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Abstract

We give a direct proof of a recent generating function identity of
Andrews and Sellers on box stacking. Our method provides alternate
proofs for other related identities.
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Recently Andrews and Sellers [1] considered the following box-stacking
problem of Sloane:

We are given n boxes, labeled 1,2,--- ,n. Fori:=1,--- ,n, box 7
weigh (m — 1)i grams (where m > 2 is a fixed integer) and box i
can support a total weight of ¢ grams. What is the number a,,(n)
of different ways to build a single stack of boxes in which no box
will be squashed by the weight of the boxes above it?

They derived the following nice generating function of a,,(n) via MacMahon’s
partition analysis:
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Theorem 1.([1, Theorem 1.1]) For m > 3,

> n 1
;amm)q (1= )2 [T2,(1 = glm=bmt)|

The purpose of this note is to give a direct proof Threorem 1. Before we
go about proving it, we prove two lemmas regarding m-non-squashing parti-
tions. An m-non-squashing partition is a partition py + pr_1 + - - - + p1 with
Pk = Pr—1 = -+ = p1 > land p; > (m — 1)(pi-1 + pi—e + -+ + p1), for
i =k,k—1,---2. The first lemma appears in [3]. For the sake of complete-
ness, we give a different presentation.

Lemma 1. Fork=0,1,2,3,---, define

_ Pk+Pr—1++p1
fi(q) = E q :
Pk 2 Pk—12>-2p1=>1
pi > (m—1)(pi—1+pi—2+ - +p1), i=kk—1,---,2

Then fola) = 1, fila) = 1=, and, for k > 2,

1-q’

o q
L R SO T ¥

Proof. By definition, we have fy(q) = 1 and

ha) =Y ¢ =17

o
p12>1 q

For k > 2, we have
_ Pr+m(pr—1+pk—2++p1)
fele) = > q e :

pr >0
Pk—1 2 Pk—22"2p1 =1
pi > (m—1)(pi—1 +Pi—o+ -+p1), i=k—1,k—2,---,2
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Iteration of this recurrence gives

file) = %_q'fk—l(qm)

1 1 2
= Tog Togn @)
- ! SACa
T U—g—gm) (=g Y

1-q)1—gm)(L—gm)-- (L—gm")
which completes the proof of Lemma 1.

Lemma 2. Fork=0,1,2,3,---, define

9x(q) = > ¢

Pk 2 Pk—1 =" =>2p1=>1
pi 2 (m—1)(Ppi—1+pi—2+- - +p1), i=kk—1,---,2

m—1

Then go(q) =1, 91(q) = %ﬁ g2(q) = W, and, for k > 3,

m—1)mk—
q( Lym*=2

227

g(q) = (

Proof. By definition, we have go(q) = 1,

alg) =Y ¢ ="

pi>1 1—q

m—1

1 — q)(l — qm*1)<1 _ q(mfl)m>(1 _ q(mfl)m2> . (1 . q(mfl)mk*Q) .

- q
g(q) = g2 = qu+(m Dp1 7
A0 2 2 00—

p2>p1>1, p2>(m—1)p1 p2>0, p1>1
and, for £ > 3, we have

gk(Q) = E qkaF(m*l)(Pk71+pk72+--~+p1)
pr >0
Pk—1 2 Pk—2 2+ 2p1 =1
pi > (m—1)(pi—1 +pi—2+ - +p1), i=k—1k—2,.--,2
1
— m—1
- - fr-a1(q )
l—gq
1 q(?nfl)?nk_2

1-— q (1 — q(mfl))(l _ q(mfl)m)(l _ q(mfl)m2) . (1 _ q(m,l)mk—z)a
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where in the last equality we have used Lemma 1. The lemma follows. a
Now we are in a position to prove Theorem 1.

Proof of Theorem 1. It is observed in [1, Section 2] that a,,(n) is equal to
the total number of m-non-squashing partitions with parts < n. Thus

Y an(md" =Y q" > 1

n=0 n=0 n>py>pp_1--->2p1>1, k>0
pi > (m —1)(pi—1 +Pi—2+ - +p1), i=kk—-1,--,2
Pk 2 Pg—1--=2p1 =21, k>0 n>pg
pi > (m—1)(pi—1+pi—2+-+p1), i=kk—1,---,2

— L Z ¢

l—q
Pk > Prk—1""">p1>1, k>0
pi > (m—1)(pi—1 +pi—2+ - +p1), i=kk—1,.--,2
1
= 14 (00(@) +01(a) + 62(a) + 95(a) + 9a(a) + -}
1 q qul q(mfl)m
R R [ A (R e T [ Ry
q(m—l)m2
a0 g gt
1 1

l—gq (1-q)(1—gm 1)1 —gm=Dm)(1—glm=bm?)...7

where the penultimate equality follows from Lemma 2 and the last equality
follows by adding from the first term in the parenthesis. The result of the
theorem follows. O

I note that an alternate proof of the main result of Andrews and Sellers [1]
has been given by Redseth [4].

We close by remarking that via Abel’s identity [2, Eq.(1)] our method pro-
vides similar proofs for the main theorems in [3] and [6] and for the identity
in [5, Eq. (4)]. We leave the details to the interested reader.
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