Vi, Ei) and Gj=(Vj, Ej) results in a new graph G=(Vi∪Vj, Ei∪Ej). 



 28 

should be eliminated from Ck. Such pruning process requires, for each candidate 

temporal graph of size k, the derivation (using the subtraction operation defined in 

Definition 3.9) of all of its temporal subgraphs of size k–1. The pseudo code of 

GenerateCandidateGraph() for generating a set of candidate temporal graphs of size k 

from a set of frequent temporal graphs of size k−1 and that of DeriveSubgraph() for 

deriving all temporal subgraphs of size |G|−1 for a temporal graph G are listed below. 

 

GenerateCandidateGraph(a set of frequent temporal graphs: TGS): a set of temporal 
graphs 
{ 

CandidateSet = Ø; 
For (each pair of graphs (Gi, Gj) in TGS) { 

For (each source vertex s in Gi) { 
For (each sink vertex e in Gj) { 

If (Gi−{s}= Gj−{e}) { /* joinable */ 
UG1 = Gi ∪ Gj; UG2 = Gi ∪ Gj ∪ {s→ e};  
CandidateSet = CandidateSet ∪ {UG1}; 
If there exists no path from s to e in UG1  
Then CandidateSet = CandidateSet ∪ {UG2}; 

   } /* end-if */ 
} /* end-for*/ 

} /* end-for */ 
} /* end-for*/ 
For (each graph G in CandidateSet) { 

If DeriveSubgraph(G) ∩ TGS ≠ DeriveSubgraph(G) 
Then CandidateSet = CandidateSet – {G}; 

} /* end-for */ 
Return CandidateSet; 

} 

 

DeriveSubgraph(a temporal graph: G): a set of temporal graphs 
{ 

Subgraph = Ø; 
For (each vertex v in G) { 

Source = the set of vertices incident to v; 
Sink = the set of vertices incident from v; 
SG = G – {v}; 
For (each vertex pair (vs, vd) where vs ∈ Source and vd ∈ Sink) { 

If there does not exist a path between vs and vd in SG then SG = SG ∪{vs→ 
vd}; 

} /* end-for */ 
Subgraph = Subgraph ∪ {SG}; 



 29 

} 
Return Subgraph; 

} 

 

Scanning clinical instances 

To find frequent temporal graphs from a set of candidate temporal graphs, we have to 

compute their support by scanning the set of clinical instances. To efficiently decide 

the set of candidate temporal graphs that a given clinical instance supports, we 

adopted the hash-tree data structure proposed by Agrawal and Srikant [AS94, AS95]. 

Use of the hash-tree to store candidate temporal graphs of the same size requires a 

total order on the vertices in each temporal graph. In this study, the vertices of each 

temporal graph are sorted based on its graph topology. A topological sort of graph G  

is a linear ordering of all its vertices such that if G contains an edge (u, v), then u 

appears before v in the ordering [CLR89]. To ensure a unique topological sort for a 

given temporal graph, the lexicographic order is applied to vertices that are 

temporally overlapped. The resulting order is called the temporal sequence of a 

temporal graph. For instance, the temporal sequence of the temporal graph shown in 

Figure 3.4(a) is <B, A, C, D>. 

 

A node in the hash-tree either contains a set of temporal graphs (a leaf node) or a hash 

table (an interior node). Each bucket in the hash table of an interior node points to a 

child node. To insert a candidate temporal graph G, we start from the root and follow 

appropriate pointers until a leaf node is reached. At an interior node at depth d 

(assuming the depth of the root node of the hash-tree be 1 and that of a child node of 

an interior node at depth d be d+1), we decide which branch to follow by applying a 

hash function to the d-th vertex in the temporal sequence of G. Initially, the root node 

is a leaf node. When a leaf node L at depth d overflows (i.e., the number of temporal 



 30 

graphs in the leaf node exceeds a specified threshold), L is converted to an interior 

node and several leaf nodes are created as the child nodes of L. All the temporal 

graphs originally stored in L are distributed to these leaf nodes by applying the 

hashing function to the d-th vertices in their temporal sequences.  

 

Such a hash-tree, once constructed, can be used to determine the subset of candidate 

temporal graphs that is supported by a given clinical instance I by traversing the 

hash-tree. Let S denote the temporal sequence of I. The traversal starts at the root 

node by applying the hashing function on every vertex in S to determine the set of 

nodes at depth 2 to visit. At an interior node to which a vertex a in S has just hashed, 

the hashing function is then applied to each vertex after a in S. The traversal process 

continues until leaf nodes are reached. At each leaf node reached, we determine which 

of the candidate temporal graphs in the leaf are supported by I and increment their 

support count by one. After scanning all the clinical instances, the candidate temporal 

graphs whose support exceeds the user specified minimum threshold form the set of 

frequent temporal graphs of this iteration. 

 

Consider a segment of hash-tree for candidate temporal graphs of size 3 as shown in 

Figure 3.5. By hashing on every vertex in the temporal sequence <B, C, E, D> of the 

clinical instance I shown in Figure 3.5(a), we examine those nodes that start with B, C, 

E, or D, respectively.  In this case, the nodes 3 and 4 will be visited next. At node 3 in 

the hash-tree shown in Figure 3.5(b), we can only hash on vertex C, E and D since we 

have reached node 3 by previously hashing on vertex B. As a result, node 7 will then 

be visited. On the other hand, since node 4 is a leaf node, whether its candidate 

temporal graph (i.e., G6) is supported by I is then examined. Similarly, the temporal 

graphs (i.e., G4 and G5) in node 7 will be examined aga inst I and the support of G4 is 



 31 

incremented by one since it is supported by I.  

 

B C E D

(a) A temporal graph for an instance
 

 

1

2 3

5 7

8 9

G1
Temporal sequence:

<A, B, C>

A B C A
B

D
G2

Temporal sequence:
<A, B, D>

6

G3
Temporal sequence:

<A, C , D>

A C D

G4
Temporal sequence:

<B, C, D>

B C D B
C

E
G5

Temporal sequence:
<B, C, E>

4

C
B

D
G6

Temporal sequence:
<C, B, D>

A
B

C

B C

C D

C

1

2 3

5 7

8 9

G1
Temporal sequence:

<A, B, C>

A B C

G1
Temporal sequence:

<A, B, C>

A B CA B C A
B

D
G2

Temporal sequence:
<A, B, D>

A
B

D
A

B

D

B

D
G2

Temporal sequence:
<A, B, D>

6

G3
Temporal sequence:

<A, C , D>

A C D
G3

Temporal sequence:
<A, C , D>

A C DA C D

G4
Temporal sequence:

<B, C, D>

B C D

G4
Temporal sequence:

<B, C, D>

B C DB C D B
C

E
G5

Temporal sequence:
<B, C, E>

B
C

E
B

C

E

C

E
G5

Temporal sequence:
<B, C, E>

4

C
B

D
G6

Temporal sequence:
<C, B, D>

C
B

D
C

B

D

B

D
G6

Temporal sequence:
<C, B, D>

A
B

C

B C

C D

C

(b) A Segment of Hash-tree  
Figure 3.5 Hash-tree for candidate temporal graphs of size 3 

 

The pseudo code for inserting a candidate temporal graph into a hash-tree, named 

AddOneGraph(), and that for traversing the hash-tree for a given clinical instance, 

named Traverse(), are listed below. Note that Traverse() is a recursive function that 

takes three parameters, namely the current node C of the hash-tree, the target clinical 

instance I, and the position of the vertex in I that previously hashed to C. Initially, we 

call Traverse(root of the hash-tree, I, 0). 



 32 

 

AddOneGraph(a hash-tree: T, a temporal graph: G with temporal sequence <v1, v2, …, 
vn>) 
{ 

C = root of T; Level = 1; /* initialize */ 
While C is not a leaf node of T do { 

C= Hash(vLevel ); 
Level++; 

}  
Insert G into C; 
If C is full  
{  

Create a hash table H with each entry pointing to a new leaf node; 
For each temporal graph R in C 
{ 

Assign R to a leaf node by hashing on its vertex at depth Level; 
} /* end-for */ 
Assign the hash table H to C;  

   } /* end-if */ 
} 

 
Traverse(a node pointer: C, a clinical instance: I with temporal sequence <v1, v2, …, 
vn>, previous position: s) 
{ 

If (C is a leaf node) { 
For (each temporal graph G in C) { 

If G is supported by I then G.count++; 
} /* end-for */ 

} 
else { 

position = s; 
Do { 

NewC = Hash(vposition ); 
Traverse(NewC, I, position+1); 
position++; 

} While (position ≤ n); 
} /* end-if */ 

} 

 

Theorem 3.1 shows that this traversal procedure indeed returns the desired result. 

Lemma  3.1 For each candidate temporal graph G supported by a clinical instance I, 

the temporal sequence of G must be a subsequence4 of the temporal sequence of I. 

                                                 
4 A sequence X = <x1, x2, …, xm> is a subsequence of another sequence Y = <y1, y2, …, yn> if there 
exists a strictly increasing sequence <i1, i2, …, im> of indices of Y such that for all j = 1, 2, …, m, we 



 33 

Proof: Let SG = <v1, v2, …, vn> and SI be the temporal sequences of G and I, 

respectively. For any pair of vertices vi and vj in SG where i < j, there are two 

possibilities on their temporal relationships: vi is followed by vj in G, and vi and vj are 

overlapped but vi precedes vj lexicographically. Since I supports G, it is clear that in 

either case the same relationship holds between vi and vj in I. Therefore, vi appears 

before vj in SI. ÿ 

 

Theorem 3.1 For a given clinical instance I, the traversal of the hash-tree examines 

every candidate temporal graph supported by I. 

Proof: It is obvious that the traversal of the hash-tree for I visits the nodes by 

exhausting all the subsequences of the temporal sequence of I. According to Lemma 1, 

these nodes include all the candidate temporal graphs supported by I. ÿ 

 

Use of a hash-tree at iteration k cannot only facilitate fast counting the support of 

candidate temporal graphs of size k but also improve efficiency of constructing the set 

of candidate temporal graphs of size k+1. Considering the hash-tree for candidate 

temporal graphs of size 3 shown in Figure 3.5, suppose that the temporal graph G1 

(i.e., A→B→C) has been found to be frequent. To find temporal graphs that are 

joinable with G1, we need only to visit those leaf nodes that are reachable by hashing 

on B followed by C (assuming A is selected as the source vertex in G1). In this case, 

both temporal graphs contained in the node 7 (i.e., G4 and G5) are joinable with G1. 

This search process, of which correctness is ensured by Theorem 3.2, greatly reduces 

the overhead required to establish joinable temporal graphs for a given temporal 

graph. 

                                                                                                                                            
have xj = yij [CLR89]. 



 34 

 

Theorem 3.2 Let G  be a frequent temporal graph with the temporal sequence being 

<v1, v2, …, vn>. There must exist two joinable frequent temporal subgraphs G1 and G2 

with temporal sequences being <v1, v2, …, vn-1> and <v2, v3, …, vn> respectively. In 

addition, the join set of G1 and G2 includes G.   

Proof: It is obvious from Observation 3.1 that subtracting vn from G results in a 

frequent temporal subgraph G1 with the temporal sequence being <v1, v2, …, vn-1> and 

that subtracting v1 from G results in a frequent temporal subgraph G2 with a temporal 

sequence equal to <v2, v3, …, vn>. Besides, since G2−{vn} = G1−{v1}, G1 and G2 are 

joinable, and their join set includes G. ÿ 

 

3.3.2 TP-Itemset algorithm  

TP-Itemset extends the Apriori algorithm for discovering patterns from a set of 

clinical instances. In TP-Itemset, each possible temporal relationship in a clinical 

instance I is explicitly represented as an item in the itemset for I. Each item in an 

itemset is of the form vi→vj if the activity vi is followed by vj or vi~ vj if the durations 

of activities vi and vj are temporally overlapped (where ~ denotes an overlapping 

relationship and vi < vj in their lexicographical order). For example, as shown in 

Figure 3.6, the clinical instance 1 is represented as {A~B, A→C, B→C}, while the 

clinical instance 2 is represented as {A~B, A→C, B~C}. With this representation, 

n(n-1)/2 items are required to represent a clinical instance possessing n activities. 

 

A

B

CA

C

(a) Instance 1

B

(b) Instance 2
 

Figure 3.6 Examples of two clinical instances 



 35 

 

As with the association rule discovery technique, an itemset that has certain 

user-specified minimum support is called a large itemset, while a potentially large 

itemset is called a candidate itemset. The TP-Itemset algorithm is similar to the 

Apriori algorithm but with one distinction. Unlike in the Apriori algorithm, where 

resulting large itemsets are unrestricted, a large itemset generated by the TP-Itemset 

algorithm needs to satisfy additional constraints. Let VS = {v1, v2, … , vk} be the set of 

distinct activities involved in an itemset S. An itemset S is referred to as a full itemset 

if the temporal relationship between any pair of activities, vi and vj where vi ∈ VS, vj ∈ 

VS, and vi ≠ vj, exists in S. Otherwise, S is a partial itemset due to the absence of some 

temporal relationships in S. In effect, each full and large itemset corresponds with a 

frequent temporal graph defined in Definition 3.7. For instance, {A~B, A→C, B→C} 

is a full itemset, while {A~B, A→C} is a partial itemset because the relationship 

between activities B and C is unspecified. Hence, large itemsets generated by the 

TP-Itemset algorithm are required to be full itemsets. 

 

Given a set of clinical instances, the TP-Itemset algorithm transforms them into a set 

of full itemsets and generates the itemsets among all full and large itemsets. Each 

such full and large itemset represents a structure pattern. Let Lk be a set of large 

k-itemsets each of which has k items (i.e., k temporal relationships) and Ck be a set of 

candidate k-itemsets, where Ck can be constructed by joining large itemsets in Lk–1. In 

the Apriori algorithm, the joining procedure requires that items within an itemset be 

kept in their lexicographic order. In this study, since each item (vi→vj or vi~ vj) 

involves two activities, the lexicographical order of a set of items is based on their 

first activities (i.e., vi) and then on their second ones (i.e., vj). Moreover, the partial 

itemsets from Lk–1 should not be removed immediately at each iteration k–1, since two 



 36 

partial (k–1)-itemsets may result in a full itemset in Ck. For instance, joining two 

partial, large itemsets in L2, {A→B, A→C} and {A→C, B~C}, results in a full itemset 

{A→B, A→C, B~C}. Finally, to facilitate fast counting the support for the candidate 

itemsets in Ck, candidate itemsets are stored in a hash-tree as employed by the Apriori 

algorithm [AS94]. Accordingly, the TP-Itemset algorithm for discovering structure 

patterns is listed below.  

 

TP-Itemset(a set of process instances: I, the minimum support: minsup): a set of large 
and full itemsets 
{ 

Transform each clinical instance i ∈ I into a itemset s in S; 
L1 = {large 1-itemsets}; 
MaxK= 1; 
For (k = 2; Lk-1≠Ø; k++) 
{ 

  Generates candidate itemsets Ck from Lk-1;   
  For each itemset s ∈ S 
  { 
   Ct = subset5(Ck, i); // find candidate itemsets that are supported by i 
   For each candidate c ∈ Ct do c.count++; 

  } /* end-for */ 
   Lk = {c ∈ Ck | c.count ≥ minsup}; 
  If (Lk ≠Ø) then MaxK = MaxK+1; 

} /* end-for */ 
For (k=MaxK; k>1; k--) 
{ 

  Prunes partial itemsets in Lk; 
} /* end-for */ 
Return ∪k≥1Lk; 

} 

 

3.3.3 TP-Sequence algorithm 

TP-Sequence is based on the sequential pattern discovery technique (specifically, the 

AprioriAll algorithm) to discover patterns from a set of clinical instances. In the 

TP-Sequence algorithm, the overlapped and followed relationships in each clinical 

                                                 
5 Using the hash-tree constructed for Ck, the subset(Ck, i) function is to find all the candidate itemsets 
in Ck that are supported by the itemset i. We employed and implemented the subset function as 
proposed in [AS94].  



 37 

instance are explicitly represented as a sequence, where an itemset is a non-empty set 

of overlapping activities, and a sequence is an ordered list of itemsets. The itemset (x, 

y) denotes that activities x and y are temporally overlapped. A sequence with an order 

list of k itemsets is called a k-sequence. For instance, a 2-sequence <(x)(y)> denotes 

that the activity x is followed by y. Furthermore, a 2-sequence <(x, y)(y, z)> denotes 

that activity x is followed by z, while y overlaps with x and z. As shown in Figure 3.6, 

the clinical instance 1 is represented as a sequence of <(A, B) (C)>, while the clinical 

instance 2 is represented as <(A, B) (B, C)>. Using this representation, a clinical 

instance is represented as an m-sequence where l ≤ m ≤ n, l is the number of activities 

in the longest path in the respective temporal graph, and n is the number of activities 

in the clinical instance. 

 

In the sequential pattern discovery, no specific constraint is imposed on itemsets in a 

sequence. However, since a sequence in the TP-Sequence algorithm is used to 

represent both the followed and overlapped relationships, a meaningful sequence 

needs to satisfy certain constraints. We call a sequence <(x) (x, y)> a non-canonical 

sequence since it is identical to <(x, y)>. On the other hand, <(x, y) (w) (x, z)> is an 

illegitimate sequence since both “x followed by w” and “w followed by x” exist; thus, 

violating the irreflexivity of followed relationships. Hence, for discovering structure 

patterns, the AprioriAll algorithm needs to be extended to ensure that any candidate 

sequence generated be canonical and legitimate. Let ai be an itemset. Non-canonical 

and illegitimate sequences are formally defined as follows. 

 

Definition 3.11 A sequence s = <a1 a2 …  am> is canonical if for each itemset aj, 1≤ j 

< m, aj ⊄ aj+1 and aj+1⊄ aj.  

Definition 3.12 A sequence s = <a1 a2 …  am> is  legitimate if for each item x 



 38 

involved in s, the itemsets that contain x form a continuous sequence in s. 

 

To distinguish an unconstrained sequence from a sequence with canonicity and 

legitimacy properties (as required by the TP-Sequence algorithm), the latter is called a 

quasi-sequence. The transformation of a clinical instance I into its respective 

quasi-sequence proceeds in the following iterative manner. The quasi-sequence is 

initialized as an empty list. We traverse the starting and ending times of activities in I 

in ascending order. The set O of overlapped activities is accumulated each time a 

starting time is visited. When the first ending time is encountered, the set O is 

appended to the quasi-sequence. Subsequently, we continue the traversal until the next 

starting time (assuming its respective activity be v) is visited. The subset of activities 

in O whose ending times appear before the starting time of v are removed from O 

since this subset of activities that have appeared in the quasi-sequence are followed by 

v. This traversal procedure continues until all the timestamps are visited. Let us 

illustrate this transformation using the clinical temporal grap instance shown in Figure 

3.7(a). As shown, when the first ending time (which belongs to A) is visited, O=(A, B) 

and, thus, the current quasi-sequence is <(A, B)>. Since there no ending times appear 

before the next starting time (that pertains to C), only A is removed. When the next 

ending time (that pertains to B) is visited, O=(B, C, D) and, therefore, the 

quasi-sequence becomes <(A, B) (B, C, D)>. When the following starting time (that is 

possessed by E) is visited, O becomes empty because the ending times of B, C, and D 

have all been traversed. When the last ending time (which belongs to E) is visited, 

O=(E), and the resultant quasi-sequence is <(A, B) (B, C, D) (E)> as shown in Figure 

3.7(b). The pseudo-code of the described transformation is listed in the following. 



 39 

E

D

CA

B

(a) An instance                                  (b) Respective quasi-sequence

<(A,B)(B,C,D)(E)>

 
Figure 3.7 Examples of clinical instance and quasi-sequence 

 

Generate-Quasi-Sequence(a clinical instance: I): a quasi-sequence 
{ 
 Quasi-Seq = <>; /* Initialization of a quasi-sequence */ 
 Sort the timestamps of activities in I and place them in a queue time; 
 O = Ø; 
 While time ≠ null { 

if time.event = ‘starting time’ { 
add time.activity to O; 
time = time.next; 

  } 
else {/* time.event = ‘ending time’ */ 
 Insert O to Quasi-Seq; 
 While (time.next ≠ null) and (time.event = ‘ending time’) { 
  O= O − time.activity; 
  time = time.next; 
 } /* end-while */ 
} /* end-if */ 

 } /*end-while */ 
 Return Quasi-Seq; 
} 
 

In a quasi-sequence, when an activity v appears in two consecutive itemsets Ij and Ij+1, 

v is temporally overlapped with the remaining activities in Ij and Ij+1, rather than v in Ij 

taking place before the activities in Ij+1 and v in Ij+1 occurring after the activities in Ij. 

This unique interpretation requires re-definition of the subsequence relationship used 

by the sequential pattern discovery algorithm. Using the example shown in Figure 3.7, 

the clinical instance is represented as a 3-quasi-sequence <(A, B) (B, C, D) (E)>. In 

the sequential pattern discovery, the sequence <(B) (C)> is considered to be supported 

by (or a subsequence of) <(A, B) (B, C, D) (E)>. However, the quasi-sequence <(B) 

(C)> indeed denotes a followed relationship between B and C, which differs from an 

overlapped relationship in the clinical instance under discussion. Thus, the 

quasi-sequence <(B) (C)> is not supported by <(A, B) (B, C, D) (E)> in the structure 



 40 

pattern discovery. The re-defined subsequence relationship (formally defined in 

Definition 3.13) is needed when determining support for candidate quasi-sequences.  

 

Definition 3.13 A quasi-sequence s = <a1 a2 …  an> is supported by (or a subsequence 

of) another quasi-sequence t = <b1 b2 …  bm>, if there exists integers i1 < i2 < …  < in 

such that a1 ⊆ bi1, a2 ⊆ bi2, …, an ⊆ bin, and there exists no consecutive itemsets aj 

and aj+1 in s such that v ∈ ai, u ∈ ai+1, and the itemset (u, v) ⊆ bij or (u, v) ⊆ bij+1. 

 

Accordingly, the TP-Sequence algorithm, extending the AprioriAll algorithm, finds 

all frequent quasi-sequences. Each such quasi-sequence corresponds with a structure 

pattern. The TP-Sequence algorithm employs the same hash-tree data structure as the 

AprioriAll algorithm for storing candidate quasi-sequences in Ck and fast counting 

their support [AS95]. The pseudo-code for the proposed TP-Sequence algorithm is 

listed as follows. 

TP-Sequence (a set of clinical instances: TIS, the minimum support: minsup): a set of 
large quasi-sequences 
{ 
 QSS = Ø; /* QSS contains a set of quasi-sequences for instances */ 
 For each clinical instance I in TIS 

{ 
QSS = QSS ∪ Generate-Quasi-Sequence(I); 

 } /* end-for */ 
L1 = {large 1-quasi-sequences};  
For (k = 2; Lk-1 ≠ Ø; k++) 
{ 

  Ck = candidate sequences generated from Lk-1;  
 Delete non-canonical and illegitimate sequences in Ck; 

  For each quasi-sequence qs in QSS 
  { 
   Increment the count of all candidates in Ck that are supported by qs; 
  } /* end-for */ 

 Lk = {c ∈ Ck | c.count ≥ minsup}; 
} /*end-for */ 
Return ∪k≥1Lk; 

} 

 



 41 

3.4 Performance evaluation 

In this section, we evaluate the performance and scale-up properties of the three 

proposed algorithms for finding structure patterns. The experiments were conducted 

on an IBM compatible PC with a CPU clock rate of 500 MHz and 128 MB of main 

memory, running FreeBSD 4.1. Since we intend to examine the performance and 

scalability of the proposed algorithms over a wide range of data characteristics, 

synthetic data sets were generated and employed for the evaluation. 

 

3.4.1 Generation of synthetic data 

To generate synthetic data set for clinical instances, we adopted and extended the 

transaction generation model proposed in [AS95] for evaluating the Apriori and 

AprioriAll algorithms. In our model of executions, clinical instances are not randomly 

designed but tend to contain sets of temporally related activities, each of which is a 

potential structure pattern. Furthermore, clinical instances are generated based on 

these potential structure patterns. However, a clinical instance may include only a 

subset of activities from a potential structure pattern. 

 

Given a set A of available activities with size N, we first generate a pool of potential 

structure patterns. The number of such patterns generated is set to PN. A potential 

structure pattern P is generated by first determining its size (i.e., the number of 

activities) from a Poisson distribution with mean equal to PS. Activities in the first 

potential structure pattern are chosen randomly. To model the phenomenon where 

structure patterns may involve common activities, some percentage of activities in P, 

determined by an exponentially distributed random variable with mean equal to the 

correlation ratio (CR), are randomly chosen from the potential structure pattern Q 



 42 

generated immediately prior to P. Subsequently, the remaining activities in P are 

selected randomly from the rest of activities in A. In addition, to determine temporal 

relationships among those activities in P, some fraction of activities are chosen and 

arranged in sequence; thus exhibiting followed relationships. We use an exponentially 

distributed random variable with mean equal to the length ratio (LR defined as the 

maximal number of sequential activities to the total number of activities) to decide 

this faction for each pattern. Furthermore, without loss of generality, we assume the 

execution duration of each such sequential activity in P be identical. For each 

remaining activity in P, its execution interval ei, bounded by the earliest starting time 

and the latest ending time of the sequential activities decided previously,  is randomly 

determined, thus creating overlapped relationships. However, ei should not reside in 

the time gap between any two consecutive sequential activities in order to preserve 

the pre-decided length ratio for P. 

 

After the generation of the set of potential structure patterns, each pattern is assigned 

a weight, which corresponds to its probability of being selected when generating a 

clinical instance. The weight is initially picked from an exponential distribution with 

unit mean and then normalized so that the sum of the weights for all of the patterns is 

1. Finally, the set of clinical instances are generated. The size of a clinical instance is 

picked from a Poisson distribution with mean equal to IS. For each clinical instance, 

one of the potential structure patterns is randomly chosen by tossing a PN-sided 

weighted coin, where the weight for a side is the probability of picking the associated 

pattern. If the size of the chosen pattern is not the same as that of the instance, surplus 

activities are randomly dropped or additional activities are randomly added in an 

overlapped manner. 

 



 43 

The parameters and their respective default values used for the generation of synthetic 

data sets are summarized in Table 3.1. Depending on the type of experiments 

conducted, the respective parameter will be examined over a range of values, while 

the rest of parameters adopt their default values. For each particular experiment, 10 

trials were performed and the overall performance was then estimated by averaging 

the performance across all trials. 

 

Table 3.1 Parameters and default values for synthetic data generation 

Symbol Description Default 
N 
D 
IS 
PN 
PS 
CR 
LR 

Number of activities 
Number of clinical instances 
Size of clinical instances 
Number of potential structure patterns 
Size of potential structure patterns 
Correlation ratio 
Length ratio 

1,000 
10,000 

20 
1,000 

10 
0.5 
0.5 

 

3.4.2 Effects of minimum support thresholds 

Ten synthetic data sets were generated using the default values for all parameters as 

depicted in Table 3.1. We investigated the effects of minimum support thresholds, 

ranging from 2% to 10% at 2% increments, on the execution times of each proposed 

algorithm. Figure 3.8(a) shows the execution times of the three proposed algorithms 

as a function of minimum support. As expected, the execution times of the three 

algorithms decreased as the minimum support increased. Over the range of minimum 

supports investigated, a decrease in minimum support appeared to have shown 

marginal effects on the execution times of TP-Graph and TP-Sequence. On the other 

hand, a decrease in minimum support resulted in a noticeable increase in the 

execution times of TP-Itemset. Across all the minimum supports examined, TP-Graph 

appeared to have exhibited the best performance, while TP-Itemset performed worst, 



 44 

mainly because it generated and counted a much larger number of candidates than the 

other two algorithms. As shown in Figure 3.8(b), when the minimum support was 2%, 

the number of candidates generated and the number of iterations (i.e., passes) taken by 

TP-Itemset were significantly higher than those produced/required by its counterparts. 

Such dramatic differences could be attributed to their underlying structures for 

representing and manipulating clinical instances and candidates. TP-Itemset explicitly 

represents each temporal relationship (followed or overlapped) as an item in an 

itemset and generates candidates at the temporal relationship level. Thus, the size of 

C1 (i.e., containing all possible relationships between pairs of activities) considered by 

TP-Itemset is 3n(n–1)/2, where n is the number of activities, leading to even larger 

candidate sets in the first few passes. TP-Graph and TP-Sequence forms a candidate 

temporal graph and quasi-sequence, respectively, by adding an additional activity 

from the previous iteration. Hence, the number of activities considered in pass 1 by 

either algorithm is n, which is far fewer than those generated by the TP-Itemset when 

n is large. On the other hand, assuming the maximal number of activities in the 

structure patterns to discover to be s, the number of passes required by TP-Graph and 

TP-Sequence is at most s+1. However, the number of passes for generating and 

counting candidate itemsets would be s(s–1)/2 or higher. The larger candidate sets and 

higher number of passes considered by TP-Itemset resulted in its inferior performance. 

Regarding the performance of TP-Graph and TP-Sequence, which similarly represent 

and manipulate clinical instances and candidates, generated almost identical number 

of candidates at all iterations and required the same number of passes for the target 

structure pattern discovery, leading to comparable performances measured by 

execution time. However, a more concise representation of clinical instances and 

structure patterns employed in TP-Graph appeared to contribute to its better 

performance than TP-Sequence. 



 45 

0

1000

2000

3000

4000

5000

2% 4% 6% 8% 10%
Minimum Support

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

TP-Graph TP-Itemset TP-Sequence

1

100

10000

1000000

100000000

1 11 21 31 41 51 61
Pass Number

N
um

be
r o

f C
an

di
da

te
s

TP-Graph TP-Itemset TP-Sequence
 

 (a) Effects of Minimum Supports             (b) Size of Candidates (Minimum Support = 2%) 

Figure 3.8 Experimental results: effects of minimum support thresholds 

 

3.4.3 Effects of instance characteristics 

The performances of the three algorithms were evaluated over a range of instance 

characteristics described by size of potential structure patterns (PS), correlation ratio 

(CR), length ratio (LR), and number of activities (N) available for generating potential 

structure patterns and clinical instances. We did not examine the effects of number of 

potential structure patterns (PN) since varying the value of PN is similar to adjusting 

the minimum support threshold for a given value of PN. 

 

Synthetic data sets were generated for various sizes of potential structure patterns, 

ranging from 5 to 20 at 5 increments. Remaining parameters received their default 

values, as defined in Table 1. The minimum support was set to 2%. Figure 3.9(a) 

shows the execution times of the three algorithms as functions of the size of potential 

structure patterns. The performance of the three algorithms remained largely stable 

across the sizes of potential structure patterns examined. The resulting execution 

times of TP-Graph, relatively comparable to those of TP-Sequence, were significantly 

lower than those required by TP-Itemset. Various correlation ratios, ranging from 0.1 

to 0.9 at 0.1 increments were also investigated. At a minimum support of 2%, a steady 



 46 

performance was achieved by all of the proposed algorithms across all correlation 

ratios examined, as shown in Figure 3.9(b). As with the previous experiment, 

TP-Graph was relatively comparable to TP-Sequence and outperformed TP-Itemset. 

 

0

1000

2000

3000

4000

5000

5 10 15 20
Size of Potential Temporal Patterns (PS )

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

TP-Graph TP-Itemset TP-Sequence

0

1000

2000

3000

4000

5000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Correlation Ratio (CR )

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

TP-Graph TP-Itemset TP-Sequence
 

    (a) Effects of Sizes of Potential Temporal Patterns     (b) Effects of Correlation Ratios 

0

1000

2000

3000

4000

5000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Length Ratio (LR )

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

TP-Graph TP-Itemset TP-Sequence

0

1000

2000

3000

4000

5000

400 600 800 1000 1200 1400 1600
Number of Activities (N )

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

TP-Graph TP-Itemset TP-Sequence
 

             (c) Effects of Length Ratios         (d) Effects of Numbers of Activities 

Figure 3.9 Experimental results: effects of instance characteristics 

 

In addition, we investigated the effects of length ratios, ranging from 0.1 to 0.9 at 0.1 

increments, on the performance of the three algorithms. As shown in Figure 3.9(c), at 

a minimum support of 2%, the execution times of TP-Graph and TP-Itemset remained 

stable across different levels of length ratio examined. However, the execution times 

attained by TP-Sequence increased linearly as the length ratio grew from 0.1 to 0.9. A 

larger length ratio represents a scenario in which potential structure patterns and their 

respected clinical instances were more likely to contain sequential activities; thus 



 47 

requiring a longer quasi-sequence for representing each clinical instance. As a result, 

as length ratio increased, the number of passes for generating and counting candidate 

quasi-sequences increased and the performance of TP-Sequence degraded. Conversely, 

given the same set of activities appearing in a clinical instance, an increase in its 

length ratio did not increase the size of the resulting temporal graph or itemset. Thus, 

length ratio appeared to have no effect on the execution times of TP-Graph and 

TP-Itemset. Overall, TP-Graph was the most efficient algorithm, followed by 

TP-Sequence and finally TP-Itemset. 

 

Finally, the effects of the numbers of activities (ranging from 400 to 1600 at 

increments of 200) available for generating potential structure patterns and the clinical 

instances on the performance of the three algorithms were examined. The minimum 

support was again set to 2%. As shown in Figure 9(d), the performance of the three 

algorithms remained largely stable across different numbers of activities examined. 

The execution times needed by TP-Graph, largely comparable to those by 

TP-Sequence, were significantly lower than those attained by TP-Itemset. 

 

3.4.4 Scale-up experiments 

The scalability experiments in this study were designed from two different 

perspectives: (1) by increasing the average size of clinical instances (IS) while 

keeping the number of instances constant and (2) by increasing the number of 

instances (D) while keeping the average size of instances constant. The first scale-up 

experiment increased the average size of instances, ranging from 10 to 60 at 10 

increments. The remaining parameters received their default values as depicted in 

Table 1. Figure 3.10(a) shows the execution times required by TP-Graph, TP-Itemset 



 48 

and TP-Sequence, respectively, at a minimum support of 2%. We have not plotted the 

execution times for TP-Itemset when the size of clinical instances was greater than 40, 

since TP-Itemset generated too many candidates and ran out of memory. When the 

size of clinical instances increased from 10 to 40, the execution time of TP-Itemset 

increased linearly. However, the execution times of TP-Graph appeared to scale fairly 

quadratically across the range of sizes of instances examined. Because each clinical 

instance is represented as a graph that requires quadratic manipulation, the execution 

time increases toward a quadratic trend as the size of instances expands linearly. On 

the other hand, the execution times of TP-Sequence appeared to scale linearly. Such 

linear performance with respect to the size of instances can be attributed to the linear 

manipulation of sequences of itemsets. When the size of instances was below 30, 

TP-Graph was the most efficient algorithm. However, as the size of instances 

exceeded 30, TP-Sequence exhibited better performance. 

 

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10 20 30 40 50 60
Size of Process Instances (IS)

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

TP-Graph TP-Itemset TP-Sequence

0

5000

10000

15000

20000

25000

10000 20000 30000 40000 50000
Number of Process Instances (D )

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

TP-Graph TP-Itemset TP-Sequence
 

   (a) Effects of Sizes of Clinical Instances (IS)      (b) Effects of Numbers of Clinical Instances 

Figure 3.10 Results of scale-up experiments 

 

The second scale-up experiment varied the number of instances (D), ranging from 

10,000 to 50,000 at increments of 10,000, while adopting their default values for the 

remaining parameters. Figure 3.10(b) shows the performances of the proposed 



 49 

algorithms as a function of the number of instances, at a minimum support of 2%. As 

shown, all of the proposed algorithms grew linearly with the number of instances. The 

increasing rate for TP-Graph appeared to be the smallest, while TP-Itemset exhibited 

the worst performance and scalability with respect to the number of instances. 

 

3.5 Summary 

In this chapter, we formally defined the structure pattern discovery problem, and 

developed and evaluated three different algorithms, namely TP-Graph, TP-Itemset 

and TP-Sequence, for finding a set of temporal structure patterns from process 

instances. 

 

Using synthetic data sets, we analyzed the performance, over a range of data 

characteristics, and scale-up properties of the three proposed algorithms. The 

experimental results showed that the size of potential temporal patterns, correlation 

ratio, length ratio and the number of available activities had no, or at most marginal, 

effects on the execution times of the proposed algorithms. Overall, TP-Graph 

appeared to achieve the best performance. Due to its representation and manipulation 

that treat each temporal relationship in a clinical instance as an individual item, 

TP-Itemset exhibited the worst performance. In terms of scale-up properties, the 

experimental results suggested that the execution times of TP-Sequence and 

TP-Itemset grew linearly as the size of clinical instances expanded linearly, while 

those of TP-Graph increased toward a quadratic growth. The experimental results also 

suggested that the three proposed algorithms scaled linearly with the number of 

clinical instances, with the TP-Graph algorithm achieving the best scalability. 

 



 50 

Chapter 4 

Feature selection 
 

In our induction work, frequent structure patterns discovered by algorithms described 

in the previous chapter are regarded as features. Therefore, we are given a training set 

of labeled fixed-length feature vectors, or instances, from which to learn an induction 

model. This model is then used to predict the classes (or labels)− normal or fraudulent 

− for a set of unlabeled instances. Thus, the information about the classes that inherent 

in features determines the accuracy of the model. Theoretically, having more features 

should give us more discriminating power. However, the real world provides us with 

many reasons why this theoretical observation does not hold in practice. 

 

First, it is well recognized that the number of features has a strong impact on the 

performance of an induction algorithm. The time requirements for an induction 

algorithm often grow dramatically with the number of features, rendering the 

algorithm impractical for problems with a large number of features. In our case, 

applying real insurance data to a structure pattern discovery algorithm generates more 

than 10000 structure patterns. Therefore, it is imperative to reduce the feature set prior 

to constructing a classifier since the computational complexity of induction 

algorithms depends heavily on the number of features. 

 

Furthermore, many induction algorithms, such as decision trees [Quinlan93] and 

Bayes classifier [DH73], can be viewed as performing estimation of the conditional 

probability of the class label given a set of features. Irrelevant and redundant features 

cause problems as they may confuse the induction algorithm by helping to obscure the 



 51 

distributions of the small set of truly relevant features. The inclusion of such 

irrelevant or redundant features in the training data may in turn degrade the accuracy 

of an induction algorithm.  

 

In summary, reducing the set of features before conducting the induction algorithm 

serves two purposes: to decrease the running time of the induction algorithm and to 

increase the accuracy of the resulting model. We therefore address this feature 

selection issue in this chapter. We first give an overview of related works, and present 

in-depth how to select relevant features to construct a detection classifier. We finally 

describe procedure and results of experiments in detecting fraudulent instances. 

 

4.1 Related works 

A number of researches have addressed the problem of feature subset selection. As 

noted by [JKP94], this work is often accomplished along two different lines: wrapper 

and filter models. 

 

The wrapper model [JKP94][CF94][LS94][BL97] scans through the space of feature 

subsets in search of the one that has the highest estimated accuracy from an induction 

algorithm. Thus, the feature selection sits on top of an induction algorithm, and the 

feature subset search and the underlying induction algorithm strongly interact. While 

these methods have been shown to achieve some success on induction, they suffer 

from high computation cost and are not applicable to tasks with only a few hundred 

features. 

 

The filter model introduces a preprocessing step prior to induction. As such, the 



 52 

adoption of the induction algorithm does not interfere with the selection of the feature 

selection algorithm. A major benefit with the filter model is that it does not need to 

search through the space of feature subsets as in the wrapper models, and is therefore 

efficient for domains containing a large number of features. 

 

Three of the most well-known filter methods for feature selection are RELIEF [KR92], 

FOCUS [AD94], and Markov blanket filter [KS96]. In RELIEF, each feature is 

individually assigned a weight indicating its relevance to the class label, and a subset 

of features with high weights is selected. RELIEF therefore may fail to remove  

redundant features as two predictive, but highly correlated, features will both be 

selected. 

 

The FOCUS algorithm exhaustively searches all feature subsets in order to identify a 

minimal set of features that consistently label instances in the training data. This 

consistency criterion makes FOCUS vulnerable to noise in the training data. 

Moreover, searching the power set of the features also makes this algorithm 

impractical for domains with a large number of features. 

 

Koller and Sahami develop a probability framework, called Markov blanket filter, for 

selecting an optimal subset of features [KS96]. Theoretically, this method eliminates a 

feature if it gives no additional information beyond that subsumed by a subset of the 

remaining features (called Markov blanket). Since finding Markov blanket of a 

feature might be computational infeasible, this research induces an algorithm that 

computes an approximation to the optimal feature set. 

 

In our domain, typically with a large number of features, filter model has the key 



 53 

advantage of computation cost. For this reason, we focus our attention on filter model. 

We address both theoretical and empirical aspects of feature selection with respect to 

the classification task. We describe a formal framework for understanding feature 

selection in our domain and present efficient algorithms based on these theoretical 

intuitions in next sections.  

  

4.2 Formalization of feature selection problem 

In our classification task, patterns discovered by mining algorithms are regarded as 

features, each of which denotes whether a specific pattern is supported by an instance. 

Thus, each instance can be translated as a set of feature values and a class label. Our 

view on a translated example can be formally described as below. 

 

Definition 4.1 A translated example IE of an instance I is a pair (f, c), where f and c 

are a set of feature values and a class label of IE respectively. f = (f1, f2, …, fn) is an 

assignment of a set of Boolean features F = (F1, F2, …, Fn), in which feature fj is set 

to 1 if and only if instance I supports the corresponding pattern of Fj. c is an 

assignment of a binary variable C, which is set to 1 if and only if I is a fraudulent 

instance. 

 

Consider an example shown in Figure 4.1. Suppose there are two instances, which are 

gauged as normal and fraudulent in our data set, as shown in Figure 4.1(a). With 50% 

support threshold, 19 patterns, shown in Figure 4.1(b), are discovered by mining 

algorithms. Therefore, two translated examples, shown in Figure 4.1(c), are generated, 

each having 19 corresponding feature values and one class label. In the first translated 

example, 1 is assigned to Features 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, and 18 



 54 

since the first instance supports 15 corresponding patterns  and 0 is assigned to the 

other features. Similarly in the second example, Features 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 

13, 14, 15, 17, are assigned 1, and the other features are assigned 0. Besides, the first 

example is labeled 0, while the second example is labeled 1. 

A

B

C

D A B C D

Normal Instance Fraud Instance

 

(a) Two instances 

A

B

C

D

A B

A C

Pattern 1

Pattern 2

Pattern 3

Pattern 4

Pattern 5

Pattern 6

A D

Pattern 7

B C

Pattern 8

B C

Pattern 9

B D

Pattern 10

C D

Pattern 11

A
B

Pattern 12

A B

Pattern 13

C

C

A B

Pattern 14

D

A C

Pattern 15

D

D

B

Pattern 16

C

B C

Pattern 17

D

A
B

Pattern 18

C
D

A B

Pattern 19

C D

 

(b) Discovered patterns 

Feature

Translated
example

1 2 3 4 5 6 7 8 9 1011121314151617 1819
Class

1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0

1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1

0

1
 

(c) Two translated examples 

Figure 4.1 Instances and their translated examples 

 

By Definition 4.1, a detection classifier is a procedure that takes as input a translated 



 55 

example IE which is a feature assignment f. The classifier predicts that the instance is 

a member of one of the 2 possible classes {0, 1}. The classifier must make its 

decision based on the assignment f associated with example IE.  

 

In theory, the feature variables will fully determine the appropriate classification. 

However, this is rarely the case in practice since we do not usually have access to 

enough features to make a deterministic decision. Therefore, we use a probability 

distribution to model the classification function. For each feature assignment f, we 

have a distribution Pr(C | F = f), where C is the class random variable. An induction 

algorithm implicitly uses the empirical frequencies observed in the training set−an 

approximation to the conditional distribution Pr(C | F) −to construct a classifier for 

our detection problem. 

 

Let us consider the effect of feature space reduction on the distribution that 

characterizes the problem. Let F’ be some subset of F. Given an assignment f, we use 

f’ to denote the projection of f onto the variables in F’. Consider a particular example 

characterized by f. In the original distribution, this example induces the distribution 

Pr(C | F = f). In the reduced feature space, the same example induces the (possibly 

different distribution) Pr(C | F’= f’). Our goal is to select F’ so that these two 

distributions are as close as possible. 

 

To compute the difference between two distributions, we use the information-theoretic 

measure of cross entropy [KL51] given in Eq 4.1, where a and b denote two distinct 

distributions. While other measures of difference between two distributions (notably 

divergence) have been suggested in the statistics community [Fukunaga90], they are 

often aimed at selecting features to enhance the separability of the data, which is 



 56 

difficult to achieve in an environment with very large dimensional spaces. Hence, we 

use cross entropy as our distance metric, and view the process of selecting features as 

selecting a set of features F’ which causes us to lose the least amount of information 

in the distribution. 

 

∑
Ω∈

=
x xb

xa
xabaD

)(

)(
log)(),( …………………………………………(Eq 4.1) 

 

Cross entropy between two distributions a and b, denoted as D(a, b), measures the 

extent of the “error” made by using b as an approximation to a. Thus, this measure is 

particularly suitable for our application, with Pr(C | F) playing the role of the “more 

informed” distribution a, and Pr(C|F’) playing the role of an approximation 

distribution b. In this case, the probability space Ω is the set of possible classes {0, 1}. 

 

Besides, we need to aggregate the cross entropy values for different feature vectors f 

into a single quantity. Naively, we might think to simply sum the ir cross entropy 

values, or to consider just the maximum cross entropy value. Neither ideas take into 

consideration the fact that some feature vectors are far more likely to occur than 

others, and that we might not mind making a larger mistake in certain rare cases. 

Therefore, we use a weighted measure [KS96] shown in Eq 4.2 to aggregate cross 

entropy values for a given feature subset F’, where Pr(f) denotes the probability of a 

vector f.  Clearly, our goal is to select a subset F’ of features so that the measure 

F′∆  is minimized. 

 

∑ ×=∆
f

F fCfCDf ))'|Pr(),|(Pr()Pr(' ………………………...…(Eq 4.2) 

 



 57 

Problem statement: Given a set of translated examples, each of which is represented 

as a set of feature values f and a class label c, the feature selection problem is to find a 

subset F’ of F so that 'F∆  is minimized. 

 

4.3 Feature selection algorithms 

From the above problem definition, we can easily conclude that the feature set that 

minimizes 'F∆  is simply F, since it maintains the exact distribution. This 

observation might suggest that we can use a backward elimination algorithm, where at 

each state a feature Fi is eliminated in a way that allows us to remain as close to the 

distribution as possible. That is, we have a current feature set F’, initially set to F. At 

each stage, we eliminate a feature Fi such that iFF −∆ '  is as close as possible to 'F∆ . 

 

Unfortunately, it is impractical to simply implement this greedy procedure for several 

reasons. First, the computation time of 'F∆  is exponential to the number of features. 

Second, a greedy algorithm may result in less than optimal solution. Furthermore, we 

cannot really compare our approximate distribution to the true conditional distribution 

Pr(C| F), since the true distribution is not available to us. Rather, we have a training 

set which provides us with only a rough approximation to it. In our case, we have a 

large number of features, and the number of examples in the training set 

corresponding to any particular assignment f will be very small or even non-existent. 

Therefore, as the number of features grows, our ability to use the training set to 

approximate this conditional distribution decreases (exponentially). 

 

Therefore, we utilize ideas from probabilistic reasoning to circumvent this problem. 

Intuitively, features that cause a small difference of distributions are those that give us 



 58 

the least additional information beyond what we would obtain from the other features. 

We can capture this intuition via the formal notion of conditional independence 

defined as below.  

 

Definition 4.2 [Pearl88] Tow sets of variables X and Y are said to be conditionally 

independent given some set of variables Z if, for any assignment values of x, y, and z, 

to the variables X, Y, and Z  respectively, Pr(X=x | Y=y, Z=z) = Pr(X=x | Z=z). That is, 

Y gives us no information about X beyond what is already in Z. 

 

Thus, we can eliminate a conditionally independent feature Fi without increasing the 

distance from the desired distribution. While it is also impractical to test for 

conditional independence, this idea sheds light to a solution. As we will show, we 

exploit sub-/super- relationships among discovered patterns to efficiently eliminate 

features. 

 

Definition 4.3 Suppose Fi corresponds to a k-sized structure pattern i. A feature Fj, 

corresponding to structure pattern j, is said to be a descendant of Fi if j is a temporal 

subgraph of i. A descendant of Fi is also a child of Fi if it is of size k−1. The set of 

children of Fi is denoted as Child(Fi), and the set of descendants of Fi is denoted as 

Descendant(Fi). 

 

Definition 4.4 A feature Fj is said to be a parent of Fi if Fi is a child of Fj. A feature 

Fj is said to be an ancestor of Fi if Fi is a descendant of Fj. We use Parent(Fi) and 

Ancestor(Fi) to denote the set of Fi’s parents and the set of Fi’s ancestors respectively.  

 

Take Figure 4.1 as an example. Feature 1, 2, 3, 4, 5, 6, and 8, obviously, are the 



 59 

descendants of Feature 12, since their corresponding Pattern 1, 2, 3, 4, 5, 6, and 8 are 

temporal subgraphs of Pattern 12. Feature 5, 6, and 8 are the children of Feature 12. 

Similarly, Feature 18 is the ancestor of Feature 12 since the corresponding pattern of 

Feature 18 is indeed a temporal supergraph of that of Pattern 12.  

 

Recall from Chapter 3 that the downward closure property states that if a pattern i has 

support of at least s%, any temporal subgraph of i must have a support of at least s%. 

Let X be a set of instances, each supporting all temporal subgraphs of pattern i and Y 

be a set of instances that support pattern i. Obviously X ⊇ Y. Therefore, if X falls into 

the category of a particular class, Y must belong to the same class. From the 

classification point of view, Fi thus give us no further information than that provided 

by Fi’s children. In the corresponding training set, we can give a lemma as below.  

 

Lemma 4.1. Suppose A ⊆ Descendant(Fi) is a set of features. Let E be the set of 

translated examples that have value 1’s in every feature of A. If every translated 

example in E has the same class label cl ∈C, then Fi and C  are conditionally 

independent given A. 

Proof:  

We need to prove Pr(C|A, Fi) = Pr(C|A). To do so, we divide the instances into two 

partitions P1 and P2: 

(1) P1: Each instance in P1 has 0 in at least a feature value in A. Let a1 be a feature 

value A in P1. 

Clearly, the Fi value of each instance in P1 must be 0. Therefore, in this case, we 

have  
)0,|Pr()|Pr( 11 ==== iFaACaAC . 

 

(2) P2: Each instance in P2 has 1 in every feature value in A. Let a2 be such the feature 

value in A. 

In this case, since all translated examples belong to class cl, we have 



 60 

).1,|Pr()0,|Pr(0)|Pr(

),1,|Pr()0,|Pr(1)|Pr(

222

222

===========
===========

ilill

ilill

FaAcCFaAcCaAcC

FaAcCFaAcCaAcC
 

From the above two cases, we can easily conclude that Pr(C|A, Fi) = Pr(C|A). In other 

words, Fi and C are conditionally independent given A 

 

Clearly, if we can find a set of features A⊆ Descendant(Fi) satisfying the condition 

stated in Lemma 4.1, then for any feature Fj that is an ancestor of Fi, Fj and C must 

also be conditionally independent given A, since A is also a subset of Descendants(Fj). 

Therefore, we give the following corollary, which is derived directly from lemma 4.1. 

 

Corollary 4.1 Let Fj ∈ Ancestor(Fi) and A ⊆ Descendant(Fi) be a set of features. Let 

E be the set of translated examples that have value 1’s in every feature of A. If every 

translated example in E has the same class label cl ∈C, then Fj and C are conditionally 

independent given A. 

 

Based on Lemma 4.1 and Corollary 4.1, we can simply eliminate a conditionally 

independent feature Fi and all ancestors of Fi if we can find a set of features A⊆ 

Descendant(Fi), which satisfies the condition stated in Lemma 4.1. In this situation, Fi 

and all its ancestors are considered to be subsumed by A as they provide no further 

information in terms of classification. However, enumerating all feature subsets and 

conducting a test is still impractical since the number of feature subsets is exponential 

to the total number of features. To circumvent this problem, we derive Theorem 4.1 

that reduces the search space for feature set A.  

 

Theorem 4.1 Let B = Child(Fi) and A ⊆ Descendant(Fi). Further, let EA be the set of 

translated examples that have value 1’s in every feature of A and EB be the set of 

translated examples that have value 1’s in every feature of B. If every translated 



 61 

example in EA has the same class label cl ∈C, then every translated example in EB 

must have the same class label cl. In other words, if Fi and C are conditionally 

independent given A, then Fi and C must be conditionally independent given B.  

Proof 

Suppose A≠  B (otherwise this theorem holds). Let X ∈A−B and Y ∈B be the ancestor 

set of X. After replacing X by Y, we obtain a new set of features B’⊆ B. Let EB’ be the 

set of translated examples that have value 1’s in every feature of B’. By downward 

closure property, EA⊇ EB’. Therefore, each example in EB’ must have the same class cl. 

That is, Fi and C are conditionally independent given B’. Since B’⊆ B, Fi and C are 

conditionally independent given B. 

 

As a result, for a given feature Fi, we can simply verify its children. If every translated 

example that has assignment 1 in every child of Fi has the same class, Fi and all 

ancestors of Fi can be eliminated. Since smaller patterns have more ancestors, 

verifying features from small to large has the potent ial of eliminating features in 

earlier stages. Therefore, features are listed in ascending order of their sizes, and our 

algorithm sequentially verifies whether a feature and the class variable are 

conditionally independent. Detailed algorithm (in first stage) is listed below. 

 

FeatureSelection(T: a training set; F: a set of features; N: integer): G: a set of features 

// Suppose features in F are in ascending order on their sizes 

{ 

//First Stage 

G = F; 

For (each feature Fi in G) 

{ 

    class0 = 0; class1 = 0; 

For (each distinct translated example IE in T) 

{ 



 62 

If IE.Child(Fi) = 1 

{ 

If IE belongs to class 0 {class0++;} else {class1++;} 

} 

} 

// belong to only one member of possible classes 

    If ((class0 =0 and class1 ≠0) or (class0≠0 and class1=0))  

 { 

        G = G – {Fi} – Ancestor(Fi); 

    } // end of If statement   

}// end of For loop 

//Second Stage 

If |G| > N {G = MarkovBlanketFilter(G);} 

Return G; 

} 

 

Let us apply FeatureSelection() to our example shown in Figure 4.1. Features 1-4 pass 

our test since they do not have any children. Figure 5-11 pass the test as well because 

the corresponding patterns of their children are supported by both instances, each 

having different classes. Feature 12 is the first feature that does not pass the test, 

because only one instance supports all corresponding patterns of its children– Feature 

5, 6, and 8. Therefore, Feature 12 and its ancestor Feature 18 are eliminated. For the 

same reason, Feature 13, 16, 17, and 19 are eliminated in subsequent steps. 

 

Note that FeatureSelection() might require a second stage filtering 

(MarkovBlanketFilter()) because the number of features that pass the first stage 

(conditional independence test) might still be large.  Considering time requirements 

of computation and the potential redundancy of the remaining features, Markov 

blanket filter is adopted in this research. 

 

In [KS96], Koller and Sahami formalize their ideas using the notation of a Markov 



 63 

Blanket. We review some of the key concepts here. 

 

Definition 4.5 [Pearl88] Let M be a set of features which does not contain Fi. We say 

that M is a Markov blanket for Fi if Fi is conditionally independent of (F∪C) − M −  

{Fi} given M 

 

It is easy to see that if M is a Markov blanket of Fi, then it is also the case that the 

class C is conditionally independent of the feature Fi given M. Therefore, if a Markov 

blanket of Fi can be found, the filter model can safely remove Fi from F. Koller and 

Sahami adopted a greedy strategy for implementing a sequential filtering process in 

which unnecessary features are eliminated one by one, and it can be shown that a 

feature tagged as unnecessary based on the existence of a Markov blanket remains 

unnecessary in later phases when more features are eliminated, as detailed by the 

Theorem 4.2.  

 

Theorem 4.2 [KS96] Let Y be the current set of features, and assume that some 

(previously eliminated) feature Fi ∉ Y has a Markov blanket within Y. Let Fj ∉ Y be 

some feature which is going to be eliminated based on some Markov blanket within Y. 

Then Fi also has a Markov blanket within Y – {Fj}. 

 

In most cases, however, very few features will have a Markov blanket of limited size. 

Therefore, constructing an approximate Markov blanket, which is close to the real one, 

is necessary. The intuition for constructing an approximate Markov blanket is that, if a 

feature Fi does have a Markov blanket, Fi will directly influence the features of its 

Markov blanket. Therefore, an approximation, some set of K features which are 

strongly correlated with Fi, to the Markov blanket can be constructed heuristically.  



 64 

 

In [KS96], various “correlation” metrics, including statistical correlation, mutual 

information, class mutual information, and “pair-wise” cross entropy have been tested. 

Since our features are binary, statistical correlation is not suitable in this context. 

Among other three metrics, “pair-wise” cross entropy was shown to have the best 

experimental results as reported in [KS96]. Thus, we adopt it in our research, shown 

in Eq 4.3.  

 

))|Pr(),,|(Pr(),(Pr
,

, jjiji

FjFi
ji FCFFCDFF ×=Γ ∑ ……………….………...(Eq 4.3) 

 

In order to figure out how close an approximation is to the real one, Koller and 

Sahami further define the expected cross entropy as shown in Eq 4.4.  

 

∑ ===×===∆
iim

iii
ff

miiimiiimiii fMCfFfMCDfFfMMF
,

))|Pr(),,|(Pr(),Pr()|(

……………………………….………………………………………….(Eq 4.4) 

 

Clearly, the lower the )|( ii MF∆  value, the closer the approximation is. Thus, the 

feature Fi which has the lowest )|( ii MF∆  value is most likely to have a Markov 

blanket in the remaining features, and thus should be eliminated first. These 

approximations result in the algorithm MarkovBlanketFilter() listed as below. 

 

// G is the total set of features and N is the desired number of features 

MarkovBlanketFilter(G: a set of features; N: integer): G’: a set of features 

{ 

For (each feature Fi in G) 

{ 



 65 

   For (each feature Fj in G) 

   {Compute ijΓ ;} 

} 

R = G; 

While (|R|>N) do 

{ 

   For (each feature Fi in R) 

   {Mi = the set of K features in R-{Fi} that have the smallest ijΓ  values; } 

   For (each feature Fi in R) 
   {Compute )|( iiR MF∆ ;} 

   Felimination = Fi for which )|( iiR MF∆  is minimal; 

   R = R – { Fi }; 

} //end of While loop; 

} 

 

MarkovBlanketFilter() begins by computing the cross entropy for each pair of 

features. Then the algorithm constructs an approximated Markov blanket of size K for 

each feature, and eliminates the feature which has the lowest )|( iiR MF∆  value. 

This process executes iteratively until the number of remaining features is less than 

user-specified constant N. 

 

Speaking of computational expense, our algorithm shows promise for scalability. The 

first stage of the algorithm takes O(nmc) time, where n is the initial number of 

features, m is the number of translated examples, and c is the maximum number of 

children of a feature. The complexity result is due to the fact that to eliminate a single 

feature, we must scan all translated examples and then verify one entry (all values of c 

children features are 1) in the conditional probability table. Thus, at most n features 

are scanned in the case that each of eliminated features has no ancestors.  

 



 66 

In the second stage of the algorithm, it requires O(p2(m+lgp)) operations for 

computing the pair-wise cross entropy matrix and sorting it, where p is the number of 

features left after the first stage. The subsequent feature selection process requires 

O(rpkm2k) time, where r is the number of features to eliminate, and k is the small, 

fixed number of conditioning features. This complexity result is due to the fact that to 

eliminate a single feature, we must iterate through all the remaining features (at most 

p) and for each one select the k features that have the smallest ijΓ  values. Computing 

)|( iiR MF∆  for each feature Fi requires O(m2k) time to scan through the m translated 

examples and compute the entries in the conditional probability tables that we must 

sum over. 

 

Note that the first stage of our algorithm plays an important role in enhancing the 

performance of the second stage, in terms of both accuracy and running times. 

Theoretically [KS96], in the second stage, the larger the conditional set (the larger K), 

the more likely it is to subsume all the information in the feature, thereby forming a 

Markov blanket. On the other hand, larger conditioning sets fragment the training set 

into small chunks, reducing the accuracy of the probability and hence cross-entropy 

estimates. Therefore, there is a trade-off for setting K.  

 

Because a large extent of redundant information has been eliminated in the first stage, 

there exists a good possibility that smaller conditional set results in a satisfactory 

approximation. Smaller conditional set reduces the number of chunks and hence also 

increases the accuracy of cross-entropy estimates. With smaller conditional set, the 

running time also dramatically decreases since the computation complexity of the 

second stage is exponential to K. Therefore, the combined approach is particularly 



 67 

suitable for our problem − a domain with a huge number of features.  

 

4.4 Performance evaluation 

The Bureau of National Health Insurance (BNHI) was founded in 1995 for 

administering the National Health Insurance Program (NHI) in Taiwan. Through risk 

pooling, BNHI is responsible for providing the public comprehensive medical care 

such as health prevention, clinical care, hospitalization, resident care and social 

rehabilitation. As of June 2002, there were more than 21 million individuals enrolled 

in NHI with a coverage rate of 96%, and more than 16 thousand medical institutions 

contracted in the program, which were about 92% of medical institutions nationwide 

[BNHI].  

 

The medical care expenditure of NHI has experienced a high inflation rate since its 

inception in 1995 [BNHI]. In 1998, the total expenditure of BNHI was NT $267 

billion, a figure that exceeds the revenue NT $262 billion and, compared to 1995, 

represents a 34% increase in total health care expenditure and a 20% increase in 

health care expenditure per enrollee. In various reports [BNHI], payment system of 

NHI− principally6 “Fee-for-service”− has been noted as the main reason that leads to 

the rapid increase of health care expenditure. 

 

Insurance programs adopting fee-for-service payment method, as described in Section 

2.1, have most serious damage from service providers. Clearly, NHI program fits the 

                                                 
6 From 1998 to 1999, the BNHI has continued to include laparoscopic surgery, liver transplantation, 
lung transplantation, and home iron-discharging agent pump in the payment standard and fees were 
adjusted accordingly. There were additional 50 items applicable to case payment. The Global Budget 
Payment System was applied on dental service as of July 1st 1998, on Chinese medical service as of 
January 1st 1999, and on dispensary -level Western medical service as of July 1st 2002.  



 68 

medical insurance type that our research addressed. With the large number of 

enrollees and rapid increase of expenditure, NHI is a particular interesting platform 

for investigating our detection model. Therefore, we consulted domain experts and 

collected some medical data in NHI for evaluating the effectiveness and efficiency of 

our detection model. 

 

4.4.1 Data collection and preprocessing 

According to reports of BNHI [BNHI], medical claims reported from gynecology 

departments of various hospitals have a rapid increase of expenditure as well as a high 

ratio of the number of rejected cases to the total number of claims. For this reason, we 

decided to focus our attention on medical cases from gynecology departments. By 

consulting physicians of gynecology departments, we further choose Pelvic 

Inflammatory Disease (PID) as our major target of detection, since PID is the most 

common disease in gynecology departments, and the diagnosis as well as treatment 

methods of PID are representatives of gynecology departments. 

 

The directly reported data of BNHI, however, is not employed in our research for 

several reasons. First, summarized indices, rather than activity- level logs, are often 

used in current reports and thus unsuitable to be taken as input of our model. Second, 

BNHI adopts statistics methods for sampling cases, and infers examined results to the 

whole population. Thus, only sampled cases are examined. Cases, which are not 

tagged as fraudulent, might be simply because they are not chosen for examination. 

Besides, due to the limitations of time and resource, many experts only screen cases 

by a small set of regulation rules. Certain extent of fraudulent and abusive behavior is 

not clearly identified. 

 



 69 

Therefore, rather than using the reported data of BNHI, we collected data from a 

regional- level hospital, which is contracted in NHI. We initially gathered 2543 

patients’ data from the gynecology department of the hospital during July 2001 and 

June 2002. We prepare two data sets− normal and fraudulent− through the following 

steps.  

(1) Filtering out noisy data: Regarding each patient’s treating data as an instance, 

we removed instances which have missing or noise values. In this step, we 

removed 77 patients’ instances.  

(2) Identifying activities: Based on the domain knowledge provided by experts, 

we identified medical activities in the remaining instances. Some activities, 

such as examination of blood pressure, were routinely preformed and thus 

discarded. We finally identified 127 medical activities in this step. 

(3) Identifying fraudulent instances: Two gynecologists were involved to identify 

fraudulent instances. They examined all instances, among which 906 

instances were judged by the both gynecologists as fraudulent.  

(4) Selecting normal instances: We then randomly selected 906 cases from 

normal instances, each of which two gynecologists also made the same 

decision, to form our data set. As a result, a total 1812 instances were used in 

our experiments.  

 

4.4.2 Induction method 

Many induction techniques are available in the literature and even in software 

packages. We can roughly classify them into three categories according to the formats 

of derived models, namely decision tree/rule (e.g., C4.5 [Quinlan93], CN2 [PN89], 

and CBA [LHM98]), discrimination analysis [JW92], and neural network approach 

[RHW86]. The decision tree/rule approach induces a decision tree (or a set of rules) 



 70 

that describes the induction model between input features and decision outcomes. The 

discrimination analysis approach derives linear combination functions of input 

features under normal distribution and equal dispersion assumptions. The last 

approach, neural network, produces an appropriate set of weighted links according to 

a pre-determined network topology that differentiates decision outcomes based on 

input feature values. 

 

The neural network approach is known for its noise-tolerance and fault-resistance. 

However, being a holistic approach, the neural network approach suffers from its 

inability to produce interpretable knowledge [NCL99]. The discrimination analysis is 

a math-based method, whose assumptions are difficult to satisfy in real situations 

[NCL99]. Thus, in order to interpret discriminating patterns for medical service 

management, we focus our attention on decision tree/rule techniques in this research. 

In some cases, a practitioner could certainly employ another induction technique. 

 

Specifically, we adopt associative classification (or classification based on association, 

abbreviated as CBA) [LHM98] as our induction method. In CBA, a data example is 

translated as a set of (feature, value) pairs and a (class-feature, class-value) pair. Each 

translated example is treated as a transaction containing a set of items (pairs). 

Association rules, each of which contains (class-feature, class-value) pair in the right 

hand side, are discovered if they have certain user-specified minimum support and 

confidence. The discovered rules are then selected in terms of precedence order, 

depicted as below, to develop a classifier.  

 

PRECEDENCE ORDER [LHM98]. Given two rules Ri and Rj, Ri > Rj if  

(1) The confidence of Ri is greater than that of Rj, or 



 71 

(2) Their confidences are the same, but the support of Ri is greater than that of Rj, or 

(3) Both the confidences and supports of Ri and Rj are the same, but Ri is generated 

earlier than Rj. 

 

By the above precedence order, clearly, high-confidence rules, even with low supports, 

still have high precedence to be selected. The developed classifier thus has the 

potential of accurately classifying a small set of examples that are covered by the 

high-confidence but low-support rules. This is particular suitable for our domain, 

because some features are likely to be good indicators to normal or fraudulent 

behavior (high confidence) but only supported by few examples (i.e., low support). As 

a result, CBA is adopted as principle induction technique in this research. 

 

4.4.3 Evaluation criteria 

To evaluate the detection model, we consider two measures, sensitivity and specificity, 

which are often used in the medical diagnosis and the detection of fraudulent behavior 

[FW97, Lavrac99]. Sensitivity is the ratio of the number of undesired cases returned 

by a system to the total number of undesired cases. Specificity is the ratio of the 

number of desired cases returned by a system to the total number of desired cases. 

Clearly, the performance of the system is better if it has both higher sensitivity and 

higher specificity.  

 

These two measures can be graphically illustrated by Figure 4.2, where A is the set of 

examples that are actually normal and returned as normal, B is the set of examples 

that are actually normal while returned as fraudulent, C is the set of examples that are 

actually fraudulent while returned as normal, and D is the set of examples that are 



 72 

actually fraudulent and returned as fraudulent. In our case, therefore, sensitivity is 

defined as |D|/|C+D|, and specificity is defined as |A|/|A+B|.  

 

Label returned by
the detection model

Normal                 Fraudulent

Actual
label

Normal

Fraudulent

A

C

B

D

 

Figure 4.2 A graphical representation 

 

4.4.4 Evaluation results 

We used a 5-fold cross validation [JW92] method to evaluate the performance of our 

detection model. That is, all examples are randomly divided into 5 folds. In each trial, 

examples in a particular fold are used for testing. Therefore, 5 trials were performed 

and the overall performance was then estimated by averaging the performance across 

all trials. 

 

Number of features deducted 

In order to construct our detection model, patterns are first discovered by some 

mining algorithm described in Chapter 3, then translated as features, and finally 

filtered by the feature subset selection algorithm reported in this chapter. We first 

report the number of features selected in our model as shown in Figure 4.3. These 

patterns (features) are discovered at different support thresholds, ranging from 10% to 

2% at 2% decrements. Figure 4.3(a) shows the number of initial features (discovered 

by mining algorithms), and the number of features that pass the first stage of feature 



 73 

subset selection. Figure 4.3(b) shows the ratio of the number of features that are 

eliminated by the first stage of feature subset selection to the number of initial 

features. 

 

(a) Number of features

0

5000

10000

15000

20000

25000

30000

35000

10 8 6 4 2

Support (%)

Number of initial features

Number of remaining features

(b) Ratio of elimination

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 8 6 4 2

Support (%)

elimination ratio in the first stage of feature subset
selection

 

Figure 4.3 Effects of feature subset selection 

 

As expected, the number of initial features increased as the minimum support 

decreased. While the number of remaining features still increased (at a moderate pace) 

as a function of support threshold, great percentage of features is eliminated by the 

first stage of feature subset selection. For example, at 2% support threshold, an 

average of 30701 features is initially discovered while only 3120 features pass the test. 

Further, as shown in Figure 4.3(b), the ratio of the number of eliminated features to 

the number of initial features grows substantially as the minimum support decreases. 

 

Prediction power with the first stage of feature subset selection 

We then investigated the sensitivity and specificity of our detection model, which are 



 74 

constructed by features selected by the first stage of feature selection. At 6% to 2% 

support thresholds, because the number of features that pass the first stage of feature 

subset selection is still large (more than 1000), we further filter features by Markov 

blanket filter (the second stage of feature subset selection) at various levels of Markov 

blanket size (K=0, 1, 2). 1000 features (N=1000) are finally selected in these cases. 

Also, since best accuracy of CBA is reported at 1-2% minimum support [LHM98], we 

set support and confidence of CBA to 1% and 50% respectively. The resultant  

sensitivity and specificity of our detection model are depicted in Figure 4.4. 

 

 

(a) Sensitivity

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

10 8 6 4 2

Support (%)

K=0 K=1 K=2

(b) Specificity

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

10 8 6 4 2

Support (%)

K=0 K=1 K=2
 

 

Figure 4.4 Sensitivity and specificity of the detection model with the first stage of 

feature subset selection 

 

Generally speaking, sensitivity and specificity of the detection model increased as the 

support threshold decreased. This is expected since higher support threshold indicated 



 75 

more features were discovered and thus provided more information for classification 

task. Both best sensitivity 64.36% and specificity 67.12% are obtained at 2% support 

threshold, while specificity is slightly better than sensitivity. Besides, it is worth 

noting that both sensitivity and specificity are obtained at K=0 conditioning level, and 

a slight decrease can be found across various conditioning levels. It shows that a great 

extent of redundant information has been eliminated in the first stage of features 

subset selection, and thus a low conditioning level (K=0) is enough to further filter 

correlated information out.  

 

Prediction power without the first stage of feature subset selection 

We also investigated the sensitivity and specificity of our detection model, in which 

all features were selected by Markov blanket filter with various conditioning settings. 

The settings of this experiment were the same as the previous one except that the first 

stage feature selection was omitted. The sensitivity and specificity of the resultant  

detection model are depicted in Figure 4.5. 

 



 76 

(a) Sensitivity

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

10 8 6 4 2

Support (%)

K=0 K=1 K=2

(b) Specificity

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

10 8 6 4 2

Support (%)

K=0 K=1 K=2
 

Figure 4.5 The sensitivity and specificity of the detection model without the first stage 

of feature subset selection 

 

It can be seen that the best sensitivity 60.06% and specificity 64.48% were both 

obtained at K=2 conditioning level. Clearly, comparing to the experiment shown in 

Figure 4.4, the performance of the detection model is slightly decreased. It is expected 

because Markov blanket filter uses only approximations to eliminate features. Besides, 

the conditioning setting (K=2) shows that it is necessary to have higher conditioning 

level to filter redundant information, resulting in higher computation time.  

 

Comparison of detection models 

We finally compare our detection model with that proposed in [Lan00], which intends 

to detect suspicious claims in Taiwan’s NHI program. We use the same features7 as 

identified in [Lan00], which are mainly derived from various expense fields of claims 

by experts’ consultants, to develop an induction model. The resultant  sensitivity and 
                                                 
7 Detailed descriptions are listed in Appendix A. 



 77 

specificity are shown in Figure 4.6. 

 

(a) Sensitivity

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 8 6 4 2

Support (%)

Our detection modelLan's detection model

(b) Specificity

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 8 6 4 2

Support (%)

Our detection modelLan's detection model
 

Figure 4.6 Comparisons of detection models 

 

In Figure 4.6, it can be easily seen that Lan’s detection model, which mainly involves 

expense features, has high specificity but low sensitivity. This is because normal 

examples tend to consistently have low expense, and thus result in high specificity. 

Fraudulent examples, however, have varied expenses, and thus result in low 

sensitivity. Similar conclusions are reported in Lan’s experiments [Lan00]. 

Comparing with Lan’s detection model, our detection model has a balanced treatment 

on sensitivity and specificity. Also, the specificity of Lan’s detection model is higher 

than ours, while the sensitivity of our detection model is slightly higher.  

 

The comparison of sensitivity is not intended to show that one is better than the other, 

but rather to illustrate where the differences lie with our structure feature driven 

approach. Of fraudulent examples returned by Lan’s detection model, our detection 



 78 

model captures an average of 69% examples. Some examples, such as overdose, are 

not returned by our detection model. On the contrary, of the fraudulent examples 

returned by our detection model, Lan’s detection model captures an average of 63% 

examples. Some examples, such as those that have repeated ambulant visits while still 

have low expense, are not returned by Lan’s detection model. Certain extent of 

differences exists in our structure driven approach and Lan’s expense driven 

approach. 

 

4.5 Summary 

In this chapter, we formally defined the feature selection problem, and developed an 

algorithm for eliminating redundant and irrelevant features. We evaluated the 

effectiveness of feature selection algorithm and the prediction power of the detection 

model by using real-world data gathered from Taiwan’s NHI program.  

 

The experiments of feature selection showed that great percentage of features could 

be eliminated by conditional independence test. With the first stage of feature subset 

selection, the best performance of our detection model is obtained at lower 

conditioning level, while, without the first stage of feature subset selection, the best 

performance is obtained at higher conditioning setting. It shows that a great extent of 

redundant information could be eliminated in the first stage of features subset 

selection, and result in both accuracy improvement and computation cost reduction.  

 

The experiments of detection models showed that our detection model has certain 

prediction power. Comparing to Lan’s expense driven approach, our structure driven 

approach performs equally well in both sensitivity and specificity, while Lan’s has 



 79 

better specificity but worse sensitivity. Also, these two approaches tend of capture 

different fraudulent scenarios. A hybrid approach may have the potential of achieving 

even better performance but is beyond the scope of our research. 

 



 80 

Chapter 5 

Model Revision 

 

One key difficulty with induction algorithms is that they require a large, often 

prohibitive, number of labeled examples to accurately learn the classification model. 

Labeling clinical instances, which is typically done by domain experts, is a painful, 

time-consuming process. A traditional detection model that is trained from a small 

number of labeled examples might thus have less accurate prediction power. 

Therefore, it is important and interesting to integrate other sources for revising the 

initial detection model. 

  

Some text classification techniques, such as reported in [NMTM00, WH99, 

Joachines99], make use of a small number of labeled examples and a large number of 

unlabeled examples for creating classifiers with higher accuracy.  Since collecting 

unlabeled examples are much less expensive, we conceive that, by incorporating 

unlabeled clinical examples into our induction learning process, it may be possible to 

construct a detection model with higher prediction power.  

 

As a result, in this chapter, we study the problem of integrating unlabeled clinical 

examples for building a detection model. We first give an overview of related works 

and identify their theoretical assumptions. We then present a new strategy, which is 

designed in accordance with the characters of our detection task, to integrate 

unlabeled clinical examples. The performance of the revised detection model is finally 

reported. 

 



 81 

5.1 Related work 

The work of induction learning with labeled and unlabeled data has its origins in 

statistics and has recently been heavily explored by researchers from machine 

learning community. This line of research is often conducted through three different 

approaches: likelihood maximization, discrimination, and co-training approaches. 

 

Most classic methods adopt likelihood maximization approach, which uses an 

induction algorithm to generate a classifier and Expectation-Maximization (EM) 

algorithm to estimate class label and parameters of the generated classifier [NMTM00, 

WH99]. EM algorithm is comprised of two steps: the expectation (E-) step for 

calculating probabilistically weighted class labels for every unlabeled example, and 

the maximization (M-) step for estimating new parameters of the classifier. In its 

implementation form, EM is an iterative process, by which an initial classifier is 

estimated using the traditional induction algorithm, then the expectation and 

maximization steps iterate until the generated classifier converges.  

 

As observed in [NMTM00], unlabeled examples might be valuable because they 

provide information about the generative model of training data even the important 

class labels are missing. For example, suppose that using only the labeled data a 

classifier determines that documents containing the word “homework” tend to belong 

to a positive class. If this fact is used to estimate the classes of unlabeled documents, 

we might find that the word “lecture” occurs frequently in the unlabeled documents 

that are now believed to belong to the positive class. This co-occurrence of the words 

“homework” and “lecture” over the large set of unlabeled data thus provide useful 

information to construct a more accurate classifier that consider both “homework” 



 82 

and “lecture” as indicators of positive examples.  

 

The above example  imposes an important  assumption that the generative model of 

training data is a mixture model8, which is the key factor for EM to learn with 

unlabeled data. In text classification, words, which are often used as features in 

classification, tend to frequently co-occur in documents that belong to the same class. 

This explains why EM achieves high text classification accuracy [NMTM00] when 

given only a limited amount of labeled data and a large amount of unlabeled data. On 

datasets where this assumption is badly violated, however, EM performs poorly 

[NG00]. 

 

As a discrimination approach, Joachines uses transductive support vector machines 

(Transductive SVMs) to find parameters for a linear separator when given a small 

amount of labeled data and a large amount of unlabeled data [Joachines99]. The 

identified linear separator aims to separate the labeled examples of different classes 

and to maximize the margin over both labeled and unlabeled examples. Joachines also 

demonstrated the efficacy of this approach for several text classification tasks 

[Joachines99].  

 

Bennett and Demiriz [BD99] further improved the performance of transductive SVMs 

when applied to some UCI datasets with computationally easier variant of 

transduction. It seems that the intuition behind transductive SVMs is that they assume 

decision boundaries lie between classes in low-density regions of instance space, and 

that the unlabeled examples help find these areas. However, Zhang and Oles [ZO00] 

                                                 
8  The term, described in [NMTM00], indicates that features tend to frequently co-occur in the 
instances that belong to the same class. 



 83 

argued that both theoretically and experimentally transductive SVMs are unlikely to 

be helpful for classification in general. 

 

Finally, the co-training setting allows unlabeled data to be used in a new way. It 

specifies that every example be described by two disjoint views onto the data. For 

example, with a web classification task, each example has words occurring on a web 

page, and also words on hyperlinks pointing to web pages. Blum and Mitchell [BM98] 

present a co-training algorithm that respectively develops two classifiers each based 

on a different view of data. In the procedure of co-training, the algorithm thus 

iteratively selects an unlabeled example, gives it a label, and relearns to improve both 

classifiers. They also show that under the two theoretical assumptions : (1) each set of 

features is sufficient for perfect classification, and (2) the two feature sets of each 

example are conditionally independent given the class, an initial (weak) classifier can 

be arbitrarily improved given sufficient unlabeled examples.  

 

In our problem domain, for evading carriers’ detection, service providers tend to use 

only a few fraudulent or abusive scenarios in one case. Accordingly, it is likely that 

the assumption of the co-occurrences of fraudulent scenarios (features), a mixture 

model, is not satisfied. Therefore, we focus our attention on co-training strategy rather 

than EM algorithm. Certainly, two independent and sufficiently redundant views of 

data are not available in our detection framework as that in [BM98]. As a result, in 

this research, we propose a new co-training strategy. Detailed settings and algorithms 

are discussed in next sections.  

 

 



 84 

5.2 Formalization of model revision problem 

In this work, unlabeled clinical examples are integrated into the development of the 

detection model. Therefore, a set of training examples, only some of them come with 

class labels while the rest come without class labels, are given. We thus have a 

disjoint partitioning of the training data, and our view on the whole data set can be 

formally described as below.  

 

Definition 5.1 We are given a set T of training examples. Only a small subset L of T 

come with class labels, and the rest U come without class labels. Thus we have a 

disjoint partitioning of T, such that T = L ∪U, and | L | << | U | in general. 

 

According to [Brodley93, Ting94], the success of a developed induction algorithm in 

finding good generalization for a given data set depends on two factors. The first is 

whether the algorithm’s representation space, such as the Disjunctive Normal Form of 

a decision tree algorithm, contains a good generalization. The second factor is the 

goodness of search bias, such as Least Mean Square (LMS) or Absolute Error 

Correction rule (ACR) in learning the weights of a linear discrimination function 

[DH73], of an induction algorithm. Due to different representation and search biases, 

induction algorithms thus have distinct performances [Brodley93].  

 

To achieve better performance, one would expect two induction algorithms to 

complement each other in that they use different representations and/or search biases 

for building their classifiers. As such, the two induction algorithms would inform 

different characters of the data and be able to select (and label) some unlabeled data 

for the other. The performance of learning task thus could be improved via the 



 85 

complementation of different induction algorithms as well as the augmentation of 

labeled data. We capture this intuition and accordingly propose a new co-training 

strategy, which involves two different induction algorithms.  

 

Let )(−rC  denote a trained classifier. The goal of our model revision problem can 

thus be stated as below.  

 

Problem statement. Given two different induction algorithms X and Y, and a set of 

training examples T = L ∪ U. The goal of model revision problem is to combine X 

and Y to form a classifier )(−rC  on T, which has higher accuracy than both )(−X
rC  

and )(−Y
rC  on L.  

 

5.3 Model revision algorithms 

In our co-training strategy, rather than two views of data as those in [BM98], we use 

two different induction algorithms. The two induction algorithms X and Y are initially 

trained on the labeled data L to obtain base classifiers. Then using certain criterion, 

)(−X
rC  selects some of unlabeled data, denoted as YL , to label for the other 

classifier )(−Y
rC . By relearning on all labeled data L ∪ YL , a new classifier )(−Y

rC  

trained by induction algorithm Y is obtained. The same method is used for X to obtain 

a new )(−X
rC . We repeat this process, and obtain two resulting classifiers. Detailed 

co-training algorithm is listed as below. 

 

 

 

 



 86 

CoTraining(T = L ∪ U : a set of training examples): two classifiers 

{ 

XL = YL =φ ; 

 Xw = Yw =0; 

 

    Do 

       XX LL =' ; YY LL =' ; 

       Run induction algorithm X on L ∪ XL  to obtain classifier )(−X
rC ; 

       Run induction algorithm Y on L ∪ YL  to obtain classifier )(−Y
rC ; 

       ( YL , Yw )= SelectUnlabeledData( )(−X
rC ,T, YL , Yw ); 

       ( XL , Xw )= SelectUnlabeledData( )(−Y
rC ,T, XL , Xw );        

    While ( XX LL ≠'  or YY LL ≠' ) 

 

    Return )(−X
rC  and )(−Y

rC ; 

} 

 

Clearly, the key issue in designing the above co-training algorithm is the criterion for 

selecting unlabeled data to label (i.e., the procedure SelectUnlabeledData()). Since 

certain extent of prediction errors is likely to be made by both of the two induction 

algorithms, it is necessary to take additional care. We accordingly discuss this issue, 

and the detailed algorithm SelectUnlabeledData() will be listed in Section 5.3.1. Also, 

we propose an algorithm CombineClassifier(), in which the two classifiers returned by 

CoTraining() are combined, to predict an incoming example in Section 5.3.2. The 

goal of CombineClassifier(), certainly, is to correctly classify the data portions that are 

correctly classified by either of the two classifiers that are being combined. 

 

5.3.1 Selecting unlabeled examples 

Due to mixed data distribution, it is often observed that an induction algorithm has 

different performances on different portions of data. For example, consider the 

graphical representation, in which a positive example is marked as a filled circle while 



 87 

a negative one is marked as an empty circle, of the data set shown in Figure 5.1. If 

feature F is used to learn the classifier, one induction algorithm might accordingly 

make its predictions as follows: an example is positive if F≥100, or equivalently, an 

example is negative if F<100. Let portion A denotes the set of examples, each of 

which has value larger than 100 in F, and portion B denotes the set of examples, each 

of which has value smaller than 100 in F. Using this classifier to predict data, it is 

easy to see that one would be more confident to the predictions of examples in portion 

A than to those in portion B. 

 

100: ≥FA100: <FB

 

Figure 5.1 Pictorial representation of a data set 

 

This observation suggests an approach of expending labeled data set. Our intuition is 

as follows: Assume an induction algorithm outputs a classifier that defines a partition 

of the training data (i.e., CBA partitions the example space into several groups, one 

defined by each rule), we can think that the induction algorithm may have better 

performances on some groups. Unlabeled examples that map to the groups with 

higher accuracy tend to be predicted more accurately. Accordingly, giving the 

corresponding class labels to these unlabeled examples tend to make less mistakes in 

mislabeling.  

 



 88 

Therefore, in this research, we assume that we have two different induction 

algorithms, each outputting a classifier that defines a partition of the training data. Let 

G  be a set of groups partitioned by an induction algorithm, we accordingly select a 

subset 'G of the groups that have been evaluated to have higher classification 

accuracy. We then give class labels for those unlabeled examples that are mapped to 

'G , and put them in the corresponding data sets (i.e., XL  or YL ). By doing so, we 

expand the labeled data set for further relearning.  

 

Now, we present in detailed the selection of groups with higher classification accuracy. 

In its implementation form, we first use a 5-fold cross validation to compute the 

accuracy of each group. We then define a total order on all groups as below. Certainly, 

if a group has higher precedence, its predictions are thought to be relatively higher, 

and hence it should be selected earlier. 

 

Definition 5.2 Given two groups, g1 and g2, g1 > g2 (also called g1 precedes g2 or g1 

has higher precedence than g2) if  

(1) The accuracy of g1 is greater than that of g2, or 

(2) Their accuracies are the same, but the number of labeled examples in g1 is greater 

than that of g2. 

 

Because noise in the labels is likely increase as we extend labeled data set, in addition 

to precedence order, we design a criterion to control the classification noise rate. This 

criterion is based on the relationship between the sample size (m), classification noise 

rate (η), and worst-case accuracy (1-ε) of a classifier, developed in Computational 

Learning Theory [AL88][KV94] as in Eq. 5.1.  



 89 

 

2

2
)21(

1 η
ε

−×= m ……………………………………………………(Eq. 5.1) 

 

This relationship is used in this research to determine whether the amount of 

additional data labeled is sufficient to compensate for the increase in noise 

(mislabeled data). For a classifier Y, we can compute the values of m (the total 

number of labeled examples) and η (the classification noise rate), and the resultant 

equation is listed in Eq. 5.2. 

 

2))
||

(21(||
Y

Y
YY LL

w
LLQ

∪
−×∪= ………………………………….(Eq. 5.2) 

where Yw  is the estimated number of mislabeled examples. 

 

When it comes to deciding whether a group g should be used to label additional data 

from U for Y’s current classifier, we can compute an accuracy estimate Qg by using 

Eq. 5.3. If Yg QQ > , Y’s current classifier will be improved if the examples in g are 

labeled by X and added to YL . 

 

2))
||

(21(||
gY

gY
gYg ULL

ww
ULLQ

∪∪
+

−×∪∪= …………………..(Eq. 5.3) 

where gw  is the estimated number of mislabeled examples in g. Let ga  be 

the accuracy of g, gw can be computed by ||)1( gg Ua ×− .  

       

Therefore, for a set of groups partitioned by an induction algorithm, we first sort them 

in terms of their precedence orders. We then sequentially verify for each group 



 90 

whether it passes the classification noise test. Only the groups that satisfy the criterion 

will be used for labeling data for the other classifier. We accordingly design the 

algorithm of SelectUnlabeledData() as below.  

 

SelectUnlabeledData(Cr: a classifier, T=L∪U : a set of examples, L’: a set of 

examples, w: a real number): L’: a set of examples, w: a real number 

{ 

Use Cr to partition T into a set PU of groups; 

Use L for 5-fold cross validation to compute the accuracy ag for each group g in 

G; 

Sort the groups in G by their precedence orders; 

2)
|'|

21(|'|
LL

w
LLQ

∪
−×∪= ; 

For (each group g in G) 

{ 

 ||)1( ggg Uaw ×−= ; 

 2)
|'|

21(|'|
g

g
gg ULL

ww
ULLQ

∪∪
+

−×∪∪= ; 

 If QQg >   

    { 

  Let gL  be examples in gU  as labeled by Cr; 

        gLLL ∪= '' ; 

  gwww += ; 

    } // end of If statement 

} // end of For statment 

  Return (L’, w); 

} 

 

Take Figure 5.2 as an example. Suppose there are two induction algorithms X and Y, 



 91 

each generating a base classifier from 50 labeled examples. Figure 5.2(a) shows X’s 

40 groups listed in descending order of their precedences, and Figure 5.2(b) shows the 

mapping of the unlabeled examples to X’s groups. Initially, 0=YL , and we can 

compute 50))
50

0
(21(|50| 2 =−×=YQ . Therefore, by sequentially testing groups as 

shown in Figure 5.2 (c), only the first three groups pass the classification noise test, 

since Yg QQ <= 23.494 . As a result, only unlabeled examples that map to groups 1-3 

will be labeled and put in YL . 

 

Partition groups on LAccuracy

Group 1

Group 2

Group 3

Group 4

Group 40

0.8

0.7

0.65

0.6

0.4

Partition groups on U
Unlabeled
examples

Group 1

Group 2

Group 3

Group 4

Group 40

IE 1-20

IE 21-40

IE 41-60

IE 61-80

IE 145 - 150

.

.
.
.

.

.
.
.

(a) The accuracy of each partition group(b) The unlabeled examples
 

 

YL Yw puU Q

φ 0 φ 50))
||

(21(|| 2 =
∪

−×∪=
Y

Y
YY LL

w
LLQ

φ 0 IE 1-20 91.54))
||

(21(|| 2
1 =

∪∪

+
−×∪∪=

gY

gY
gYg ULL

ww
ULLQ

IE 1-204 IE 21-40 44.54))
||

(21(|| 2
2 =

∪∪

+
−×∪∪=

gY

gY
gYg ULL

ww
ULLQ

IE 1-4010 IE 41-60 50.52))
||

(21(|| 2
3 =

∪∪

+
−×∪∪=

gY

gY
gYg

ULL

ww
ULLQ

IE 1-6017 IE 61-80 23.49))
||

(21(|| 2
4 =

∪∪

+
−×∪∪=

gY

gY
gYg

ULL

ww
ULLQ

(c) The selection of partition groups
 

Figure 5.2 An example illustrating SelectUnlabeledData() 

 



 92 

Further, in our domain, the number of fraudulent and abusive instances in the 

unlabeled data set is difficult to estimate. It is likely that such incidents are small 

compared of the amount of “normal” data. Therefore, the work of expanding labeled 

data set should be able to respond to a skewed class distribution. We accordingly 

adjust the selection order of partition groups to balance the numbers of fraudulent and 

normal examples. Specifically, we count two quantities Cn : the number of examples 

that are now labeled as normal, and Cf : the number of examples that are now labeled 

as fraudulent. If, in the current stage, Cn is smaller than Cf, groups that are labeled 

“normal” will have higher priority to be selected, and vice versa. The revision of 

SelectUnlabeledData() is shown as below. 

 

SelectUnlabeledDataR(Cr: a classifier, T=L∪U : a set of examples, L’: a set of 

examples, w: a real number): L’: a set of examples, w: a real number 

{ 

Use Cr to partition T into a set G of groups; 

Use L for 5-fold cross validation to compute the accuracy ag for each group g in 

G; 

Sort groups in accordance with their precedence orders; 

Gn = {the groups labeled “normal” in G}; 

Gf = {the groups labeled “fraudulent” in G}; 

2)
|'|

21(|'|
LL

w
LLQ

∪
−×∪= ; 

Cf= Cn =0; 

While (Gn ≠φ  and Gf ≠φ) 

{ 

   If (Cf> Cn)  

{next = the first group in Gn; Gn = Gn - next;} 

       Else 

          {next = the first group in Gf; Gf = Gf - next;} 

 
       ||)1( nextnextnext Uaw ×−= ; 

       2)
|'|

21(|'|
next

next
nextnext ULL

ww
ULLQ

∪∪
+

−×∪∪= ; 



 93 

 If QQnext >   

    { 
  Let nextL  be examples in nextU  as labeled by Cr; 

        nextLLL ∪= '' ; 

  nextwww += ; 

        If (Cf> Cn ) { Cn  = Cn  + | 'LLnext − |;}  

Else { Cf  = Cf  + | 'LLnext − |;}  

        } // end of If statement 

} 

 Return (L’, w); 

} 

 

Take Figure 5.2 as an example again. Similarly, we will test partition group 1 and 

expand the labeled data set with IE 1-20 since QQg >= 91.541 . Due to the fact that 

examples in group 1 have “normal” label, group 3, rather than group 2, will be 

subsequently tested in SelectUnlabeledDataR(). If it passes the classification noise 

test, group 2 will be tested, otherwise group 4 will be tested subsequently. It is worth 

noticing that the selected data set in SelectUnlabeledDataR() might be different with 

that in SelectUnlabeledData(). Certainly, both of them satisfy the criterion, while the 

former has the advantage of a balanced class distribution, the later has the potential of 

labeling more unlabeled data.  

 

5.3.2 Combining resulting classifiers 

We now describe how the two resulting classifiers of CoTraining() are combined. For 

making a prediction of an incoming example e, we compare the accuracies of )(−X
rC , 

the group of )(−X
rC  that contains e, )(−Y

rC , and the group of )(−Y
rC  that contains 

e. The label of e is predicted by the maximum of these four quantities. Detailed 

algorithm of the combination of two resulting classifier )(−X
rC  and )(−Y

rC  is listed 



 94 

as below. 

 

CombineClassifier( )(−X
rC , )(−Y

rC : two classifiers, e: an example): prediction result 

{ 

Use L for 5-fold cross validation to compute the accuracy ax of )(−X
rC ; 

Use L for 5-fold cross validation to compute the accuracy ay of )(−Y
rC ; 

Use L for 5-fold cross validation to compute the accuracy of each partition group 

defined by )(−X
rC  and )(−Y

rC ; 

 

Let g be the group defined by )(−X
rC  that contains e and ag be the accuracy of 

g; 

Let g’ be the group defined by )(−Y
rC  that contains e and ag’ be the accuracy of 

g’; 

M = Max{ax, ay, ag, ag’}; 

Return the label of M’s corresponding classifier; 

} 

 

5.4 Performance evaluation 

In this section, we evaluate the performance of the proposed co-training algorithms 

for revising the detection model.  

 

5.4.1 Data collection and induction algorithms 

We used the data collected from the same regional hospital. We initially gathered 

2105 patients’ data during October 2000 and June 2001. After removing 55 instances 

that have some missing data, we finally made an unlabeled data set of 2050 instances. 



 95 

As a result, we prepare two data sets- a labeled data set of 1812 instances (as 

described in Chapter4) and an unlabeled data set of 2050 instances- to construct our 

experiments  

 

For the two induction algorithms, which referred to X and Y in our general co-training 

algorithm, we use CBA and C4.5. Clearly, both of these two algorithms satisfy the 

property that their classifiers form a partition of data, i.e., CBA partitions the data 

with one group defined by each rule and C4.5 partitions the data with one group 

characterized by a leaf node. Further, they have different strategies for selecting rules. 

C4.5 uses the criterion based on information ga in to split data set, and adopts a “one 

feature at a time” greedy strategy for building its classifier. On the contrary, CBA, as 

described in Chapter 4, finds all rules and then selects the best rules to cover the 

training cases. Therefore, the rules selected by CBA are “global” best [LHM98]. Due 

to the fact that they both satisfy the partition property and have different search biases, 

we explore the co-training effect of CBA and C4.5 in our experiments. 

 

5.4.2 Evaluation results 

For each of the following experiments, we start with process structure mining 

algorithm and feature selection algorithm for constructing the feature set from the 

labeled data. After translating the labeled data by the feature set, we use CBA and 

C4.5 to learn the respective initial detection models. Then we explore various 

strategies to obtain the revised detection model. Therefore, parameters of related 

algorithms are set as follows: the support threshold of process structure mining is 2%, 

and conditional independence test and Markov blanket filter (K=0) is used to select 

1000 features. The support and confidence of CBA are respectively set as 1% and 



 96 

50%.  

 

Also, we used 5-fold cross validation for evaluating the accuracy of a detection model. 

That is, all labeled examples are randomly divided into 5 folds. In each trial, labeled 

examples in a particular fold are used for testing. Therefore, 5 trials were performed 

and the overall performance was then estimated by averaging the performance across 

all trials. 

 

The performance of our co-training algorithm 

We first investigate the performance of our co-training algorithm. The performance, 

by using SelectUnlabeledData() and SelectUnlabeledDataR() respectively, is reported 

at different sizes of the labeled data set, ranging from 600 to 1400 at 200 increments. 

Figure 5.3(a) shows the sensitivities of the initial detection model and the revised 

detection models by applying SelectUnlabeledData() and SelectUnlabeledDataR(). 

Symmetrically, Figure 5.3(b) shows the specificity of the initial and revised detection 

models. 

 



 97 

(a) Sensitivity

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

600 800 1000 1200 1400

Number of labeled examples

Base classifier learned by CBA

Learning with SelectUnlabeledData()

Learning with SelectUnlabeledDataR()

 

(b) Specificity

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

600 800 1000 1200 1400

Number of labeled examples

Base classifier learned by CBA

Learning with SelectUnlabeledData()

Learning with SelectUnlabeledDataR()

 

Figure 5.3 The performance of the co-training algorithm 

 

In Figure 5.3, generally, both the sensitivity and specificity of the revised detection 

model increase with the number of labeled data. With small amounts of labeled data, 

the co-training algorithm yields more accurate detection model. With a large amount 

of labeled data, accurate detection model can be obtained without the use of unlabeled 

data, and the two methods (with/without unlabeled data) begin to converge.  

 

Besides, comparing the two modules of expanding labeled data set 

(SelectUnlabeledData() and SelectUnlabeledDataR()), we observe only slightly 

difference on the sensitivity and specificity at varying amounts of data being labeled. 

For example, at 600 labeled examples, averaging 490 unlabeled examples are labeled 

(328 as normal and 162 as fraudulent) by SelectUnlabeledData(), while averaging 364 

unlabeled examples are labeled (188 as normal and 176 as fraudulent) by 

SelectUnlabeledDataR(). Finally, the co-training algorithm often labels a significant 

amount of data in each round and thus only requires a small number of iterations. For 



 98 

example, in our dataset, at most 3 rounds are executed.  

 

Self – training 

Also, we are interested in knowing whether the two induction algorithms indeed 

complement each other. Do the two different induction algorithms use unlabeled data 

only as well as that one induction algorithm is used? We therefore design this 

experiment, in which only one induction algorithm is involved. In this experiment, we 

use CBA as the induction algorithm and SelectUnlabeledDataR() as the module of 

expanding labeled data set. Similar with the co-training algorithm, we initially use 

CBA to learn a base classifier, and use SelectUnlabeledDataR() module to expand the 

labeled data set. Then, the same induction algorithm CBA is used again to relearn on 

all labeled data to obtain a new classifier. The process is repeated until the resulting 

classifier is obtained. The resultant sensitivity and specificity of the revised detection 

model are depicted in Figure 5.4. 

 

(a) Sensitivity

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

600 800 1000 1200 1400

Number of labeled examples

Base classifier learned by CBA

Self-training with unlabeled data

Co-training with unlabeled data

(b) Specificity

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

600 800 1000 1200 1400

Number of labeled examples

Base classifier learned by CBA

Self-training with unlabeled data

Co-training with unlabeled data
 

Figure 5.4 The performance of self-training procedure 



 99 

 

In Figure 5.4, it can be easily seen that the performance of the self-training procedure 

is not as good as the proposed co-training algorithm. In some cases, such as those 

with small amounts of labeled data, the sensitivity of the self-training procedure is 

even slightly worse than the base classifier (learning with only labeled data). From 

this experiment, it shows that the complementation of two different induction 

algorithms plays an important role in the success of our co-training strategy.  

 

Combining classifiers without unlabeled data 

We next investigated the effects of the augmentation of labeled data. The question is: 

Will the combination of two base classifiers (that use only labeled data) perform as 

well as the co-training algorithm that make use of both labeled and unlabeled data? 

We therefore design this experiment, in which two settings are compared. In the first 

setting, we use SelectUnlabeledDataR() module to select unlabeled data and two 

induction algorithms, CBA and C4.5, to co-training the detection model. In the second 

setting, two base classifiers, which are respectively learned by CBA and C4.5 from 

only labeled data, are combined to make predictions. The resultant sensitivity and 

specificity of the revised detection model are depicted in Figure 5.5. 

 



 100 

(a) Sensitivity

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

600 800 1000 1200 1400

Number of labeled examples

Leaning with labeled data

Combination of two base classifiers

Co-training with unlabeled data

(b) Specificity

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

600 800 1000 1200 1400

Number of labeled examples

Leaning with labeled data

Combination of two base classifiers

Co-training with unlabeled data
 

Figure 5.5 The performance of the combination of base classifiers 

 

Clearly, as shown in Figure 5.5, the performance of the combination of two base 

classifiers is not as good as the proposed co-training algorithm. It shows that the 

augmentation of labeled data contributes to the improvement of the performance of 

learning task. Also, the combination of two base classifiers has generally better 

performance than a single classifier.  

 

Model revised by likelihood maximization approach 

We finally apply likelihood maximization approach to our problem. Specifically, we 

use the famous EM/Naïve Bayes setting [NMTM00]. In the EM/Naïve Bayes setting, 

initial parameter estimates are set using standard Navie Bayes algorithm by just the 

labeled examples. The EM algorithm, which containing E- step for calculating class 

labels for every unlabeled example and M- step for estimating new classifier 

parameters, then executes iteratively until the classifier converges. We use this setting 

on our data set, and report the resultant sensitivity and specificity, as shown in Figure 



 101 

5.6. 

 

(a) Sensitivity

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

600 800 1000 1200 1400

Number of labeled examples

EM with unlabeled data

Base classifier learned by Na?ve Bayes
 

(b) Specificity

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

600 800 1000 1200 1400

Number of labeled examples

EM with unlabeled data

Base classifier learned by Na?ve Bayes
 

Figure 5.6 Comparisons of the proposed Co-training algorithm and EM algorithm 

 

In Figure 5.6, it can be seen that the base classifier learned by Naïve Bayes achieves 

better sensitivity and specificity than that learned with EM procedure at almost every 

number of labeled examples investigated. In our data set, clearly, EM hurts the 

performance. This result confirms that reported in [CC02]: EM degrades classification 

performance if the assumption of mixture model is misfit. Also, comparing with the 

experiment result depicted in Figure 5.3, the proposed co-training algorithm 

outperforms the EM/Naïve Bayes setting.  

 

5.5 Summary 

In this chapter, we formally described the model revision problem, and developed a 

new co-training strategy for improving the prediction power of detection model. We 



 102 

evaluated the effectiveness of the proposed algorithms by using real-world data, some 

of which come with labels and rests come without labels.  

 

The experiments of model revision showed that the proposed co-training algorithm 

improved the performance of the revised detection model, especially with small 

amounts of labeled data. Besides, comparing with the detection model trained by 

EM/Naïve Bayes setting, the proposed co-training algorithm yields better 

performance in our problem domain.  

 



 103 

Chapter 6 

Conclusion 
 

6.1 Summary 

This research described a framework, MCI HCFAD, for Mining Clinical Instances for 

Health Care Fraud and Abuse Detection. MCI HCFAD consists of process structure 

pattern discovery, feature selection, and induction programs. Using MCI HCFAD, 

frequent patterns computed from a set of clinical instances are used to construct 

predictive features, from which a detection model is inductively learned to detect 

service providers’ fraud and abuse. 

 

We first motivated our research by stating the importance of the detection of service 

providers’ fraud and abuse in the overall health care systems. We provided 

background on health care fraud and abuse, and briefly described methods of 

detecting service providers’ fraud and abuse in current insurance programs. We 

pointed out that current methods lack efficiency, adaptability, and extensibility 

because of the pure knowledge engineering development approaches. 

 

The goal of this research is therefore to develop a framework that facilitates automatic 

and systematic construction of adaptable and extensible detection systems. For the 

purposes of building such detection systems, we have studied the problems of mining 

frequent patterns from clinical instances, selecting features that have more 

discriminating power and revising detection model to have higher accuracy with less 

labeled instances. Performance evaluation on the efficiency of the structure pattern 

discovery algorithms, the accuracy of the detection model in the wake of feature 



 104 

selection, and the accuracy improvement of the revised detection model are reported.  

 

6.2 Contributions 

This research contributes to both the data mining and health care fraud and abuse 

detection fields. 

 

(1) Techniques for efficient detection of health service providers’ fraud and 

abuse. We studied the problem of how to efficiently detect health service 

providers’ fraud and abuse. We propose an induction scheme, which utilizes 

selected features, to discriminate between normal and suspicious clinical instances. 

The proposed scheme is efficient, adoptable, and extensible to detect health 

service providers’ fraud and abuse. 

 

(2) Objective evaluation. We participated and collected real-data from a health 

service providers’ fraud and abuse detection program. To the health care fraud and 

abuse detection field, we showed the advantages of automatically and 

systematically involving knowledge discovery. To the data mining field, we 

showed the strengths as well as limitations of current techniques and algorithms. 

 

(3) Techniques for structure pattern discovery. We studied the problem of how to 

efficiently discover frequent structure patterns from a large amount of pathway 

instances. We developed a novel algorithm, and extended two algorithms, Apriori 

and AprioriAll, whose original goals are to discover association rules and 

sequential patterns respectively. In addition to pathway instances, the proposed 

algorithms can be used to discover frequent patterns from interval-based events. 



 105 

 

(4) Techniques for automatic feature selection. We studied the problem of how to 

efficiently analyze and eliminate features, which are translated from discovered 

patterns. We designed a simple algorithm, which is information-theoretic based 

and guided by probability reasoning, to select optimal feature subset. We have 

applied this algorithm to construct “fraud and abuse” related features.  

 

(5) Techniques for induction learning with unlabeled data. We studied the problem 

of how to revise the initial detection model with unlabeled data to obtain higher 

accuracy with less labeled data. We designed a new co-training strategy, in which 

two different induction algorithms are involved. We also designed a criterion 

based on Information Theory to expand labeled data set. In addition to revising 

detection model, the proposed strategy can be also used in learning task under 

different application domains.  

 

6.3 Limitations 

Here, we list limitations, resulted from our research purpose and the proposed 

methods: 

 

(1) The focus of our framework is to detect service providers’ fraud and abuse. 

As discussed in chapter 2, health care fraud and abuse from service providers take 

the greatest damage. Some types of fraud schemes (i.e., surgeries, invasive testing, 

and certain drug therapies, etc.) even affect the health of patients. Therefore, we 

limit our attention in the detection of service providers’ fraud and abuse.  

 



 106 

(2) Fee-for-service insurance programs are the application targets of our 

research. In cost containment systems, such as case payment or global budget, 

service providers receive payments (or a budget limit) before giving care services. 

Underservicing, instead of fraud and abuse, behavior thus occur and become the 

major concern of insurance carriers. Since our framework is to detect service 

providers’ fraud and abuse, Fee-for-service insurance programs, which is by far 

the most popular scheme, are our application targets.  

 

(3) Knowledge engineering task is not involved in the framework. In order to 

detect fraud and abuse automatically and systematically, we exploit the power of 

knowledge discovery rather then knowledge engineering. In some cases, certainly, 

a practitioner could integrate the knowledge engineering task (e.g., identifying 

more features by consultants) to detect more accurately. However, this is beyond 

the scope of this research. 

 

(4) Only fraudulent and abusive behavior, which exhibits specific structure 

property, will be detected. Since only discovered structure patterns are regarded 

as predictive features, other types of behaviors, which are undesired but not 

exhibit specific structures, such as billing of overdose, will not be detected.  

 

6.4 Future works 

There are several important and interesting future directions: 

 

(1) Theoretical foundation of the co-training strategy. Clearly, there exist certain 

variations to the proposed co-training algorithm that would be interesting to study, 



 107 

and we believe that further improvements are achievable. In the future, we hope to 

develop a theory about the co-training procedure so that the capability and 

applicability of co-training can be understood.  

 

(2) Cost-sensitive detection model. There are many cost factors in health care fraud 

and abuse detection, for example, the cost of computing features and checking a 

rule (which we have addressed), the cost of identifying an fraud (the labor cost of 

insurance programs called upon to take actions), and the cost (the damage) of a 

fraud, etc. These are practical issues that need to be considered when deploying a 

detection system. The research challenge here is to build detection models that can 

be easily adjustable according to site-specific “cost policies”. 

 

(3) Integration of detection model with cost-restricted system. We believe that it is 

important, beneficial, and natural to integrate a health care fraud and abuse 

detection system with a cost-restricted system. A lot of fraud and abuse behavior 

can be limited by a cost-restricted system first because this is part of its function. 

On the other hand, when detecting fraud and abuse, the detection model can 

communicate with the cost-restricted system to take appropriate actions, e.g., 

developing some regulation rules.  



 108 

APPENDIX A 

 

Discriminating features identified in [Lan00]: 

 

Feature Name 

1. Case Type 

2. Department Type 

3. Patient Type 

4. Partial Payment Type 

5. Drug Days 

6. Physician Gender 

7. Drug Fee 

8. Diagnosis Fee 

9. Examine Fee 

10. Drug Administration Fee 

 



 109 

LIST OF REFERENCES 

 

[AD94] H. Almuallim, and T. Dietterich, “Learning Boolean concepts in the 

presence of many irrelevant features,” Artificial Intelligence, Vol. 69 

No. 1-2, 1994. 

 

[AGL98] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining Process Models 

from Workflow Logs,” Proceedings of the International Conference on 

Extending Database Technology (EDBT), 1998. 

 

[AL88] D. Angluin, and P. Laird, “Learning from noisy examples,” Machine 

Learning, Vol. 2, 1988. 

 

[AS94] R. Agrawal, and R. Srikant, “Fast Algorithms for Mining Association 

Rules,” Proceedings of the International conference on Very Large 

Data Bases, 1994. 

 

[AS95] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proceedings 

of International Conference on Data Engineering, 1995. 

 

[BD99] K. Bennett and A. Demiriz, “Semi-supervised support vector 

machines,” Advances in Neural Information Processing Systems, Vol. 

11, 1999. 

 

[BL97] A. Blum, and P. Langley, “Selection of relevant features and examples 

in machine learning,” Artificial Intelligence, 1997. 

 

[BM98] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with 

co-training,” Proceedings of International Conference on 

Computational Learning Theory, 1998. 

 

[BNHI] The Bureau of National Health Insurance (BNHI). 

Http://www.nhi.org.tw. 

 

[Brodley93] C. E. Brodley, “Addressing the Selective Superiority Problem: 

Automatic Algorithm/Model Class Selection,” Proceedings of 

International Conference on Machine Learning, 1993. 



 110 

 

[BWJ98] C. Bettini, X.S. Wang, S. Jajodia, and J.L. Lin, “Discovering Frequent 

Event Patterns with Multiple Granularities in Time Sequences,” IEEE 

Transactions on Knowledge and Data Engineering, Vol. 10, No. 2, 

1998. 

 

[CC02] F. G. Cozman and I. Cohen, “Unlabeled Data Can Degrade 

Classification Performance of Generative Classifiers,” Proceedings of 

International Conference on Artificial Intelligence, 2002. 

 

[CF94] R. Caruana, and D. Freitag, “Greedy attribute selection,” Proceedings 

of International Conference on Machine Learning, 1994. 

 

[CH00] D.J. Cook and L.B. Holder, “Graph-based Data Mining,” IEEE 

Intelligent Systems, Vol. 15, No. 2, 2000. 

 

[CLR89] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, “Introduction to 

Algorithms”, MIT Press, 1989. 

 

[Datta98] A. Datta, “Automating the Discovery of AS-IS Business Process 

Models : Probabilistic and Algorithmic Approaches,” Information 

Systems Research, Vol. 9 No. 3, 1998. 

 

[DH73] R. Duda, and P. hart, “Pattern Clasification and Scene Analysis,” Wiley, 

1973. 

 

[Fukunaga90] K. Fukunaga, “Introduction to Statistical Pattern Recognition,” 

Academic Press, 1990. 

 

[FW97] C. P. Friedman and J. C. Wyatt, “Evaluation Methods in Medical 

Informatics,” Springer-Verlag, 1997. 

 

[Glaser91] W. Glaser, “Health insurance in practice: international variations in 

financing, benefits, and problems,” San Francisco: Jossey-Bass 

Publisher, 1991. 

 

[Guinane97] C. Guinane, “Clinical care pathways: tools and methods for designing, 

implementing, and analyzing efficient care practices,” New York: 



 111 

McGraw-Hill, 1997. 

 

[HAIPAP98] L. Healy, M. Ayers, R. Iorio, D. Patch, D. Appleby, and B. Pfeifer, 

“Impact of a Clinical Pathways and Implant Standardization on Total 

Hip Arthroplasty,” The Journal of Arthroplasty, Vol. 13 No. 3, 1998. 

 

[Hall96] C. Hall, “Intelligent Data Mining at IBM: New Products and 

Applications,” Intelligent Software Strategies, Vol. 7 No. 5, 1996. 

 

[HJU90] K. Hogue, C. Jensen, and K. Urban, “The complete guide to health 

insurance: how to beat the high cost of being sick,” New York: Avon 

Books, 1990. 

 

[HWGH97] H. He, J. Wang, W. Graco, and S. Hawkins, “Application of Neural 

Networks to Detection of Medical Fraud,” Expert Systems with 

Applications, Vol. 13 No. 4, 1997. 

 

[HY02] S. –Y. Hang, and W.-S. Yang, “On the Discovery of Process Models 

from Their Instances,” Decision Support Systems, Vol. 34 No. 1 , 

2002. 

 

[Ireson97] C. Ireson, “Critical Pathways: Effectiveness in Achieving Patient 

Outcomes,” The Journal of Nursing Administration, Vol. 27 No. 6, 

1997. 

 

[JKP94] G. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the subset 

selection problem,” Proceedings of International Conference on 

Machine Learning, 1994 

 

[Joachines99] T. Joachines, “Transductive Inference for Text Classification using 

Support Vector Machines,” Proceedings of International Conference 

on Machine Learning, 1999. 

 

[JW92] R. Johnson, and D. Wichern, “Applied Multivariate Statistical 

Analysis,” Englewood Cliffs: Prentice-Hall, 1992. 

 

[KL51] S. Kullback, and R. Leibler, “On information and sufficiency,” Annals 

of Mathematical Statistics, Vol. 22, 1951. 



 112 

 

[KR92] K. Kira and L. Rendell, “The feature selection problem: Traditional 

methods and a new algorithm,” Proceedings of the Conference on 

Artificial Intelligence (AAAI), 1992. 

 

[KS96] D. Koller and M. Sahami, “Toward Optimal Feature Selection,” 

Proceedings of International Conference on Machine Learning, 1996. 

 

[KV94] M. Keans and U. Vazarini, “An introduction to computational learning 

theory,” MIT Press, 1994. 

 

[Lan00] C. H. Lan, “A Data Mining Technique Combining Fuzzy Sets Theory 

and Bayesian Classifier- An Application of Auditing the Health 

Insurance Fee for the National Health Insurance,” a thesis in Yuan-Ze 

University, 2000. 

 

[Lavrac99] N. Lavrac, “Selected techniques for data mining in medicine,” 

Artificial Intelligence in Medicine, Vol. 16, 1999. 

 

[LHM98] B. Liu, W. Hsu, and Y. Ma, “Integrating Classification and Association 

Rule Mining,” Proceedings of International Conference on Knowledge 

Discovery and Data Mining, 1998. 

 

[LLM97] M. Lassey, W. Lassey, and M. Jinks, “Health care systems around the 

world: characteristics, issues, reforms,” Upper Saddle River: Prentice 

Hall, 1997.  

 

[LS94] P. Langley, and S. Sage, “Induction of selective Bayesian classifiers,” 

Proceedings of the AAAI Symposium on Relevance, 1994. 

 

[NELH] National Electronic Library for Health. Http://www.nelh.shef.ac.uk 

 

[NG00] K. Nigam and R. Ghani, “Analyzing the effectiveness and applicability 

in co-training, ” Proceedings of International Conference on 

Information and Knowledge Management, 2000. 

 

[NHCAA91] “Guidelines to Health Care Fraud,” REPORT, National Health Care 

Anti-Fraud Association (NHCAA), 1991.  



 113 

 

[NHCAA02] “Health Care Fraud: A Serious and Costly Reality for All Americans,” 

REPORT all_about_hcf, National Health Care Anti-Fraud Association 

(NHCAA), 2002. 

 Http://www.nhcaa.org 

 

[NMTM00] K. Nigam, A. Mccalum, S. Thrun, and T. Mitchell, “Text Classification 

from Labeled and Unlabeled Documents using EM,” Machine 

Learning, Vol. 34, 2000. 

 

[Pearl88] J. Pearl, “Probabilistic Reasoning in Intelligent Systems,” San Mateo: 

Morgan Kaufmann, 1988. 

 

[PN89] P. Clark, and T. Niblett, “The CN2 Induction Algorithm”, Machine 

Learning Journal, Vol. 3 No. 4, 1989. 

 

[Quinlan93] J. Quinlan, “C4.5: Programs for Machine Learning,” Los Altos: 

Morgan Kaufmann, 1993.  

 

[RHW86] D. Rumelhart, G. Hinton, and R. Williams, “Learning Internal 

Representations by Error Propagation, Parallel Distributed Processing: 

Explorations in the Microstructures of Cognition,” MIT Press, 1986. 

 

[SA96] R. Srikant and R.  Agrawal, “Mining Sequential Patterns: 

Generalizations and Performance Improvements,” Proceedings of the 

5th International Conference on Extending Database Technology 

(EDBT), 1996. 

 

[SCL99] T. Sung, N. Chang and G. Lee, “Dynamics of Modeling in Data 

Mining: Interpretive Approach to Bankruptcy Prediction,” Journal of 

Management Information Systems, Vol. 16 No. 1, 1999. 

 

[SGWRJ01] L. Sokol, B. Garcia, M. West, J. Rodriguez, and K. Johnson, 

“Precursory Steps to Mining HCFA Health Care Claims,” Proceedings 

of the Hawaii International Conference on System Sciences, 2001.  

 

[Sokol98] L. Sokol, “Using data mining to support health care fraud detection,” 

Proceedings of the International Conference on the Practical 



 114 

Application of Knowledge Discovery and Data Mining (PADD), 1998. 

 

[Ting94] K. M. Ting, “The problem of small disjuncts: its remedy in decision 

trees,” Proceedings of Canadian Conference on Artificial Intelligence, 

1994. 

 

[WA96] V. William and B. Archer, “Medicare program: changes to the hospital 

inpatient prospective payment systems and fiscal year rates,” REPORT 

RIN: 0938-AH34, The United States General Accounting Office, 1996. 

   Http://www.gao.gov 

 

[WH99] Y. Wu and T. S. Huang, “Using unlabeled data in supervised learning 

by discriminate-EM algorithm,” Proceedings of the Workshop on 

Using Unlabeled Data for Supervised Learning, 1999. 

 

[ZO00] T. Zhang and F. J. Oles, “A probability analysis on the value of 

unlabeled data for classification problem,” Proceedings of 

International Conference on Machine Learning, 2000. 



 115 

LIST OF PUBLICATIONS 

Journal papers 
 

1. S. –Y. Hwang, W. –C. Hsiung and W. –S. Yang, “A Prototype WWW Literature 

Recommendation System for Digital Libraries,” to appeared in Online 

Information Review (SSCI), 2003.  

 

2. S.-Y. Hwang, C.-P. Wei and W.-S. Yang, “Discovery of Temporal Patterns from 

Process Instances,” to appeared in Computer in Industry (SCI expanded), 2003. 

 

3. S.-Y. Hwang and W.-S. Yang, “On the Discovery of Process Models from their 

Instances,” Decision Support Systems (SCI expanded), Volume 34, Issue1, 

December 2002, Pages 41-57. 

Conference papers 
 

1. W.-S. Yang, 2002, “Process Analyzer and Its Application on Medical Care,” 

Proceedings of 23nd International Conference on Information Systems (ICIS02) 

Doctoral consortium, Spain. 

 

2. W.-S. Yang, 2002, “Process Pattern Discovery and Its Application on Clinical 

Pathway Analysis,” Proceedings of 6th Pacific Asia Conference on Information 

Systems (PACIS02) Doctoral Consortium, Japan.  

 

3. S.-Y. Hwang, C.-Y. Hong and W.-S. Yang, 2001, “Mining Generalized Profile 

Association Rules in Support of New Product Recommendations,” Proceedings of 

10’th International Workshop on Information Technologies and Systems (WITS01), 

New Orleans, Louisiana.  

 

4. S.-Y. Hwang, J.-K. Chiu and W.-S. Yang, 2001, “Personal Workflow Management 

in Support of Pervasive Computing,” Proceedings of the 2’nd International 

Conference on Mobile Data Management, Hong Kong. 

 

5. C.-P. Wei, S.-Y. Hwang and W.-S. Yang, 2000, “Mining Frequent Temporal 

Patterns in Process Databases,” Proceedings of 10’th International Workshop on 

Information Technologies and Systems (WITS00), Australia. 



 116 

 

6. W.-S. Yang and S.-Y. Hwang, 1999, “Mining Instance Data to Discover Process 

Model,” Proceedings of 9’th International Workshop on Information Technologies 

and Systems (WITS99), Charlotte, North Carolina. 

 


