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Let (X, f, n) be an atomless finite measure space and Y c r a convex subfamily. 
It is proved that the Moreau-Rockafellar theorem, @F, + + F,)(R) = 
aF,(Q) + + dF,(Q), holds for proper convex set functions F,, . . . . F, and 52 E Y if 
all set functions F,, except possibly one, are w*-lower semicontinuous on Y. As 
applications, the Kuhn-Tucker type condition for an optimal solution of convex 
programming problem with set functions and the Fritz John type condition for an 
optimal solution of vector-valued minimization problem for set functions are 
obtained. ci? 1988 Academic Press. Inc. 

1. INTRODUCTION 

Throughout the following let (X, f, p) be a finite atomless measure space 
and F,, F2, . . . . F,,, G, , G,, . . . . G, be convex real-valued set functions 
defined on a convex subfamily Y of the a-field f. We consider an 
optimization problem as follows: 

(P) Minimize: F(Q) = (F,(Q), F,(Q), . . . . F,,(Q)) 

Subject to: QEY and G,(Q)<Oj= 1,2, . . . . m. 

Because the linear operations can not be applied to o-field r, the convexity 
of set functions must be first defined. This type of problems has many 
interesting applications in fluid flow, electrical insulator design, and 
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optimal plasma confinement (see the references in [13], see also 
[2, 3,8,9]). In [ 131, Morris introduced the notions of differentiability and 
convexity of a real valued set function on a measure space. Following 
Morris setting, Lai et al. proved the Fenchel duality theorem for set 
functions [S] and characterized an optimal solution for a minimization 
problem of convex set functions in terms of the saddle point of a 
Lagrangian function [9]. 

Recently, Chou, Hsia, and Lee have studied the programming problems 
for set functions in [2, 31. In [23, they used the Farkas-Minkowski, 
theorem to establish a necessary condition for the optimality of convex set 
functions with a constraint qualification; and in [3], they considered the 
second-order differentiable set functions and proved a second-order 
necessary condition for a local minimum of a minimization problem with 
an inequality constraint for set functions. 

In this paper we will prove a theorem of Moreau-Rockafellar type for set 
functions, and then use the theorem to prove a Kuhn-Tucker type con- 
dition for an optimal solution of the minimization problem (P) for real 
valued set functions. If the set functions are vector-valued, the Fritz John 
type condition for an optimum of the multiobjective minimization problem 
(P) is established. The Kuhn-Tucker type condition for an optimal 
solution of functions on the usual linear space has been shown in Mond 
and Zlobec [ 12, Theorem 21 as well as in Kanniappan and Sastry [7, 
Theorem 2.21, while the Fritz John type condition has been proved in Lai 
and Ho [lo, Theorem 3.11. 

2. DEFINITIONS AND BASIC PROPERTIES FOR SET FUNCTIONS 

We assume that (X, f, 11) is an atomless finite measure space. Each Q E r 
can be identified with its characteristic function x~EL,(X, r, p)c 
L i (X, r, p) and so the o-field r is identified as a subset xr = { xn 1 Q E r} of 
L,(X, r, p) = L”. For a convex set function F: Y --) [w, we admit 
F(Q) = F(A) if xn = xn, p-a.e., thus F can be regarded as a function defined 
on x:Y = { xa: Q E Y} in L”. Similar to [ 13, Proposition 3.2 and 
Lemma 3.33, for any (Q, A, A)E TX TX [0, 11, there exist sequences (Q,} 
and (A,,> in r such that 

x R,un,u(nnn) A&+(l-i)Xn, (2) 
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where w* stands for the weak* convergence (cf. Morris [ 131). The sequene 
{ V,, = R,, u A,, u (Sz n II)} satisfying (1) and (2) is called Morris sequence 
associated with (Sz, /i, A). 

DEFINITION 1. A subfamily ,Y of I‘ is called convex if any 
(!S, A, A) E Y x 9’ x [0, l] associated with a Morris sequence ( V,,} in f 
exists a subsequence { V,,,> such that 

V,lk=a,,uA,,,u {QfvqEY for all k. (3) 

DEFINITION 2. A set function F: 9’ -+ R is called convex on a convex 
subfamily Y c f if for any (C?, A, ,I) E Y x Y x [0, I], there exists a Morris 
sequence { Vn} in Y such that 

limF(V,,)<~F(R)+(l -i)F(A). (4) 

DEFINITION 3. A subset Bc R x I’ is called conuex if for any (r, Q), 
(s, /1) E B, and II E [O, 1 ] and any Morris sequence { V, > associated with 
(Sz, 4 A), there exist a subsequence { Vn,} of {V,,} and a sequence 
tk-+Jr+(l -2)s such that {(tk, V,,,)}cB. 

DEFINITION 4. LetF:r+R#=Ru{co} beasetfunctionwith 

Dom F= {a E rj T(sZ) is finite} F Y. 

(i) F is called w*-lower (resp. w*-upper) semicontinuous (w*-l.s.c./w*- 7 
u.s.c.) at s2 E Y if - CC < F(Q) 6 &F(O,,) (resp. co > F(Q) > hm F(Q,)) for 
any sequence Q,, E 9 with xn, +“* xa. 

(ii) F is called w*-continuous at 0~9 if F(Q)= lim F(Q,) for any 
sequence 0, E .Y with xn, -+“* xn. 

We will assume F(0) = 0 throughout. 

PROPOSITION 1. Any convex set function F on a convex family ,Y c I- is 
w*-upper semicontinuous. 

(1) and (2). Then for any Proof: Take A=@, A,, =@, and /1= 1 in 
52 E Y, there is a sequence {Q,,} c r such that 

W* 
Xn n - Xn=Xn\a 

It follows that 
lim F(s2,) = lim F(Qn, u A, u (Q n 0)) 

<FtQ)+(l - l)F(0) 
= F(Q). 

Hence F is w*-upper semicontinuous on 9. Q.E.D. 
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The following corollary follows immediately from Proposition 1. 

COROLLARY 2. Every w*-lower semicontinuous convex set function is 
w*-continuous. 

Let r denote the w*-closure of xr in L”. Then r= {f~ L” IO< f< 1) 
(cf. [4, Corollary 3.61). If A c R x r, we use 2 to denote the w*-closure of 
A in Rx L”. 

Let N(f) be the family of all w*-neighborhoods ofJE r. We now extend 
a convex set function F on a convex subfamily Y to its w*-closure 9. 

DEFINITION 5. The w*-lower (resp. w*-upper) semicontinuous hull of a 
set function F on Y c r is a functional F (resp. p) on 9 defined by 

F(f)= sup inf F(Q) for fE9 (5) vs,t(f)RE VnY 
1 

(resp. F(f) = inf sup F(Q) for fE 9). 
ve.*.(f) Qt “ny 

The following proposition follows immediately from Definitions 4 and 5. 

PROPOSITION 3. (i) F(Q) <F(Q) < F(Q) for all Q E 9’. 

(ii) Zf F is w*-1s.~. (resp. w*-u.s.c.), then F(Q)= F(Q) (resp. 
F(Q):=1’(52)) for QEY. 

(iii) If F is w*-continuous on 9, then F= fi on 9. It follows that F is 
the unique w*-continuous extension of F. 

(iv) If F is convex on a convex subfamily 9, then 9 is convex in L” 
and F is convex on 9 (cf [4, Corollary 3.101). 

For a convex set function F: Y + R on convex subfamily Y we set 

[F,Y]={(r,a)E[WxrlSZE~, F(Q)<r}. 

Then [F, Y’] is a convex family of IR x ZY It follows immediately from 
[4, Proposition 3.9 and Corollary 3.101 that 

LEMMA 4. Let 9’ -+ R be a convex set function on the convex family 
YC S. Then 

CF, 91 = CF, 91, (6) 

and [IF, 91 is a convex subset of Rx L”. 

LEMMA 5 (cf. [4, Corollary 3.121). Let F: Y+ R be a convex w*-con- 
tinuous set function. If 9 has a relative interior point (w.r.t. the Lao-norm 
topology), then [p, 91 has a relative interior point. 



562 LA1 ANL) LIN 

DEFINITION 6 (cf. 19, Definition 1 ] ). The element f‘~ L, (X, r, p) is 
called a suhgvadirnr of a convex set function F at 0,) E f if it satisfies the 
inequality 

F(Q) 3 4%) + (xn - xq,, .f> for all 52 E I: (7) 

The set of all subgradients of a set function F at QO is denoted by l?F(O,) 
and is called the subd!fferential off at Q,. If dF(Q,) # a, then F is called 
subdifferentiable at Q, 

It is easy to show that a point Q* minimizes F(Q) for 52 E f if and only if 
0 E dF(R*). 

3. THE MOREAU-ROCKAFELLAR THEOREM 

A function g from a Banach space V to 52 u ( co } is called proper if g 
does not take -co and does not identically equal to co. 

The Moreau-Rockafellar theorem can be stated in its general form 

MOREAU-ROCKAFELLAR THEOREM. Let gl,...,gn be proper convex reai- 
valued functions on a Banach space V. Then 

&1(x)+ “. +%,(x)c8g,+ .” +&J(x) 

for every x E V. If all functions g, , . . . . g,,, except possibly one, are continuous 
at a point x0 E (Dom f, ) n . n (Dom fn), then 

asI( “. +dg,(x)=d(g,+ “’ +g,)(x) 

for all x E V. 

This theorem plays an important role in the theory of optimization for 
nondifferentiable convex functions. We say that a set function 
F: r-+ R u {co } is proper if F & co on I’. The following is a theorem of 
MoreauRockafellar type for convex set functions. 

THEOREM 6. Let F, , Fz : r + R u (co } be proper convex set functions on 
Dom F, = Dom F2 = Y. Then 

@I(Q) + 8FA.Q) = a(F, + F,)(Q) for all 52 e r. (8) 

Suppose that Y is a convex subfamily of r and that 9, the weak*-closure of 
Y, has a relative interior point, if F, is w*-continuous on 9, then 

a(F, + F,)(Q) = 8F,(Q) + aF,(Q) for all Q E r. (9) 
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Proof: The inclusion (8) follows immediately from the definition of 
subdintrential of set functions. 

We prove only the equality (9). For Sz E Y and f~ 8(F, + F,)(O), we 
define 

and 
G,(A)=f’,(A)-F,(Q)- (XCxsl,tf> 

G,(A)=FAA)-FAQ) for A E I-. 

Since F, and F, are proper convex set functions, G, and G2 are proper 
convex set functions on P’, and 

G,(Q) = G*(Q) = 0 = (G, + G,)(Q). 

As f E d(F, + F*)(Q) we have 

(G,+G,)(A)-O=(F,+F,)(A)-(F,+F,)(~)-(X,-X,,~) 
30 for all /i E r, 

it follows that 0 E d(G, E G,)(R) and 

rnn~(G,+GZ)(A)=GI(Q)+G,(Q)=O. (10) 

Let C,= [G,, 91 and C2= ((y,h): (-y,h)~ [G,, s]j. Then from 
Lemma 4, C, and C, are convex subsets of R’ x L”(X, r, p). Since F, is w*- 
continuous on Y and 9 contains a relative interior point, it follows from 
Lemma 5 that C, has a relative interior point. In order to apply the 
separation theorem, we need to prove that (ri C,) n C2 = 0, where ri C, 
denotes the relative interior points of C,. If not, let (y, h)~ (ri C,)n C2. 
Then there exists an E > 0 such that G,(h) < y -E and a sequence (Q,) in 
Y such that xn, -+“‘I h and bG,(SZ,) d -y. Since (y, h) E C,, we have 

t-y, A) E t-GZ, PI= K-m. 

Since C, is w*-continuous on 9, lim, _ m G,(Q,) = G,(h). Hence there is a 
sufficiently large n such that 

G,&‘,)<Y-E and G&Q,) < --Y + E 

which implies 

(G, + G,)(Q,) < 0. 

This contradicts (10). Hence 

C,n(riC,)=@. 
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Thus C, and C, can be properly separated by a hyperplane in R x L’ 
Since [G,, 91 c C, and the set BE {(r, a): (-7, Q)E [G,, Y’]) c CZ, this 
hyperplane can separate [G,, Y] and B. By assumption ri .Y # @, the 
hyperplane is not vertical. Thus the nonzero functional can be taken by 
(- 1, g)~ Rx L,(X, r, p) such that 

sup ((y,h),(-1,g))G inf (hh),(-l,g)). 
(7, /I E (‘I (7. h)E (‘2 

That is, there exists an c( E [w such that 

Since (G,(Q), xn) = (-G,(Q), x0) = (0, xn) belongs to [G,, Y’] n B, it 
follows that 

(x/i, g)-G,(A)<a= (xn, g>-G,(Q) 

for all A E Y and 

for all A E Y. In other words. 

G,(A)3G,(Q)+ CL-xn, g> 

and 

GAA)>Gz(Q)+ (~n-xsr, -g> for all AEY. 

Since G, and G, are proper convex set function, thus for any A $27, 
G,(A) = co, and G*(A) = co. Hence 

G,(A) 2 G,(Q) + CL, -XQ, g>, 

GAA) 3 G,(Q) + CL, - ~a, -g> for all A E I-; 

that is, g E aG,(Q) and -g E dG,(L?), so it follows that 

Consequently, 

Therefore, 
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If IR 4 Y, then F,(SZ) + F,(Q) = cc and a(F, + F,)(Q) = 0. Thus 

WI + F*)(Q) c =1(Q) + dF,(Q) for Q E r. (11) 

From (8) and (1 l), we obtain (9). The proof is complete. Q.E.D. 

Remark. According to Corollary 2, the condition of w*-continuous in 
Theorem 6 can be replaced by w*-lower semicontinuous. 

The following corollary follows immediately from Theorem 6. 

COROLLARY 7. Let F,, F,, . . . . F,,: r+ Iw v {CO } be proper convex set 
functions on Y = Dom F,, i= 1, 2, . . . . n. Then 

dF,(Q) + ... + c~F,,(Q) c a(F, + ... + F,)(Q) 

for all Q E IY Suppose that Y is a convex subfamily of r, 9 contains 
a relative interior point and all functions F,, except possibly one, are 
w*-continuous on 9, then 

a(F, + ... +F,,)(Q)=aF,(Q)+ ... +aF,(Q) (12) 
for all Sz E r. 

In Proposition 3(iii), we have already proved that a w*-continuous con- 
vex set function F on a convex subfamily Y has a unique w*-continuous 
extension F. We will show that the Moreau-Rockafellar theorem holds for 
functions i? At first we show a relation between the subdifferentials of F 
and F. 

LEMMA 8. Let 9’ be a convex subfamily of r and F: r-+ Iw v { 00 } 
be w*-continuous and convex on 9’. We assume further that P is the 
to*-continuous extension of F to 9. Then 

cYF(Q) = #(;(sz) for all QEY. 

Proof: Let 52 E Y and g E aF((52). Then 

F(f)>=w)+ (f-Xa, g> for all f~ L”. 

Since F(n) = F(‘(/i ) for /1 E Y (see Proposition 3(ii)), we have 

F(A)2FtQ)+ (xx,-xn, g> for AEY. 

If n 4 Y, then F(/i) = co. Thus 

F(A)bF(Q)+ (XA-x~ny s> for all A E r. 

This shows that g E BF(Q) and aF((o) c c?F(Q). 
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Conversely, if g E aF(Q) then for any f’~ ,p corresponding to a sequence 
{ 52,, > c ,Y that xn, + ‘I’* ,f implies 

Rf) = lim FtQ,,) 3 lim [F(Q) + (xa, - ,Y,, g) II - ‘*1 n- 7 

and if ,f’E L x \c!? then F(f) = GO, so 

Rf)2nQn)+ (s3.f-Xn) for all .fE L”. 

This shows that g E aF(;(sz). Hence aF(a) = aF(;(a) for Sz E Y. Q.E.D. 

THEOREM 9. In Theorem 6, if both F, and F2 are w*-continuous on Y, 
then 

(i) a(F, + F,)(j) = aF,(f) + aFZ’,(j) for fE L”, 

(ii) d(F, -k F,)(Q) = aF,(Q) + aF,(Q) for .Q E ,Y. 

Proof: Since F, and FZ are w*-continuous on the w*-compact set 9, 
(i) follows from the Moreau-Rockafellar theorem in Banach space and 
(ii) follows from Lemma 8. Q.E.D. 

4. KUHN-TUCKER TYPE CONDITION FOR SET FUNCTIONS 

Let F, G,, GZ, . . . . G, be real-valued set functions on I-. We consider, in 
this section, a single objective optimization problem for set functions in the 
following form 

(P,) Minimize: F(Q) 

Subject to: 52 E Y and G,(Q) d 0, j = 1, 2, . . . . m, 
where 9 is a subfamily of r. 

The main purpose of this section is to show that a necessary condition of 
Kuhn-Tucker type holds for an optimal solution of problem (P,) for set 
functions. We need the following lemma (cf. [2, Theorem 3.21). 

LEMMA 10. In problem (P,), let F, G,, . . . . G, be real-valued convex set 
functions on a convex family Y c r. We assume further the Slater condition: 
there exists a set O0 E Y such that G,(Q,) < 0, j = 1, 2, . . . . m. If sZ* E Y is an 
optimal solution of (P, ), then there exist nonnegative real numbers A:, . . . . 2: 
with A* = (A:, . . . . AZ), such that 

,g, log,= (A*, G(Q*)) =O, (13) 
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and (Q*, A*) is a saddle point of the Lagrangian function 
L(B, A,) = F(Q) + (A, G(Q)). That is, 

F(Q*) + (A, G(Q*)) <F(sZ*) + (A*, G(Q*)) 

6 F(Q) + (A*, G(Q) > (14) 

for all /I = (i, , . . . . A,) with Ai 2 0 and Q E 9’. 

THEOREM 11. Let F, G,, . . . . G, in (P,) be proper convex set functions on 
a conoex family Y c r and satisfy the Slater’s condition (cf Lemma 10). We 
assume further that all of the set functions F, G, , ..,, G,, except possibly one, 
are we-lower semicontinuous on Y and that 9 contains a relative interior 
point. If Q* E Y is a solution to (P,), then there exists A* = (A.:, . . . . AZ) with 
A,+ b 0, such that 

and 

(i) (A*, G(Q*)) = 0 (15) 

(ii) 

where 

NAQ*) = 

Proof: Let 

OE aF(Q*) + f A,* I~G,(Q*) + Ny,(.R*) 
j= I 

{fG(K K PL)l( Xo-Xn*,f)dOfor allS2EY 

(16) 

Then O,V is clearly a convex proper set function on r and w*-continuous 
on Y. Let 52* E Y be an optimal solution of (P,). It follows from 
Lemma 10 that there exists A* = (A:, . . . . AZ) with A,+ 20 such that 

(A*, G(Q*)) = 0, 

and (A*, Q*) is a saddle point of the Lagrangian L(Q, 12) = F(Q)+ 
(A, G(Q)). Thus, by definition of Q-Y, 

J’(Q*) + (A*, G(Q*))> + @y(Q*) d F(Q) + (A*, G(Q)) + @.y(Q) 

for all ~2 E r, and so 

FW*) + (A*, G(Q*)) + @p&2*)= jif, [F(Q)+ (A*, G(Q)) + Q,(Q)]. 
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Therefore 

i 

, ) I  

O~ii F+ c A:G,+@,<, 
,= I 

By Corollary 7, we obtain 

where 

= dF(Q*) + f  17 dGj(Q*) + N&2*), 
j= I 

NJQ*) = d@,JQ*) 

= {fG(X I-3 P)I ( Xn-Xn*,f)dO for all Q~EY}. Q.E.D. 

5. FRITZ JOHN TYPE CONDITION FOR VECTOR-VALUED MINIMIZATION 
FOR SET FUNCTIONS 

In this section, we consider the vector-valued minimization problem for 
set functions in the following form 

(P) Minimize: F(sZ) = (F,(8), . . . . F,,(Q)) 

Subject to: 526 Y and G,(Q) ~0, j= 1, . . . . m, where Fi: Y--) R, 
i= 1, 2, . . . . n, Gi: Y -R,j=l,2 ,..., m,andYcr. 

For x = (x,, . . . . x,,) and y = (y,, . . . . y,) in R”, we use the notations 

x < J’ if x,< y, for each i= 1, 2, . . . . n; 

x6y if xi< yi for each i= 1, 2, . . . . n and x# y; 

XSJ if x, d yi for each i = 1, 2, . . . . n. 

We say that a set Q* E 9 c r is a Pareto optimal solution of the vector- 
valued set function F: 9’ -+ R” if there is no Sz E Y such that F(‘(a) < F(Q*). 

A necessary condition for the existence of an optimal solution of the 
optimization problem (P) will be given in this section. It is a Fritz John 
type condition (cf. Lai and Ho [lo]) which we state in the following 
theorem. 

THEOREM 12. In problem (P), let 9’ be a convex subfamily of r and F,, 
i = 1, 2, . ..) n, G,, j= 1, 2, . . . . m, be proper convex set functions on IY Let 0, 
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be a Pareto optimal solution of problem (P). Suppose that for each 
i E { 1,2, . ...} there corresponds a Qi E Y such that 

G,(Qi) < 0, k = 1, 2, . . . . m 

Fj(Qi) < F,(Q,) for j= 1, 2, . . . . n, j# i 
(17) 

and that all functions F,, . . . . F,,, G,, . . . . G,, except possibly one, are w*-con- 
tinuous on Y and that 9 contains a relative interior point, then there exist 
c( = (a,, a,, . . . . ~1,) with a,> 1, i= 1,2, . . . . n, and A= (AI, A,, . . . . A,) in iRy 
such that 

k=l 

(ii) OE jc, 01, ~F,WA,) + f Izk ~Gk(fh) + ~,&&d 
k=l 

To prove this theorem we need the following lemma in vector 
minimization for set functions which is similar to Lemma 3.1 of [6] for 
usual vector minimization problem (cf. also [lo]). 

LEMMA 13. Let Y be a convex subfamily of r and F,, . . . . F,, be proper 
convex set functions on r with domain Y. Then the problem (P) has an 
optimal solution (in Pareto sense) at Q, E ,Y tf and only if Sz, minimizes each 
F, on the constraint set 

C,= {QEY: Fi(SZ)<Fi(Q,), i#j, G(Q)SO) (18) 

where G(Q) = (G,(Q), . . . . G,(Q)), j= 1, 2, . . . . n. 

The proof of this lemma follows from the argument used in 
[6, Lemma 3.11. 

Proof of Theorem 12. Let Q, be a Pareto optimal solution of (P). By 
Lemma 13, 52, minimizes each Fi, i = 1,2, . . . . n, on the constraint set Ci of 
(18). Then, in view of Theorem 11, there exist 

a(‘) = (a,;, . ..) a,,) E w+ 

with clii = 1 such that 

and pi) = (Pli, . ..) flmi) E Rm, 

and 

0 E 2 ali aF’(Q,) + 2 flki aGk(Q,) + NY(Qo) 
j= 1 k=l 

(19) 

,zl fik;Gk(aO) =o, i= 1, 2, . . . . n. (20) 
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Let i = 1, 2, . . . . n, in (19) and then sum them up; we obtain 

h=I 

= i a, dr;,(Q,) + f lvk dGk(QO) + N,,(Q,), 
,= 1 k=l 

whereq=q,+...+aj ,,-, +l+ai,,+,+...+q,~l, 

and 

Ak= f bk,ao, k = 1, 2, . . . . m, 
I= I 

f ‘kGk(Qo)= f i BkiGk(QO)=O. 
I k=l ,=I 

This proves the theorem. Q.E.D. 
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