Selecting The Last Consecutive Record in a Record Process

Hsiau, Shoou-Ren

Abstract

Suppose that $I_1, I_2,...$ is a sequence of independent Bernoulli random variables with $E(I_n) = \lambda/(\lambda + n - 1)$, n = 1, 2,... If λ is a positive integer k, $\{I_n\}_{n\geq 1}$ can be interpreted as a k-record process of a sequence of independent and identically distributed random variables with a common continuous distribution. When $I_{n-1}I_n = 1$, we say that a consecutive k-record occurs at time n. It is known that the total number of consecutive k-records is Poisson distributed with mean k. In fact, for general $\lambda > 0$, $\sum_{n=2}^{\infty}I_{n-1}I_n$ is Poisson distributed with mean λ . In this paper, we want to find an optimal stopping time τ_{λ} which maximizes the probability of stopping at the last n such that $I_{n-1}I_n = 1$. We prove that τ_{λ} is of threshold type, i.e. there exists a $t_{\lambda} \in \mathbb{N}$ such that $\tau_{\lambda} = \min\{n \mid n \geq t_{\lambda}, I_{n-1}I_n = 1\}$. We show that t_{λ} is increasing in λ and derive an explicit expression for t_{λ} . We also compute the maximum probability Q_{λ} of stopping at the last consecutive record and study the asymptotic behavior of Q_{λ} as $\lambda \to \infty$.

Key words : Optimal stopping; Threshold type; Consecutive record; Monotone stopping rule; Record process