Selecting The Last Consecutive Record in a Record Process

Hsiau, Shoou-Ren

Abstract

Suppose that I_{1}, I_{2}, \ldots is a sequence of independent Bernoulli random variables with $\mathrm{E}\left(I_{n}\right)=\lambda /(\lambda+n-1), n=1,2, \ldots$. If λ is a positive integer $k,\left\{I_{n}\right\}_{n \geq 1}$ can be interpreted as a k-record process of a sequence of independent and identically distributed random variables with a common continuous distribution. When $I_{n-1} I_{n}=1$, we say that a consecutive k-record occurs at time n. It is known that the total number of consecutive k-records is Poisson distributed with mean k. In fact, for general $\lambda>0, \sum_{n=2}^{\infty} I_{n-1} I_{n}$ is Poisson distributed with mean λ. In this paper, we want to find an optimal stopping time τ_{λ} which maximizes the probability of stopping at the last n such that $I_{n-1} I_{n}=1$. We prove that τ_{λ} is of threshold type, i.e. there exists a $t_{\lambda} \in \mathbf{N}$ such that $\tau_{\lambda}=\min \left\{n \mid n \geq t_{\lambda}, I_{n-1} I_{n}=\right.$ $1\}$. We show that t_{λ} is increasing in λ and derive an explicit expression for t_{λ}. We also compute the maximum probability Q_{λ} of stopping at the last consecutive record and study the asymptotic behavior of Q_{λ} as $\lambda \rightarrow \infty$.

Key words : Optimal stopping; Threshold type; Consecutive record; Monotone stopping rule; Record process

