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. 'Abstract. The nonlinear variation of constant formula, Banach
contraction principle and some generalizations of Gronwall’s inequality
are used to. study the stability and growth of perturbed nonlinear
systems of differential equations allowing more general perturbations
than were previously allowed.

1. Introduction. In this paper the relations  between the
solutions of unperturbed system

(D z' = f(, )
and the solutions of the perturbed system
(2) Y =1, y) + 9@t y, Ty

are considered. Here 2, ¥, f and ¢ are elements of R”", an

#-dimensional Euclidean space, and the prime will always denote
differentiation with respect to £. Let I be the interval 0<¢ << oo,

R, be the set-of positive real numbers, D be a region in R* and
C[X, Y] denote the space of continuous functions from X to.Y
where X and Y are any convenient spaces. We shall assume that
f € C[I x R*, R*], that f.(¢, ) exists and is continuous on I x R”,
that ¢ € C[I x R* x R*, R*], and that T is a continuous operator
which maps R” into R”. | :

The following two problems are discussed and solved in this
paper:

Problem 1. The stability of the solutions of system (2).

Problem 2. The growth of the solutions of system (2).

Each of the above problems is important from both the
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theoretical and the pratical vieWpoints.' Recently many authors have
investigated these problems. In this paper we wish to study
perturbations which are stable, we also discuss perturbations of the
classes of unstable systems, namely, those whose solutions grow
more slowly than any positive exponential. The nonlinear variation
of constant formula [1], Banach contraction mapping principal and
the integral inequalities recently established by Pachpatte [13] are
used in solving these problems. In this paper we shall discuss these
problems under suitable conditions on ¢, T, f, the solut1on of system
(1) and the matrix ¢(2, %, %o).

2. Preliminaries. Let #, >0, and let 2(, &, x,) denote the
solution of (1) through the point (%, 20) and (¢, Zo, ¥s) denote the
solution of (2) through (Z, ¥,). Let us assume f(¢, 0) =0 for

>0 so that .:v(t o, 0) =0. It is known [7] that the derivative
matrix

x(t’ tO: xO)

¢(t} tO; 3.70) = 9
- 9Xp

exists, and satisfies the variational system
i :fx(t’ $(t, tO’ xo))Zi
¢ (%o, to, @) = E (identity matrix) and

‘ : a.’l}’(t fo, -’Eo) ;
0.t

= — qS(t to, xo)'f(t% .'L'o)

The symbol ].[ will denote some convenient norm on R” -as well
as a correspondmg consistent ‘matrix norm. We ‘let BC]I0, OO)
denote the collection. of all bounded continuous -functions from
[0 OO) into R* with the “sup” norm defined by 2] = supszol 2(2)|
for & = BC[J(, oo) In this paper we need the following definitions
~ and lemmas, - ;

- DEFINITION 2.1 [5]. The solution @ =0 of (1) is said to be
globally uniformly stable in variation if there exists a Dpositive
constant. I/ such that ' ‘

(3) Lot e, )| M, forall t>=2>0 and |xpl<<co.

- DEFINITION 2.2 [4]. The solution # =0 of (1) is said to be
exponentially asymptotically stable, if there exist constants M >0
and C > 0 such that .
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4 [2(2, to, 20) | M| 20| exp(— c(t — %)), (t=10),

- provided that |2, is sufficiently small.

DEFINITION 2.3 [5]. The matrix ¢(t, to, xp) is said to be uniformly
slowly growing if, and only if, for every ¢>0 there exists a
constant K, possibly depending on e, such that

(5) [6(2, to, o) | K exp(e(t —10)), t=14=0, (2] < 0.
DerFINITION 24 [5]. The type number of a vector-valued
function z(¢) is

(6) 7 = lim sup MQ_]_ .

-0 t

If - <0, the function z(#) is said to be slowly growing.

It is easy to see that a function 2(¢) is slowing growing if, and
only if, for every ¢ >0 there exists a constant K, which may depend
on &, such that

7 . [2(8)] gKexp(e 1), - 1=0.

DrFINITION 25 [15]. System (1) will be called stable, if for any
“two solution x(%, t, 2o) and F(Z, t, Fo) of (1) such that [z, — Fol<o
implies [x(2, Lo, 20) — 2L, Lo, o) [ << C8, (C = constant) for §>0
and t_z__to:z 0. If further limspwo|2(2, to, 20) — Z(E, to, Zo)| =0, the
system (1) is said to be asymptotically stable.

DEFINITION 2.6 [18]. We call the solution 2 =0 of (1)

(i) stable if for every ¢>0, and every #,=>0, there exists
d(e, o) > 0 such that [z <& and ¢ > ¢, imply [z, t, o) <<e.
(ii) uniformly stable if (1) holds with ¢ independent of #,. o
(iii) asymptotically stable if for each #, > 0 there is a 3(¢,)>0
such that |a[<<§ implies [2(Z, 4y, 20)|— 0 when ¢t — oo,

Lemma 1[3]. If wyee D, then for all t=1t, such that
x(t, to, Yo) € D, y{&, to, Yo) € D, we have '

y(ty tO’ yo) - $<t: tO; ?lo)

(8) = j;: ¢(2, s, Y(s, to, ¥0))9(s, Y(s, to, Yo)) ds

LEMMA 2 [3]. If @, Yo are in a convex subset.D of D, then for
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all t for which every solution of (1) with initial value in D at t,
remain in D,

©) (2, to, vo) — 2, to, T0) < (770 — wolgggrqs(t, t, m)| .

LeMMA 3 [4]). If x0, Yo are in a convex subset D of D, then for
all t such that every solution of (1) with initial values in D at t,
remains in D and such that y(i, t, ¥) € D, '

[y(t9 tO, yo) - m(tftl)’ xo)(g_ l"!/o — Py is;ll)p‘qs(t; tO} m)'
4 . ;
+ [ 16 s, uCs, to, ¥ 19(s, Y(s, to, %)) @s.

LeMMA 4 [13]. Let u(t), v(¢), and q(t) be real valued nonnegative
continuous functions defined on I, for which the inequality

‘ u(t) Zu, + fot v(t) u(t) dt

(10) : s :
+ fo v(s)</o‘ q’(m)u(m) dm) ds, tel

holds, where u, is nonnegative constant, then '
(AD) (@)= u (1 +_ftv(s) exp(fs(v(m) + q(m)) dm) as, tel.
’ 0 0

. LEMMA 5 [4]. Suppose that the solution =0 _ of (1) is
exponentially asymptotically stable, and that there exists A >0 such
that

Ho, =@ @¢=0, lyl<4)

where ¢ge C[I xR, R*], 2€CI[I R.] and suppose that
ke ClI x R, R*], r(t,y) = 0(|y|) as |y|— 0 uniformly in t. Then
there exists T >0 such that every solution y(t) of

' =f(t, ¥) + 9, ¥) + A2, ¥)
Sfor whick |y(t)| is sufficiently small for any t,>= T tlends to zero

as t— oo,

Following the similar argument as in the proof of Theorem 1
[13], we have

LeMMA 6. Let u(t), () and g(t) be real-valued mnonnegative
continuous functions defined on I, for whick the inequality
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wt) u+ [ (s)u(s)ds
to
t s
?
+ fioh(s)(ffoq(m)u (m)dm;) ds, tel t=1=0
holds, where u, is a nonnegative constant and p=>0, px1 and

w7+ (1= ) [ g exp((6 = 1) [ h(m) dm) ds >0,
tel, t=2t =0

then
u(t) <uo + ) h(s) exp(ft:h(m) dm)
|+ - ?) [ a(m) exp((p — 1) S 1) av)am| " as
Jorallt el and t>=1 > 0.

REMARK. For the case 0 << p << 1 is due to Pachpatte [13].

3. Main results. Following the similar argument as in the
proof of Theorem 1 [14], We have

THEOREM 1. Let the following hypothesis hold:
(1) Suppose that
9, y, Ty) = k@, 9),
where h = C[I x R*, R*].
2) B, 0)=0 ,
(3) 182, s 9(s)) m(s,y(s))— 6(2, s, G(s)A(s, H(s))| < 2(s)|y(s)
— y(s)| and

fomx(t)dt<u

Sfor some u = (0, 1), where 2 € CILI, R.]. Then for every ¢ >0, and
for any solution x2(t) of (1) such that x| < (1 —u) e, there exists a
unique solution y(t) of (2) satisfying |yl <e.

Proof. We define
S(e) ={y:y € BC[0, o), [yl =¢},

. and we will further assume that if ¥ € S(e¢), thén'y(t) e D, for all
t>=0. Let us define the operator F' by the relation



540 LAI JIU LIN : [December

Fy(t) = 2(2) + f 6(2, s, y(s)) h(s, y(s))ds, t=tH=0,
for ¥ € S(¢), whose ﬁxed point corresponds to the solution of the
system (2). Then [Fy(®)| < l.z(t)l+f a(s) |y(s) lds = (1 — w)e +
f Ms)ds < (1—u)e +ue=¢ Hence F maps S(e) mto itself,
on the other hand, if ¥, ¥ € S(e), we have

IRy - FiOI = [ 1Oty — gl
Therefore 7
17y — Fgl = ( f) ) at)ly - .

Since /; :° A(t) dt <1, F is a contraction mapping on S(e). hence
by the well known fixed point theorem the system (2) has a unique
solution ¥ € S(¢) with [y <e. This completes the proof of this
theorem. , -

ReMARK. Theorem 1 may be regarded as a stability result for
the system (2) in the following. sense.

For every ¢ > 0 and sufficiently small such that for every solution
2(t) of (1) with lla,l]<e, there exists a solution ¥ of (2) with
lyll <e.

THEOREM 2. Suppose that x =0 of (1) is globably uniformly
stable in variation, and that §(t, y, z) satisfies the inequality

(g(s, ¥, 2)1 < R(s)({y(s)| + [2(s)1),

where h e C[I, R,] and f h(s) ds < oo, Further suppose that the
opemtor T satisfies the mequalzty

Ty < [ a®)l(s)ivas,
where q € CLI, R.], /;w g(s)ds<wand p=1. Then the solution
y =0 of (2) is stable. 0

Proof. Since thé solution 2 =0 of (1) is globally uniformly
stable in variation, it follows from Lemma 3 with 2o =0 that =



1980] THE PERTURBED NONLINEAR SYSTEMS 541 -

[y(2, Lo, Yo)l
< (%l sup [6(2, to, m)[

18y e 3 0, U(S, 1, w0, Lyts to 1)1 5
=Myl + M [ 1) y(s, to, 30| ds
+8 [ 1) [ a)lyCu, to, 90)12 au)as.

If p =1, then from Lemma 4, for every ¢>0, there existsa §>0
such that :

[?](t to, Yo) |
gM(yol[l +Mf 7(s)

* exp (f (Mnr(u) + q(u))du)ds] <,
Jor t>=4>0, and |yl <9.

If p>1, since f h(s)ds < oo, f (s) ds << co, then for every ¢ > (,
there exists § > O such that

1>1+ (1= p)(Ma)*~* [ (o)
-exp((p—l)Mft:h(u)du) dv<%,
‘and. : _ o
Ms {1 + [exp M [Tn(s)ds) - 1](%) ”"”}<e. ’
It follows from Lemma 6, we have
(e, to, W <M Il {1+ [ bnts) -
vexp (M [ nGurau) -[1+ (1= pYA g0
-« J a(w) exp ((p—vm J! nuydu)as]" s}
~§M5{1+f’Mh(s) o
exp (M D du) Jiva- z'>>(‘M’l'6“l)ﬁ~1
< L aw exo((p— DM [ hw) au)av]” " as

<M 131{1 + [exp (f Mh(s)ds) - 1](;)1”‘" <o

for [y <0.
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This shows that the solution ¥ = 0 of (2) is stable
THEOREM 3. Let the function g(t, y, Ty) satisfy an inequality
l6(2,5,9(s))g(s,y(s), Ty(s)) — 6(t,5,9(s))9(s, 4(s), TY(s))|

B 2k 9+ [ a@lyw) - 7 Gl du,

where k< CLI, R.], f:h(s) ds <o, g C[I, R.], f:q(s) ds <
and p > 1.

Suppose further that system (1) is stable. Then there exists
two constants C and ¢ having the following property: For any
two solution ¥ (%, to, ¥o) and y(Z, %o, ¥o) of system (2) such that
[Y0 — Tol < & and t2t020 we have

ly(t; t07 yo) - (tr tO, ?-/0)[ < Ca.

Proof. Assume that the system (1) is stable, then for aﬁy |
>0,

[Yo — Yol <0
implies
ix(ty th yo) - j(t’ tOr 'go) { ‘< Cl 6
Since p>1, ftm h(s)ds << ob, and ftwq(s) ds < oo, there exists a §>0

such that

_ 1 o _ s \ —1—
1>1+ (1= 2)(Ci0)* ﬁ a(s) exp((p 1 ftoyh(u) du)ds > .
It follows from Lemmas 1 and 6, we have

Iy(ta tO, yO) - ?—J(t- tO: 2170)(
< lx(t: tO: ’!/0) - i’.(ty tO, 270)[

+ [l s, (s, to, 90)) 0G5, 4, o, 90), TUCs, Lo, )
- ¢(t3 S,.g_/‘(t’ S, ?_JO)) g(s: @7(3; t01 1.170)7 Tg(sy tO: Z_/o))| ds
t
SCio+ [ W)y (s o, %) = Us, b, Tl ds

+ [ 1) [ a0l yCu, to, 1) = T, B, §o)1? duds
<Ci o+ /;: h(s) exp (f: h(u) du) . [(01 8)i-»
+ =) [lawesp((2 =1 [ h(w)aw)au|" " as
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s_cla{1+ff:ms)exp(ﬁ:h(u)du)ds
. [1 £ (1= p)(C10) [ qw)
. exD (( p=1 [ nw dw) du]”l”"}

' < C1u6 {1 + [exp(ft: k(s) ds) - 1](—;—)1/1“1)}

<G5 {1 + [exp( [ ws) ds)— 1 ](%)“1”"} e
) for t=4t, |y — %ol <6.

REMARK. In this theorem, althrough condition (12) is not so
general as the condition (3.1) of Theorem 1 [15]; the condition
that the stability of equation (3.2) of Theorem 1 [5] is deleted in
this theorem, and we still have the similar result.

THEOREM 4. Let the function g(t, ¥, Ty) satisfy an inequality
[6(2,s,9(s)) g(s,y(s), Ty(s)) — ¢(2,s,9(s), Ty(s))g(s, g(s), Ty(s))|
<k(s)([y(s) — B + [ aCu)ly(u) — §Cu)| dn

where k < CLI, R.], f“h(s> ds<o,qeClL R [ als)ds <o
to fo
Then the stability of system (2) follows from system (1).

Proof. Assume that system (1) is stable, then for every 6 >0,
there exists C; >0, such that

‘x(t} tO, yo) - j(t, tOy ﬂo)l < Cl 69
whenever £>#, >0, and |y, — %] <9o. It follows from Lemmas 1

and 4, we have

[y(2, ¢ o, Yo) — Y2, to, Yo)I
g {x(ty tO) yO) - ‘f?(ty t01 ’.I_/O)[

+ /;t I¢<t7 S, 'I/(S, t01 yO))g(sy y(S, tO’ yO))’ Ty(s, t07 yo))
. - (b(ty S, ’_5](8, tOy ?70)) g(sa 27(37 tO; go)) Tg(s’ t07 gO))[ ds
=Cio+ [ HS)YGs, to, 90) — UGS, b, To)| @

* /;:h(s) /;: a(v) |y, t, Yo) — F(v, Lo, Jo)| dvds

=Cro[1+ ([ G0 - exp ( [ (o) + als)) as)au) |.
' for t=1=0 and l'yo—i/o[<6’.
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This shows that the stability of system (2).

THEOREM 5. Suppose that the solution =0 of (1) is
exponentially asymptotically stable and that

(13) gt, v, Ty) = ¢:(¢, ¥) + ga(t, ¥) + 02, )
where ¢, ¢z, and gs € C[I x R", R"] o
0:(¢, v) = o(lyl) as |yl =0 uniformly in ¢,
wd  g:t, DI SEDO Y]+ exp( — Gt — 1) [ a()y(s)1#1ds)

where h,q, D, are the same as defined in Theorem 3 and - C,> 0.
' Suppbse Sfurther that there exists A >0 such that o

(g2, HI=2(t) - @=0, [y[=A), v
where 2 € C[I,R.] and
A = ft‘+ W(s)ds— 0 as t— 0,

N - f . .
Then there exists T >0 such that every solution y(t) of (2) for which
[y(to) | is sufficiently small for any to = T ilends lo zero as t — .

Proof.. We first show that the solution z = 0 of the equation
1 2 =12 + 0alt, 2)

is exponentially asymptotically stable. Following the similar
argument as in the proof of Theorems 1 and 2 given in [4], we can
show in a suitable region, we have

162,20, 20) | = Kiexp (— Ci( — 1)), t= £p=>0, Ki>0 and C:>0.
It follows from Lemma 3 with 2, = 0, we have ' )
[2(2; 2o, 20)1
g IZOI ?nuID) [¢(t’ tO: m)'

+ 180 s, 2(s, to, )11 0:s, &0, to, )] ds
< Kilzo| exp (— Ci(2 — 1)) '
+ Ky exp (— Ci(t — 5)) k()| (s, b, 20)1 ds
C+ K [ exp (= Cilt — ) h(s)

-.exp (— Ci(s — t@)ﬁ q(w) | 2(u, to, 20)|? duds,
[\]
) : = for =14,=0.
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Hence )
Iz(t, to, 20) | exp (Ci(2 — 1))
— Kilz| + K f] h(s) exp (Cals — 1) 12(s, fo, 20) | ds

+ K [ h(s) [ a(w) exp (= pes(u—t0)| 2t b, 20)
cexp (Ci(u —t)) [Pduds, (1=1=0).

Since p>1, ﬁ”h(s) ds <oo, /;w g(s) ds < o, then there exists § >0
such ‘that ’

1>1+(1— p)(K:8)2-! ﬁ”q<s>

- exp (— pCi(s — 1)) exp ((p — DK ﬂzh(u) du) ds>—;~.

Then it it follows from Lemma 6 and the fact .p > 1, we have -
[2(2, to, 20)| exp (C:1(t — to)
=Kzl + K [ 5(s)exp (K1 | hw) au)

@iz A= ) [ a@)(— pCuo — 1))
e ((p-D K [ B au)do|"" as.
S lal {1+ K [ #(s) exp (K IO du)ds
[r+ a2 [7aw
cexp (6= DE: [ h(w) au) an] "’}

< Ki || {1 + [K1 /:h(s) exp (K1 /;: 2¢D) du) ds](%)in—ﬁ}

< K Izl {1+ [exp (5 " (s) as) —1]- (%)’p}

for |z0] <6, t=1l=0.
Hence . .
[2(2, o, »zo)l Z2K;0exp (— Ci(t — 1)) -
‘ ) 1 1/1—p
> exD (K1 /;o k(s) ds) (E) ,
‘ - for [z] <.
This shows that the solution z=0 of the equation (14) is
exponentially asymptotically stable. Again we may regard (14) as
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an unperturbed system and regard the equation (13) as a perturbed
system, and the Theorem follows immediately from Lemma 5.

ReEMARK. (5. A). If ¢ =0, this Theorem is still true.

(5. B). For the case g1 =¢:s =0 and p =1 is due to Pachpatte
[15].

(5. C). For the case ¢1=¢:=0 and 0£p<1 is due to
Pachatte [16].

(5.D). If ¢q=0, f(t, ¥) = A vy, where A is a constant matrix
and all the characteristic roots of A have negative real parts, Then
Theorem 5 is reduced to Theorem 3.2 [18].

(5.E). If ¢g=0 and ¢:=0, then Theorem 5 is reduced to
Corollary of Theorem 2 [4].

(5. F). Using Remark (5. C) and Lemma 5, we can show that-
Theorem 5 is still true if the condition p>1 is replaced by
0p<l1.

(5. G). Using Remark (5. B) and Lemma 5, we can show that
Theorem 5 is still true if the condition p>1 is replaced by the
condition p =1, , s

F. Brauer. [5] shows that if the solution =0 is globally
uniformly stable, and if perturbation ¢(Z, y) satisfies

g, I=r@)yl, t=0, |yl <o,

where % satisfies an inequality of the form

k
h(t) < e

for large £ > 0. Then the solutions of (2) do not grow more rapidly
than polynomials as ¢ — oo,

If we apply Lemma 6, then following similar argument as in
[5], we can extend this result to obtain Theorem 6.

THEOREM 6, Let the solution x =0 of (1) be globally uniformly
stable in variation. Suppose that the perturbation g(t, ¥, 2) satisfies

lgt, v, 2)| < k®[lyl + [2]]

where I satisfies an inequality of the form

k
h(t) = —-
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Sfor large t>0, and h < C [I, R.]. Suppose that the operaior T
satisfies the inequality of the form ’

[Ty = [ () ys)1? s,

where q = CI, R.], /;mq(s) ds < oo, and P is a constant, 0 = p <1,
then any solution y(t, to,oyo) of perturbed system (2) does not grow
more rapidly than polynomials as t — co.

Proof. It follows from Lemma 3 with 2, = 0 that

19, b, 90) 1< (30l suD 15, to, m0)]
[ 16t s, uls, to, g [10Cs, YCs, 10,90 ds
S MUyl + M [ sy, to, 90| ds
+ M [ 1(s) [ a0)1y(o, o, w)1? dvds,

then it follows from Lemma 6, we have

ly(2, to, o)l _
< M|y, +Mft:h(8)exp (Mﬁjh(a)du)

J Mg+ 1= p) faw)
vexp (0= DM [ 1) au)an " as

=Myl [1+M [ his)exp (M [ h(w) du)
[+ a= o (70w
vexp (o= DM [ ntw) au) ao) " as]

=M iyl {1+ [exo (3 f Bis) as) - 1]

(1+a - paiwDe [ an] "

= oM (yol exp (M [ i(s) as)
J1+ a= parme [Cas as|

— ML o1+ (1 - )M () gy as|"

£

__ 2 _ _ ® 1/1-p
= i tMK[M['yoli 24+ (1—p) fto q(s)ds] ,

for Iyo[ < .
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which proves the result.

REMARK. In Theorem 6, if the condition 0 p <1 ié replaced
by p>1 and suppose that there exist two positive constants M and
% such that

./:q(s) exp ((1) - 1M /;: r(v) dv)ds <k,

then with the similar argument as in the proof of Theorem 6, we
can show that there exists a positive constant § such that for
(40| << 0, and. solution ¥(%, Z, %) of (2) does not grow more rapidly
than polynomials as ¢ — oo,

THEOREM 7. Let the fundamental wmatrix ¢(t, L, o) 0f the
variational system be uniformly slowly growing and let the perturbation
92, y, 2) satisfy \

loCt, v, ) = DLyl + 1211, >0, |yl <.

where (1/t) /‘; th(s) ds—0 as t— oo, Supfose Sfurther that the
operator T satisfies the inequality :

1Ty < exp(ct) [ a()ly(s)%as, 12120yl <co,

where 0= p <1, h, g C[I, R.] and ¢ > 0, suppose that there exists
C >0 such that

/;jq(s) exp(e ps) < C.

Then any solution y(i, b, Yo) of the perturbed system (2) is slowly
Zrowing.

Proof. Fix =0, ¢ and 9,. Then by the definition of uniformly-
slowing growing, there exists K = K(¢) such that for all t >+, we
have

[6(2, 2o, Yo) | =K exp (e — 1)) .

Then it follows froni Lemma 3 with a4 = 0 that
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[y(t, 2o, ¥o)l (
< Iyolgg})aw(t, o, m) |

+ [ 18t s, u(s, o, 1) 196, Y(s, o o))l ds -
< Kol exp(e ) + [ K exp (e(t — ) B() yCs, 1o, 1) ds
| +ft:Kexp(e(t—s))h(s)» |
» exp (es) f,:q(u)ly(u, té,vyo)lﬁduds
S K|yl exp () + K [ exp(et)(s) |exp (= e5)y(s, to, yo) ds |
+ K [ exp (et s) [ aw)

« exp (e pu) [y(u, 1, o) exp (— eu)ll’duds
From th1s and Lemma 6 and the fact 0= p < 1, we have

y(, to, yo) (—et) o
=Kl + K [R5 o )] exp (= e5) ds

+Kf h(S)f q(u) exp (e pu)|y(u, to, Yo)
- exp (— eu) | du ds |
<Klpl{1+ & [ #(s)
cexp (K [ h()dv) - [14 (1= 2YK Im)?=*
+ [ () exp (e po) exp (2 — DE ] h(u)dw)) do| " as}
< Kl fi+]x [ 1(s) exp (& f h(v)rdv)ds]
[ a- @i [Ty
- exp (e pv) exp <(;1)—1)K Sy an)an |7}
éK{yol{1+[exp( Sinsras)-1] -
[1+ a- @& [7 q(S)exp(ePS)dS]}
= 2Kiyol {exn (K [ n(s)as)
o a- nEmbe [T e ooy as])

-
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Let A(¢) = (1/¢) _/;fh(s) ds, and let T = T(¢) »be so large that
K A(t) <e for allo,tg T. Then :

(2, to, yo)| exp (— e )
< 2K |9 exp (Kt A (D))

[1+ a— & 1w [ aw) exp (e pryan] "
=exp(e?) 2K (9]
[1+ @— oxE w1 [T a0 exp (e poy 0],

<exp (¢#) 2K %l [1+ (1 p)( K[| )7~ CT/*-2,
for 12420, |yl <.

Thus

[y(2, Lo, ¥o)| < 2exp (2 e )[(K|9o])-2 + (1—p)C]/1-2,
for 12420, |y <co.

This show that each solution y(2, by, ¢o) of (2) is slowly growing.

ReMARK. If we use the similar conditions and follow the
similar argument as given in Theorem 7, we can show that there
exists a positive constant ¢ such that any solution %(Z, %, ¥,) of
the perturbed system (2) is slowly growing, whenever [¥,| << and
p>1.

Acknowledgement. The author is indebted to the referee for a
numer of helpful comments and suggestions.
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