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1. INTRODUCTION

Let (X, I,u) be a finite atomless measure space with L (X, I, u)
separable and F: ¥ - R™, G: % — R” defined on a convex subfamily .# of
I'=rx ... xI, we consider an optimization problem as

minimize F(Q,, ..., 2,) subject to (Q,, .., 2,)e ¥
and G(Q2,, .., 2,)<0. (P)

In [12], Morris first considered the general theory of real-valued set
functions of a single set. He showed the necessary and sufficient conditions
for a constrained local minimum of real-valued set functions of a single set.
Following the Morris setting, Chou efal. [1] characterized the proper
efficient solutions for the problem (P) in terms of a optimal solution for
associated scalar problems. In [13], Tanaka considered the Pareto
optimization of (P) and showed the necessary and sufficient conditions for
the existence of the local Pareto minimum to (P). In [1, 6, 7, 12, 13], the
optimization problem has remained confined to set functions of a single set.
In [4], Corley first developed the general theory for n-set functions and
gave the concepts of partial derivative and derivative of n-set function. In
this paper, we prove the Farkas—Minkowski type theorem for vector-
valued n-set functions. Using this result we establish the necessary and suf-
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ficient conditions for the existence of weak local minimum to (P) in terms
of the derivatives of vector-valued n-set functions involved. Because the
Pareto minimum to (P) is also the weak minimum, but the converse is not
true, hence our results and methods are quite different from Theorems 1
and 2 of [13]. When the objective functions are real-valued, our results
reduce to Theorems 3.7, 3.8, and 4.7 of [4].

2. PRELIMINARY

Throughout this paper, we assume (X, I', u) is a finite atomless measure
space with L,(X, I, u) separable and let I'" =TI x ... x I' =
{(Q,,..,2,)192,el i=1,..,n}. We define a pseudometric d on I'" as

n 1/2
ARy, n @) (A1 A1 =] 3 TR, 40T
i=1
Q,,A,el,i=1, .., n, where 2, 44, denotes symmetric difference for 2, and
A;. Essentially (2, .., 2,) and (A4,, .., 4,) will be regarded as equivalent
if d((Q,, .., Q,), (4, .., 4,))=0. We see that I'" is only a semialgebra but
not a o-algebra. For fe L\(X, I, u) and Qe T, the integral |, fdu will be
denoted by {f, x>, where x, denotes the characteristic function of 2. We
introduce the following notations for the vectors in the m-dimensional
Euclidean space R™. For two vectors x = (x,, ..,, X,,,) and y =(y,, ..., J,,) in
RrR™,
(1) x<yiff x,<y;foralli=1,.,m
(i) x<yiff x,<y,foralli=1,..,mand x# y.
(i) xsyiff x,; <y forall i=i .., m

The zero vector (0,..,0) in R™ is denoted by 0 and the nonnegative
orthant is denoted by R” = {xe R™|x=0}. We denote by B(R™, R”), the
set of all continuous linear operators from R™ to R? and

B*(R™, R?)={we B(R", R?)|w(R" )= R% }.
DEFINITION 2.1. Let 4 < R™, a point y,€ A4 is said to be a weak mini-

mum of A4, denoted by y,€ w-min A if there does not exist y in 4 such that
y<yo, and yo€ A4 is said to be a minimum of 4 if y, < y for all ye 4.

DEerFINITION 2.2. A set function F:I'— R is differentiable at QeI if
there exists fe L,(X, I, 1), the derivative of F at Q such that

FA)=F(Q)+ {f, xa—Xa> +d(Q, A4) E(Q, 4),
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where

lim E(Q, 4)=0.

d{2,4) -0

DeriNiTION 2.3, Let F: I —> R and (2, ..., Q2,)e I'". Then F is said to
have a partial derivative at (Q,, ..., 2,) with respect to A, if the set function

HA)=F(Q,,..,2,_,4,8,,,..,8,)

has derivative hg, at ;. In this case we define the ith partial derivative of
Fat(2,,.,Q,)tobef, o =hg,

Now, we define the derivative of vector-valued n-set functions.

DerFINITION 24, let ¥ < I, F = (F,,.,F,)): ¥ - R” and
(2,,..,2,)e¥. Then F is said to be differentiable at (2, .., 2,) if the
partials /9, ., i=1,2,..,n, of F,exist for each j=1, 2, ... m and satisfy

F(A,, .. A,)=FQQ,,.,Q,

+<§: S oy La,— X 0s s 2 <f§3"1,,u,g,,,x,,,—xg,>>

i=1 i=1

FWA(Q, . 2,), (A, s A,)), forall (A,,., A,)e.

where

WF((QU sty Qn)9 (AX’ ery An))
d((2,..2,),(4,, .., 1))

-0

as d((Q,. .., @,), (A, .y 4,)) 0.

Throughout the paper if F=(Fy, .., F,):¥ —>R" and G=(G,, .., G,):
& — R” are differentiable at (2, .., 2,), we will denote f7, ..., g4 the ith
partial derivatives of F, and G, at (2, .., Q,), respectively.

Similar to [12, Proposition 3.2 and Lemma 3.3], for any (2, 4, A)e
I'x I'x [0, 1], there exists sequences {Q,} and {4,} in I" such that

XQ,,L" Al 1o and XA,,—::" (1~ 10 (h
imply
X.Q,,uA,,u(QF\A)_W;)'XA+(1_}“)XQ’ (2)

where w* stands for the w*-convergence. The sequence {V,(i)=
Q,uA,0(2n A)} satisfying (1) and (2) is called the Morris sequence
associated with (£, 4, 2).
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DEerINITION 2.5. A subfamily & of I"” is convex if given (£, ..., £2,) and
(Ay, .., 4,)€ &, there exists a Morris sequence {¥%(1)} in I' associated
with (Q,, 4;, 1) for each i=1, .., n such that (V¥(1), .., V&(1))e & for all
ke N, where N is the set of natural numbers.

DerFNITION 2.6. A set function F: &% — R™ is called R” -convex on a
convex subfamily & of I'" if for each (2,,..,2,) and (4,,..,4,)e%,
1€[0,1], there exists a Morris sequence {V%(1)} in I' associated with
(Q,, 4,, 4) for each i=1, .., n such that (V4(1), .., VX(A))e & for all ke N
and

lim F(VX(A), .., VE(A) S AF(A,, ., A4,)+ (1= 1) F(Q,, .., Q,).

k — oo
ExampLE. If F: I'" — R™ is convex on I'", then the subfamily
F={(2,.,Q,)elFQ,,.,Q,)<0}

is a convex subfamily of I"".

3. MAIN RESULTS

DEFINITION 3.1, Let & be a nonempty subfamily of /" and F: & - R™.
Then (2,,..,2,) is a global minimum of F on & if F(2,,..,Q,)=
KA, ..,4,) forall (4,,..,4,)e%, (£2,,..,2,) is a local minimum of F
on & if there exists 6>0 such that F(Q2,, .., Q,)S F(4,, .., 4,) for all
(A4,, .., 4,)e & satistying d[ (A4, .., 4,), (2, .., 2,)]<6.

THEOREM 1. Let & be a convex subfamily of I'" and F. & — R"™ be a
R™ -convex set function. If (Q,, ..., 2,) is a local minimum of F on &, then
(Q4, .., 2,) is a global minimum of F on &.

Proof. Since (£2,, .., Q,) is a local minimum of F on &, there exists
0>0 such that F(Q,, .., Q,)SF(4,,..,4,) for all (4,,..,4,)eS% with
dl(4,, .., 4,), (2, ..,82,)]<é. Fix (A,,..,A,)el’". Then by the con-
vexity of F on the convex subfamily & of I'”, for any A€ [0, 1], there exists
a Morris sequence {V*(1)} in I' associated with (2,, 4, 1) for each
i=1, .., n such that (V4(4), .., V¥(1))e & for all ke N and

kﬁn‘ F(VH(A), o VE(A) S AF(A, ., A)+ (1 = 2) F(R,, .., 2,).
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Since

Jim d(V3(A)y oy V(A (21, s Q,))= lim {Z [#(Vf(i)AQf)]z}

" 1.2
=k1im {Z |XVf(),>”XQ,HiI}

—x {;
i=1

" 12
- { Y g xg,liil}

i=1

- Ad((/‘l' ey An)’ (le ey Qn))s

1,2
[u(A,-AQ,-nZ}

1

there exists » >0 and a natural number M such that

d((VE(A), o VEGD, (24, .., 2,)) < for O0<i<r and k>M.
Hence

F(Q,, .., Q,)SFV44), .. VEA)) for O<i<r and k=M.
From this, we obtain

FR,,.,2,)< im FV42), .., Vi4))

k-

SAF( A, ., A)+ (1 = A) F(2,, ... 2,)
for all 0 < 4 < r. This implies

FQ,,.,Q2,)SFA,, .., 4,).

Since (A, .., 4,)€ & is arbitrary, this shows that (2, .., 2,) is a global
minimum of Fon %. Q.ED.

In order to obtain the main result, we need the following Farkas-
Minkowski type theorem for n-set functions.

THEOREM 2. Ler ¥ be a convex subfamily of I'",
F=(F,,..,F,): % — R” be R -convex
and

G=(G,,...G,): ¥ —> RF be R’ -convex.
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If the system
FQ,,.,02,)<0
G(24,..,2,)<0

has no solution in &, then there exists u=(u,,..,u,)eR%, v=
(01, ., v,) ERZ, (u, v) # (0, 0) such that

p
Z uFi(A4y,.,4,)+ Z v,G(4,,..,4,)20
i=1

i=1 i=

Jor all (A,,..,4,)e .

Proof. Let A={(y, z)e R" x R”|there exists (2, ..., 2,) €& such that
F(2,,..,Q,)<yand G(Q,, .., 2,) < z}. It is obvious that 4 does not con-
tain the origin of R” x R”. To show that A4 is convex in R” x R?, let (y, z)
and (y,Z) be in A, then there exist (2,,..,2,)e¥ and (4,,..,4,)e¥
such that

F(Q,.,2,)<y, G(Q2,,.,02,)<z
and

FA,, o A)<P,  G(Ay,.n )<z

It follows from the convexity of F and G on the convex subfamily & of I'",
there exists a Morris sequence {¥%(1)} in I associated with (Q,, 4;, 1) for
each i=1, .., n such that (V*(A), .., V4(1))e & for all ke N, and

fim F(V4A), ... VE(A) S AF(A,, .y A)+ (1= A) F(Q,, .., @)

k— o
<Ay+(1=4)y
and

m G(VX(A), ., VE(A)) S AG(Ay, .y A,)+ (1= 2) G(24, .., 2,)

k=
<AzZ+(1—12)z
Therefore, there exists an integer M >0 such that
F(VEQ), o VEA) < A5+ (1= 2) y
and

G(VE(R), oy VE(A)) < A2+ (1= A)z
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for k > M. Hence
AR+ =, 2)=AF+ 1=y, A2+ (1-Ai)z)e A

It is obvious that 4 has a nonempty interior. Since (0, 0) ¢ A, it follows
from the separation theorem that there exist wu=(u,,.., u,)€eR",
v=(ty..., v,)€ R™ such that (u, v)# (0, 0) and

m P
Y owyi+ Y viz;20  forall (y,z)ed, (3)

i=1 =1

where Y= (¥, o, V), 2= (21, s 2,)-
Following a similar argument as in Lemma 3.1 [1] we can show that
u=20, 020, and

m P
Z uiFi(Alﬁ--"An)—’_ Z UiGi(AI*'"ﬂ An)go

i=1 i=1

forall (4,,...4,)e¥. Q.E.D.

DEerINITION 3.2. Let % be a nonempty subfamily of /" and F: . —» R".
Then (2,,..,2,)e¥ is called a weak local minimum of F on & if
there exists >0 such that there does not exist (A4,,..,4,)e%
with  d((A,, .., 4,), (82,,..,2,))<dé and F(A4,,., A,)<F(Q,,..8,).
(2,, .., 2,) is called a weak minimum of F on % if there does not exist
{(A,, .., 4,)e such that F(A,, .., 4,)<F(8,. .., 2,).

Remark. 1t follows from Definitions 3.1 and 3.2 that if F: ¥ - R and

(8,,..,2,)is a weak local minimum of F on %, then it is a local minimum
of Fon .%.

Applying Theorem 2, we have the following theorem.

THEOREM 3. Let & be a convex subfamily of I'" and F=(F, .., F,):
S ->R", G=(G,, .., G,); & — R’ are differentiable at (2, ..., Q2,). Assume
that (8,, .., 2,) is a weak local minimum to problem (P). Then there exists
nonzero element

(A w)y=((Ays s A)s (U, s 1)) R X RE
such that
P

Y u,G(RQ,,...2,)=0

i=1
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and

Z )'<fZ,XAf_XQ,>+ 2 Z uj<gZaXA,_XQ;>ZO

1i=1 j=1i=1

n[\/js

for all (4, .., 4,)e.

Proof. Define

Hy(Ay, o A )—(Z 0 ta= o0 3 S xA,.—xg,.>)

Hy(Ay, .., 4 )*(Z <g*’XA, Xo,)s - Z <g*aXA, Xn,))

+G(Q,, ., 2,).

It is obvious that H, is R -convex and H, is R/, -convex.
We claim that the system

{HI(AI, vy A,) <0 @
Hy(A,, .y A,)<0

has no solution. If (A, .., 4,)e.% were a solution of (4), fix 1e[0,1];
since % is a convex subfamily of /™", it follows that there exists a Morris
sequence {V*(4)} in I' associated with (,, 4,, ) for i=1, .., n such that
(V5(A), ..., VE(A))e & for all ke N. Then by the differentiability of F and G
at (2, .., £2,), we would have

F( V’l‘(i), - Vﬁ(l)) =FQ,, .. 2,)
+ ( Z <f'*la XV{‘u)—XQ), s Z <f§.'=", XV:‘(A)_X.Q,>>
i=1 i=1

+ E((V(4), o V3(2)), (215 5 2,)) (5)

and
G(VE(A), o VE(A)) =G(Q4, .., 2,)

+<Z <g$,XV}‘(1) X2 Z <g*aXV(A) sz>>

i=1 i=1
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where  E((VX(1), .., VX)), (,, ., 2,)) and E((V¥(L), ... VE(A)),
(Q,, ... 2,)) are o(d[(VX(A), .. VE()), (2, ... 2,)]). If we express

E(( V/;(;v)» (XL} Vﬁ(i))’ (Qh srey Qn)) = (El((V’;(i)a (XL V:\,(A:))? (Ql’ R Qﬂ)‘)a

wr Ep((VE(A)s s VE(ANL (2, o, Q).
Then E,((V¥(A), . VEA)), (Q4, o, 2,)) 05 o(d((VK(A), .y VE(A
(2,,...92,))) for each i=1, ..., m. Therefore for each ¢>0 and i=1. .., m,
there exists r>0 such that |E,((V5(4), .. VE(A), (2. .. 2N <
ed((VE(A), oy VE(D)), (21, . 2,)) for d((VE(A), o VAL (2, ., Q,)) < 1.
Let 8=r/d(Q,, ... Q,), (Ay, ... 4,)). Then lim, ., d((V5(i), ... VE(3)).

(Q, ... Q2,))=4d((Q2,, ... Q,), (4,, .., 4,)) implies that for < and for
sufficiently large k, we have d((V5(4), ... VE(4)), (2,. .., Q,))<r. Hence

VE,((VE(A)s oo VEG, (24, s ,))]) S ed((VE(L), oy VEND, (2, ., 2,))

for each i=1,.,m. This shows that lim,_ . E ((VX(), ... VE(4)).
(2,,...2,)) is o(4) for each i=1, .., m and therefore

m E((V,l((/l)’ 53] V:;(;L)), (‘Ql’ R Qn))

k— ¥

= (kl—irﬁ E (VAR oo VR (2, s 2,)), s

/‘T{a Enz((V’;(;“)’ s Vf,(/l)), (Ql LI Qn)))
= 0{4) {7
Similarly lim, _, . E((V4(A), ., VE(A)), (R, .. 2,))=0(2). Tt follows from
(5), (6), and (7) that
im F(VX(A), .., V(L))

k- ¥

:F(Qla"" (Z <f*’l/1 n; >1 Z < 1:1774 >)+()(;)

i=1 1=
=FQ,,..Q)+iH (A, .., A4,)+0(L)

and
Aﬁ—fﬁ G(VE(A), .., VE(LY)

=G(2,, .., 2 )+A(Z {gas Xa— K ) - Z <g*,74—/g>>+0(/1)

i=1 i=1

= (1 =) G(Q,, s Q)+ AH (A, s A,)+ 0(2),
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<0 and H2( vy A4,)<0, for any 0>0, we can
an natural number k such that
F(VA(V), . FXA) < F(Q,, .., Q,)
GVEY, o VE( D < (1= 2)G(R,, ., 2,)£0
and
(VA )y r VE(AD), (24, ., 2,)) <.

This contradicts the assumption that (,, .., 2,) is a weak local minimum
to (P). Hence system (4) does not have a solution. It follows from
Theorem 2 that there exists a nonzero element (A, u)= ({4, .., Am),
(uy, .., u,)) € R x R% such that

m n

Z Z )"j<fi’XA,—XQ>+Z Z u<g*’XA, >

Jj=11i=1 Jj=1i=1

P
+ Y uG(2,,.,2,)20 forall (Ay,..4,)es. (8)

i=1

Letting (A, .., 4,})=(2,, .., £,) in (8), we obtain
P
Y u,G(£2,, .., 2,)=0.
=1
Since ©=0 and G(2,, .., 2,)£0, it must be

P
u;G,(Q,, ..., 2,)<0.
=1

J

It then reduces to

14
Y 4,G,(2,, ... 2,)=0.
j=1

Then by (8), we get

Y Zl<f*,xA x9>+Z Zu<g*,xA, Yo

j=1i=1 Jj=1i=1

m " I p " s
Z z ij<flis XA,‘XQ,>+ z Z uj<g’i> Xa— o)

Jj=11i=1 j=1i=1

+ Z U, G2, .. 2,) 20
j=1

forall (4,,..,4,)e . Q.ED.
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Remark. Since weak minimum is different from Pareto minimum, our
result is different from Theorem 1 [13]. For m =1, Theorem 3 reduces to
Theorem 3.7 [4].

If we give an additional condition of regularity for the inequality con-
straint, then we get

THEOREM 4. In Theorem 3, if we assume further that there exists d
(Q,,...Q,)e ¥ such that

G(Qlﬂ" Qn)+<z <g*’XQ, .Ql>a'"1 Z <g$’X{2,*XQ,>><Oq

i=1 i=1

then there exists we BT (R? R™) such that

w[G(Q,, ..., 2,)]1=0

and

(Z ot — Z s da— >>

!:(Z <g*aXA, Z <g*v7/t, XQ‘>):!<0
i=1 i=1

tail to hold for any (A, .., A,)e .

Proof. Tt follows from Theorem 3, that there exists nonzero (4, u)=
((A1s s Ap)y (U1, oy u,)) € R7 X R% such that

y/
Y u,GAQ,, .. 2,)=0

J=1
and
Z Z't(f*,XA XQ,>+Z Zu<g*37/1'*/9>20’ {9)
J=1i=1 J=1i=1

for all (A,, .., 4,)e .
By assumption, there exists (£, ..., £2,)€.% such that

G(Qla---agn)+<z <gl,..‘l’)((z1 Xg Z <g*’/9 XQ,>><0-

i=1 i=1
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IfA=0,thenu#0and u20and so 3-/_, u;z;>0for all z=(z,, .., z,) e R?
and z> 0. Thus, by assumption, 1 =0, we should get

p n s p
0> Z Z uj<gi’ X!},»_XQ,->+ Z ujGj(Ql,..., Qn)

j=1i=1 j=1

z_Y Zﬂf*,x:z, XQ,>+Z Z (87, %6,— 1a) = 0.

j=11i=1

This is a contradiction; therefore 1#0. Since 4120 and 41+#0, we can
choose v = (v, .., v,,) € R™ and v >0 such that

Define w = (w,, ..., w,,}): R? > R™ by

w(z)= < i u,-z,-) v,

where z=(z,, .., z,)e R”. Then we B*(R’, R™) and w[G(L,,.., 2,)]=
[, u,Gi(L2y, ... 2,)]Jv=0. By (9), we obtain

g [Z S xa— 122

<Z<g*,xA, Lads - Z<g*,xA, xg,.>>]

i=1

<f*’XA, XQ>+Z Z u<g*,XA XQ‘>20

Jj=1i=1

NS E
NM:

Jj=1i

Since 420 and A #0, this shows that

(é S ta— Z S = >>

+W<Z &> X=X, Z (8% 14— X:),>><0

i=1 i=1

does not holds for any (A4, .., 4,) e %. Q.E.D.
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DeriniTioN 3.3, A differentiable set function F=(F, .., F,): % - R"
is said to be locally convex at (2, ..., 2,) if there exists § >0 such that

FA,,..A4)2FQ,,.,8Q )+<Z <f*~)(4, Yo Z <f:”=71 X.Q,>()

i=1 =1
for all (A,, ... A,)€ & with d((A,, .., A,), (2. ... Q,)) <.

The following theorem gives a sufficient conditions for the existence of a
weak local minimum to problem (P).

THEOREM 5. Suppose that the set function F=(F,,.. F,). % —-R"
and G=(G,..,G,): S - R" are differentiable and locally convex at
(2,,..,Q,). If there exists we B*(R?, R™) such that w(G(£2,...,2,))=0
and

<Z <f*’XA, x 1>a e Z <f:",XA st))

i=1 i=1

(Z <g*,XA, Xo) Z <g'*p»X1, st,>><0

i=1

does not hold for any (A,, .., A,)€ %, then (Q,. .., 2,) is a weak local mini-
mum to (P).

Proof. Let w=(w,, .., w,,)e B*(R? R™), then

w;e BY(R?, R") foreach i=1,.. m.

Hi(Al’ Z <f*9XA >

i=1

<Z <g*3XA, ~ Z <g*’x/1, >)

i=1 i=1
It is easy to see that H,: ¥ > R' is convex and the system
HA,.,41,)<0
H,(4,,.,4,)<0

does not have a solution, then it follows from Theorem 2 that there exists
nonzero

A= (A, o A,)ER”
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such that
i H(A,.,4,)20 forall (4,,.,4,)e.
That is, ‘
$ 54t ta)
Y

+ 3 /@-%(Z gy Xa— X2 Z &% xa— 1o, >)

j=1 i=1 i=1

=0, forall (A,,..,Ad,)e. (10)

Since F and G are locally convex at (£2,, .., 2,), there exists é > 0 such that

FlA, ., A)2F,, .., 2,)

(z o z Sita=ta)) (D)

and

G Ay s 4,2 G(21, 9)+(Z<g*,xm Yo Z 88 fam >)

i=1

forall (A,,..,4,)e¥

with  d((Ay, .., 4,), (2, .., 2,)) <. (12)
By (10), (11), (12), and w(G(L2, .., 2,))=0=(w,(G(2,, .., 2,)), -,
W, (G(82, ... 2,))), we have

‘Z LLF A oy A)— F(82,, ., 2,)]

j=1

2 Z 2 Ay(fl:jka XA,_~X!2,'>

IV

(Z <g*5XA XQ, Z <g*9XA, Xﬂ))

N

H

- L Aw
i AW (G(Ay, .y 4,)) + Z Lw(G(Qy, ., 2,))
o =
Z WA(G(Ay, .., 4,))

>0 forall (A,,..,4,)e
with d((A,, ... 4,), (2, ... 2,))<d (13)
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Since A =0, 4 #0, it follows from (13) that there exists no (A4, .., 4,)e ¥
with G(A4,, ..., 4,)<0 and d((A4, .., 4,), (2, ..., £,)) < J such that

F(A,, .., A4,)<F(Q,, .. Q2,).
This shows that (2, ..., £2,,) is a weak local minimum to (P). Q.E.D.
The following corollary follows immediately from Theorems 3 and 5.

COROLLARY 6. Let F=(F,,..,F,):% - R" be differentiable and
locally convex at (2, .., 2,)€ ¥, then (2, .., Q,) is a weak local minimum
of Fon % if and only if

(2 <fdtamtadem T <Fotam 0> ) <0
i=1 i=1
does not hold for any (A, .., A,)e &.

Following a similar argument as in the proof of Theorem 4.5 [4], we
have

LEMMA 7. Let F=(F,,.. F,): ¥ - R" be differentiable and convex on
K, then for all (A,, .., 4,),(2,, .., Q2,)e L,

F(Al’ ooy An))ZF(Ql’ i) 'Qn)
(T it taden 3 = 1) )
i=1 i=1

Remark. Tt follows from Lemma 7 that if F:.% — R™ is differentiable
and convex on &, then F is locally convex at any (£2,, .., £2,)e ¥,

Applying Lemma 7 and following similar arguments as in the proof of
Theorem 6, we have

THEOREM 8. Suppose that the set function F: % —-R" and G: & - R”
are convex and differentiable on F. If there exists we B* (R?, R™) such that

w(G(L2,, .., 2,))=0
and

(2 otatadem T <F2na- >>

i=1 i=1

<Z <g:|u)(/11 Z <g*,7/1, >><0

i=1 i=1

does not hold for any (A, ..., A,)e &, then (Q,, .., 2,) is a weak minimum
to (P).
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