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1. INTRODUCTION 

Let (X, r, p) be a finite atomless measure space with L,(X, r, 11) 
separable and F: Y -+ KY’, G: 9 --f Rp defined on a convex subfamily .Y of 
/-“-TX ,,. x r, we consider an optimization problem as 

minimize F(Q,, . . . . Q,) subject to (a,, . . . . 0,) E .Y 

and G(Q,, . . . . 52,) 5 0. (P) 

In [12], Morris first considered the general theory of real-valued set 
functions of a single set. He showed the necessary and sufficient conditions 
for a constrained local minimum of real-valued set functions of a single set. 
Following the Morris setting, Chou et al. [ 1 ] characterized the proper 
efficient solutions for the problem (P) in terms of a optimal solution for 
associated scalar problems. In [ 131, Tanaka considered the Pareto 
optimization of (P) and showed the necessary and sufficient conditions for 
the existence of the local Pareto minimum to (P). In [l, 6, 7, 12, 131, the 
optimization problem has remained confined to set functions of a single set. 
In [4], Corley first developed the general theory for n-set functions and 
gave the concepts of partial derivative and derivative of n-set function. In 
this paper, we prove the Farkas-Minkowski type theorem for vector- 
valued n-set functions. Using this result we establish the necessary and suf- 
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ticient conditions for the existence of weak local minimum to (P) in terms 
of the derivatives of vector-valued n-set functions involved. Because the 
Pareto minimum to (P) is also the weak minimum, but the converse is not 
true, hence our results and methods are quite different from Theorems 1 
and 2 of [13]. When the objective functions are real-valued, our results 
reduce to Theorems 3.7, 3.8, and 4.7 of [4]. 

2. PRELIMINARY 

Throughout this paper, we assume (X, r, CL) is a finite atomless measure 
space with L,(X, r, p) separable and let Y’ = I’ x .‘. x r = 
WJ 1, . . . . a,)152,~r, i= 1, . . . . n}. We define a pseudometric d on r” as 

dC(Q,, . . . . Q,), (A,, . . . . nn)l = i CP(aiAni)12 
i 1 

w 
) 

i=l 

Qi, /iid-, i= 1, . . . . n, where Oi dni denotes symmetric difference for Oi and 
ni. Essentially (a,, . . . . a,) and (/iI, . . . . A,) will be regarded as equivalent 
if 4(Qs1,, . . . . Q,), (A,, . . . . A,)) = 0. We see that r” is only a semialgebra but 
not a o-algebra. For f E L,(X, r, p) and 52 E r, the integral Jnfdp will be 
denoted by (f, xn), where xn denotes the characteristic function of 52. We 
introduce the following notations for the vectors in the m-dimensional 
Euclidean space IR”. For two vectors x = (x1, . . . . x,) and y = (y,, . . . . y,J in 
R”, 

(i) x<yiffxi<yiforalli=l,...,m. 
(ii) x I y iff xi I yi for all i = 1, . . . . m and x # y. 

(iii) x 5 y iff xi I yi for all i = i, . . . . m. 

The zero vector (0, . . . . 0) in R” is denoted by 0 and the nonnegative 
orthant is denoted by lR”J = {x E R” ( x 2 O}. We denote by B( R”, Rp), the 
set of all continuous linear operators from KY’ to Rp and 

B+(R”, WP)= {WEB(R”, llP)~w(lT4m+)cRp+}. 

DEFINITION 2.1. Let A c R”, a point y, E A is said to be a weak mini- 
mum of A, denoted by y, E w-min A if there does not exist y in A such that 
y < y,, and y, E A is said to be a minimum of A if y, S y for all y E A. 

DEFINITION 2.2. A set function F: r-+ IR is differentiable at Q E r if 
there existsfe L,(X, r, p), the derivative of F at Q such that 

F(~)=F(SZ)+(~,X,-X~)+~(~,~)E(S~,A), 
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where 

lim E(Q, A) = 0. 
d(R,A)-0 

DEFINITION 2.3. Let F: r” -+ R and (Q,, . . . . 52,)~ r”. Then F is said to 
have a partial derivative at (Q, , . . . . 52,) with respect to A, if the set function 

has derivative h,, at sZj. In this case we define the ith partial derivative of 
F at (Q, 3 . . . . Q,,) to be .A. . . . . R, = h,. 

Now, we define the derivative of vector-valued n-set functions. 

DEFINITION 2.4. Let Y c I-“, F = (F,, . . . . F,,) : ,yi + IF” and 
(Q, , . . . . 52,) E Y. Then F is said to be differentiable at (Sz, , . . . . Q,) if the 
partials ,f$, ,,,., R,, i= 1, 2, . . . . n, of F, exist for each j= 1, 2, . . . . m and satisfy 

Vii,, . . . . A,,) = F(Q,, . . . . Q,) 

+( i 
i=, 

u;: I,.... n$!n,-Xn,) t...> ,$, wy ,..,( Q.~XA,-%r,)) 

+ W,((Q,, ‘.., Q,), (A,, ..., A,)), for all (A,, . . . . A,)EY. 

where 

w,tw, 2 ..., Qn), (A,> . ..T A,)) +. 
4(Q,, .‘.3 Q,), (A,, . . . . A,)) 

as d((Q,, . . . . Q,), (A I, “‘5 4)) --+ 0. 

Throughout the paper if F = (F, , . . . . F,): Y--t R” and G = (G,, . . . . G,): 
9’ + Rp are differentiable at (a,, . . . . Q,), we will denote fi, . . . . g$ the ith 
partial derivatives of F, and G, at (52,) . . . . a,), respectively. 

Similar to [12, Proposition 3.2 and Lemma 3.31, for any (Q, A, A) IZ 
TX TX [0, I], there exists sequences {a,} and {A,) in r such that 

imply 

w* * 
XQ” - 4AW and X/f+-+ (1 -A)Xn,n (1) 

Xa,“n,“(nnn)~~Xn+(l-~)Xn, (2) 

where w* stands for the w*-convergence. The sequence {V,(A) = 
R,, u A,, u (Q A A)} satisfying (1) and (2) is called the Morris sequence 
associated with (Q, A, 1.). 
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DEFINITION 2.5. A subfamily Y of r” is convex if given (Q, , . . . . 52,) and 
(A 1, . . . . A,) E Y, there exists a Morris sequence {I’;(n)} in f associated 
with (sZj, /ii, A) for each i= 1, . . . . n such that (V’;(A), . . . . V:(n)) EY for all 
k E N, where N is the set of natural numbers. 

DEFINITION 2.6. A set function F: Y 4 W” is called IX? -convex on a 
convex subfamily Y of P’ if for each (Sz,, . . . . Q,) and (,4i, . . . . ~,)EY, 
1 E [0, 11, there exists a Morris sequence {V:(1)} in r associated with 
(Qi, ni, 2) for each i = 1, . . . . n such that (V:(A), . . . . V:(n)) E Y for all k E N 
and 

- 
hm F( V’;(A), . . . . V:(A)) 5 AF(A 1, . . . . A,) + (1 - 1) F(O,, . . . . a,). 

k-cc 

EXAMPLE. If F: fn + R” is convex on P, then the subfamily 

Y= {(Q,, . ..) 0,) E f” 1 F(;(sz, , . . . . 0,) < 0} 

is a convex subfamily of r”. 

3. MAIN RESULTS 

DEFINITION 3.1. Let Y be a nonempty subfamily of r” and F: Y + R”. 
Then (8,) . . . . Q,) is a global minimum of F on Y if F(R,, . . . . Sz,) 5 
W 1, ..., A,,) for all (,4,, . . . . ~,)EY, (a,, . . . . Q,) is a local minimum of F 
on Y if there exists 6 > 0 such that F(Q,, . . . . 52,)s F(A,, . . . . /i,) for all 
(A 1, . . . . A,) E Y satisfying d[(/1,, . . . . A,), (Q,, . . . . Q,)] < 6. 

THEOREM 1. Let Y be a convex subfamily of r” and F: Y + W” be a 
RT -convex set function. If (0,) . . . . 52,) is a local minimum of F on Y, then 
(0 1, . . . . 52,) is a global minimum of F on 9. 

Proof Since (Q,, . . . . 52,) is a local minimum of F on 9, there exists 
6 >O such that F(Q,, . . . . 52,)s F(A,, . . . . A,) for all (/ii, . . . . ~,)EY with 
d[(A,, . . . . A,), (Q,, . . . . Q,)] ~6. Fix (A,, ,.., /i,)~r”. Then by the con- 
vexity of F on the convex subfamily Y of r”, for any J. E [0, 11, there exists 
a Morris sequence {V!(A)} in r associated with (Qi, /ii, A) for each 
i = 1, .,., n such that (I’:(n), . . . . V:(n)) E Y for all k E N and 

lim F( V;(A), . . . . V;(A)) 5 AF(AI, . . . . A,) + (1 - 2) F(Q,, . . . . 52,). 
k-m 
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Since 

lim d(( r/:(n), . . . . V:(A)), (Sz,, . . . . sZ,))= lim 
k- 1 k -_ T 

i 
i b.4 W) dn,F] 

k=l 

there exists r > 0 and a natural number M such that 

d(( vl;(4, . . . . Vk,(A)), (Q,, . . . . Q,)) < 6 for O<i.<r 

Hence 

F(Q,) . ..) l-2,) 5 F( V’;(A), . ..) v;(n)) for O<i.<r 

From this, we obtain 
- 

F(sZ,, . . . . Q2,) 5 J;rnm F( V:(2), . . . . V:(2)) 

Sl.F(A,, . ..) A,)+(1 -i)F(Q, 

for all 0 < E, < r. This implies 

F(Q ,, . . . . Q,,) SF(n,, . ..> A,,). 

)  .  .  .  

and 

and 

k 2 M. 

k>M. 

Since (A,, . . . . ,4,,)~,!7 is arbitrary, this shows that (52,, . . . . Sz,) is a global 
minimum of F on 9’. Q.E.D. 

In order to obtain the main result, we need the following Farkass 
Minkowski type theorem for n-set functions. 

THEOREM 2. Let Y be a convex subfamily qf r”, 

F = (F, , . . . . F,,,) : Y + i&Y” be iwy -convex 

and 

G = (G,, . . . . G,): Y + Rp be iw: -convex. 
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If the system 

F(l-2,) ..*, i-2,) < 0 
G(Q,, . . . . Q,) < 0 

has no solution in Y, then there exists u = (u, , . . . . u,) E RT, v = 
(0 1, . . . . up) E LQT, (u, u) # (0,O) such that 

it, ufFi(A13 -7 A,)+ i ujGj(A,,...,A,)~O 
i= I 

for all (/iI, . . . . A,) E Y. 

Proof: Let A = {(y, z) E R” x RJ’ 1 there exists (a,, . . . . a,) E 9’ such that 
W-J,, . . . . 0,) < y and G(Q,, . . . . Q,) < z}. It is obvious that A does not con- 
tain the origin of IR” x Rp. To show that A is convex in IF!“’ x [WJ’, let (y, z) 
and (7, Z) be in A, then there exist (a,, . . . . SZ,)EY and (A,, . . . . A,)E~’ 
such that 

W’ I, . . . . Q,) < Y, G(O,, . . . . Q,) < z 

and 

F(A 1, *.., 4) < YT G(A 1 , ..., f!,)<Z. 

It follows from the convexity of F and G on the convex subfamily Y of P, 
there exists a Morris sequence { V;k(A)} in r associated with (Q,, Ai, A) for 
each i = 1, . . . . n such that (V:(A), . . . . V:(A)) E 9’ for all k E N, and 

7 

hm 
k-m 

F( v:(A), . . . . J’:(l)) 5 WA,, . . . . A,) + (1 - II) F(Q,, . . . . a,) 

-CAj+(l-n)y 

and 
- 
hm 

k-cm 
G( V:(A), . . . . V;(A)) 2 ilG(A,, . . . . A,) + (1 -A) G(Q,, . . . . Q,) 

<A..?+ (1 -A)z. 

Therefore, there exists an integer M > 0 such that 

F( v’;(4, . . . . V;(n))<@++1 -A)y 

and 

G( V’;(i), . . . . V#))<Az+(l-A)Z 
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for k 3 M. Hence 

3~(~,Z)+(1-~)(~,z)=(~j+(l-R)~~,LZ+(1-3.)~)~A. 

It is obvious that A has a nonempty interior. Since (0,O) $ A, it follows 
from the separation theorem that there exist u = (u,, . . . . u,,) E R”, 
z’ = (r, . . . . . u,,) E R’” such that (u, 11) # (0,O) and 

(3) 

where Y= (~1,~ . . . . y,), z= (z,, . . . . zp). 
Following a similar argument as in Lemma 3.1 [ 1 ] we can show that 

u 10, t! 2 0, and 

,,I 
1 u,F;(A, 3 .“> A,)+ f v,G,(A I,..., A,,)20 
i-1 ,=I 

for all (A,, . . . . /~.)EY. Q.E.D. 

DEFINITION 3.2. Let 9’ be a nonempty subfamily of f n and F: .Y -+ W’. 
Then (Sz,, . . . . Q,) E Y is called a weak local minimum of F on 9 if 
there exists 6 > 0 such that there does not exist (II,, . . . . A,,) E ,Y 
with d((n r, . . . . A,), (52,) . . . . Sz,,)) < 6 and F(A,, . . . . A,,) < F(B,, . . . . Q,, 1. 
(52,) . . . . Sz,) is called a weak minimum of F on Y if there does not exist 
(A ,, . . . . /~,)EY such that F(A,, . . . . A,,) < F(sZ,, . . . . Q,). 

Remark. It follows from Definitions 3.1 and 3.2 that if F: 9 + R and 
(Q , ) . . . . C2,) is a weak local minimum of F on 9, then it is a local minimum 
of F on Y. 

Applying Theorem 2, we have the following theorem. 

THEOREM 3. Let Y be a convex subfhmily of r” and F= (F,, . . . . F,,,): 
Y -+ IV”, G = (G,, . . . . GP) ; Y + [wp are differentiable at (a,, . . . . 52,). Assume 
rhat (Sz, , . . . . Q,) is a weak local minimum to problem (P). Then there exists 
nonzero element 

(%, u)=((A,, . ..) A,), (241, . . . . Up))E rw; x rw: 

such that 

f: u,G,(Q,, . . . . Q,,)=O 
i= I 
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and 

for all (A I, . . . . A,) E Y. 

Proof Define 

H&f,, ..., A,)= i (g’,‘dl,-Xn,) ( i=I 
+ G(SZ,, . . . . fin). 

It is obvious that H, is K?T -convex and H2 is rWT -convex. 
We claim that the system 

HICAl, . . . . A,)<0 
HAA,, . . . . 4 < 0 (4) 

has no solution. If (A,, . . . . A,) E Y were a solution of (4), fix 1 E [0, 11; 
since Y is a convex subfamily of P, it follows that there exists a Morris 
sequence {V:(A)} in r associated with (Qi, Ai, A) for i = 1, . . . . n such that 
( v:w, . . . . V:(A)) E Y for all k E A? Then by the differentiability of F and G 
at (Sz,, . . . . Q,,), we would have 

f’( V:V), . . . . v:(4) = F(fJ,, . . . . 52,) 

and 

G( V:W, . . . . V:bW = (W-4, . . . . Q,,) 

+ i GY’:? Xv;(A) ( -Xn,> ?...T i (&Xv;(i)-Xn,) 
i=l i=l > 

+ E(( v:(n), . ..) v:(4), (Q,, ...? Q,)h (6) 



OPTIMALITY OF R-SET FUNCTIONS 263 

where E( ( I/t(A), . . . . Vt(i,)), (a,, . . . . Q,)) and E((V’;(i,), . . . . V:(i)), 
(a,, . . . . 52,)) are o(d[( VT(A), . . . . Vi(A)), (Q,, . . . . Q,)]). If we express 

E(( C(j-), . ..- v:(i)), (Q,, . . . . Q,)) = (E,(( Vt(;I), . . . . V:(i)), (Q,, . . . . Q,,)), 

. ..) E,,((V!(j.), . . . . Wj.)), (a,, . . . . Q,,))). 

Then Ei((v/;(A), . . . . V:(A)), (a,, . . . . Q,)) is o(d((V:(n), . . . . V:(2)\. 
(fl,, . . . . ~2,))) for each i= 1, . . . . m. Therefore for each E > 0 and i = 1. _._, m, 
there exists r>O such that IE,(( V:(k), . . . . Vi(i.)), (a,, . . . . O,,))i I 
Ed(( Vl;(l.), . . . . V:(A)), (52,) . . . . G!,)) for d(( V:(2), . . . . Vz(iU)), (Q,, . . . . Q,,)) < r. 
Let 6 = r/4(52,, . . . . Q,), (A,, . . . . A,)). Then lim,, ~ d(( L’:(j-), . . . . I’:(;)). 
(52 1, . ..> L?,,))=i.d((52,, . . . . a,,), (A,, . . . . A,)) implies that for i< 6 and for 
sufficiently large k, we have d( ( V:(IL), . . . . Vt( A)), (a,, _.., Q,,)) < y. Hence 

jE,((V:(i), . . . . V:(i)), (a,, . . . . Cl,,))] <~d(( I’;(J). . . . . Vi(i)), (Q,, . . . . Q,,)) 

- 
for each i=l,..., m. This shows that ltmk.,,E,((V:(i.) ,..., b’t(j.)), 
(Q,, . . . . CL’,,)) is o(A) for each i= 1, . . . . m and therefore 

= (!yrn, E,((V/;(A), . . . . V:(j.)), f-Q,, . . . . Q,,)), . . . . 

iii% E,,(( v:(n), . ..) Wj-)), (Q,, . . . . Q,,))) 
x-x 

= o(j*) (7) 
- Similarly hm, _ r E(( V:(j.), . . . . vi(A)), (Q,, . . . . S,,)) = o(2). It follows from 

(5), (6), and (7) that 

K F( V/;(i), . ..) Vi(i)) 
I;- I 

=HQ I,.. ‘,Q,?)+J” 
c 

i (.f”,‘,L,-zn,> ,..., i (.f”,“‘,z.A,-xn,> +aj.1 
,=I I = I 1 

= F(Q,, . . . . 52,) + AH,(A,, . ..) A,) + o(i) 

and 

lim 
k + -7 

G( V:(A), . . . . V’;(A)) 

=G(Ql,...,fi,)+A i (g;I,xn,-xXr2,),..., i <g’,,x4,-xn,) 
c > 

+dj-1 
i= I /=, 

=(1 -i) G(Q,, . . . . !d,,)+l.H,(A,, . . . . A,,)+ o(R). 
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Since Hi(A,, . . . . A,) < 0 and H,(A,, . . . . A,)<O, for any 6>0, we can 
choose a small A’ > 0 and a natural number k such that 

and 

F( V”;( J”‘), . ..) w”‘N < F(Q,, ..., a,) 

G( Vl;(rl’), . . . . v~(n’))<(l-/2’)G(o,,...,a,)(=O 

4( W’), ..a, vp’)), (521, . . . . sz,)) < 6. 

This contradicts the assumption that (Sz,, . . . . s2,) is a weak local minimum 
to (P). Hence system (4) does not have a solution. It follows from 
Theorem 2 that there exists a nonzero element (,?, u) = ((A,, . . . . A,,), 
(u I > .‘.> u,)) E Ry x rW$ such that 

+ f, UiGi(Ql) bs.2 Q,) 2 0 for all (A i, . . . . A,) E Y. (8) 

Letting (A,, . . . . A,) = (52,, . . . . 52,) in (8) we obtain 

i UjGj(Q 1, . . . . fin) 20. 
J= I 

Since u 2 0 and G(S2,, . . . . Sz,) 5 0, it must be 

i u,G,(Q 1) . . . . Q,) IO. 
/=I 

It then reduces to 

i ujG,P ,) . ..) Q,) = 0. 
j=l 

Then by (8), we get 
m r* D n 

j;, ic, ‘jcfi, X.4-X.@,) + 2 1 uj(g$, XA,-X*,) 
j=, j=l 

j=l i=l /=I i=l 

+ 2 ujGj(O,, . . . . Q,) r 0 
J=I 

Q.E.D. for all (Ai, . . . . A,) E 9. 
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Remark. Since weak minimum is different from Pareto minimum, our 
result is different from Theorem 1 [13]. For m = 1, Theorem 3 reduces to 
Theorem 3.7 [4]. 

If we give an additional condition 
straint, then we get 

THEOREM 4. In Theorem 3, ly we 
(si,, . . . . fi,,) E ,Y such that 

of regularity for the inequality con- 

assume ,ftirther that rhere exists LI 

then there exists WE B+(aBP, KY”) such that 

w[G(Q,, . . . . Q,,)] = 0 

and 

,g, (f’*“> Xn, - hi) 
+w [( ,g, (&hn,-Xn,) 3-2, c, (xs’J”,-+~ 

,faU to hold,for any (A L, . . . . A,,) E 9. 

Pro@ It follows from Theorem 3, that there exists nonzero (I,, u) = 
((EL,, . ..1 i,), (u,, . . . . u~))E R; x IRT such that 

t u,G,(Q,, . . . . CZ?,,) =0 

and 

for all (A,, . . . . A,) E Y. 
By assumption, there exists (b,, . . . . bSi,)g,W such that 
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If A= 0, then u # 0 and u 2 0 and so Cp=, uizi > 0 for all z = (z,, . . . . zP) E Rp 
and z > 0. Thus, by assumption, A= 0, we should get 

= f i ijif$i3 X.0,-X0,)+ i i uj(g':,,Xsi,-XC2,)2°. 
i=l j=l j=1 i=l 

This is a contradiction; therefore I#O. Since I2 0 and A # 0, we can 
choose u = (u,, . . . . U,)E R” and u>O such that 

5 %$I,= 1. 
r=l 

Define w = (w,, . . . . w,): [wp + W by 

P 

W(Z) = 1 Uizj Uy ( 1 i=, 

where z = (z,, . . . . Z~)E RP. Then WE B+(RP, KY) and w[G(SZ,, . . . . 52,)] = 
CC;= 1 uiG;(Q,, . ..> Sz,)] u = 0. By (9), we obtain 

Since 12 0 and A# 0, this shows that 

+ w ( i <si,‘, Xn, - xn,>, . ..Y i <gg X/f, - XP,) < 0 i= 1 ,=I > 

does not holds for any (A 1, . . . . A,) E Y. Q.E.D. 
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DEFINITION 3.3. A differentiable set function F = (F,, . . . . F,) : .Y’ --+ R”’ 
is said to be locally convex at (Q,, . . . . Q,,) if there exists 6 > 0 such that 

F(A,, . . . . A,,)lF(Q,,...,Q,)+ 
( 

i (f;f~n,-zo,L..~ i (.f.‘,“‘>x.,,-i’u,):) 
i=l ,=I 

for all (,I,, . . . . ~,)EY with d((/i,, . . . . A,,), (Q,, . . . . Q,,))<6. 

The following theorem gives a sufficient conditions for the existence of a 
weak local minimum to problem (P). 

THEOREM 5. Suppose that the set function F= (F, , . . . . F,): Y’ -+ R”’ 
and G = (G,, . . . . G,): Y -+ Rp are differentiable and locally cont’ex ot 
(O,, . . . . Q,). If there exists WEB+([W~, KY”) such that M~(G(Q,, . . . . Q,)) = 0 
und 

( 
,g, (f’,>Xn,-Xn,> ?...)I i, (f’;‘JA.-%ir;)) 

+w i <g$ %A, 
i ,=I 

-xQ,)~...> i (n::.z.l,-%+ 
I= I 

does not hold for any (A I, . . . . A,,) E 9, then (Q, . . . . . Q,,) is a weak local mini- 
mum to (P). 

Proof: Let M‘ = (w, , . . . . MI,) E B+ ( lRp, W), then 

W,E B’(W, R’) for each i = 1, . . . . m. 

Let 

H,(A,,...,An)= i <fX>xn,-xn,> 
,=l 

+w/ ,$ ( 
( 

&h,-Xa,L i (gr*p>XA,-Xn,> . 
i= 1 

1 / 

It is easy to see that H,: Y + IJX’ is convex and the system 

H,(A,, . . . . A,,)<0 

1: Hwz(A, > . . . . A,) -=c 0 

does not have a solution, then it follows from Theorem 2 that there exists 
nonzero 
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such that 

f AiHi(A ,,..., A,)20 forall (A ,,..., A,)EY, 
i=l 

That is, 
m ” 

2 0, forall (A,, . . . . A,)EY. (10) 

Since F and G are locally convex at (52,) . . . . Q,), there exists 6 > 0 such that 

F(A,, . . . . 4JZF(Q,, . . . . Q,) 

-+ i <Si:Jn,-Xn,) 
( i=l 

3 ...> jc, <f-:9 xA,-xQ8)) (11) 

and 

W’ ,, . ..> 412 G(Q,, . . . . Q,J+ 
( 

i (g;, xn,-~a,), . . 
i= I 

.J jI, <St> WX*,)) 

for all (A,, . . . . A,)E~ 

with d((A L, . . . . A,), (L?,, . . . . ~2,)) < 6. (12) 

By (IO), (ll), (12), and w(G(Q, ,..., 52,))=0=(w,(G(Q,, . . . . 8,)) ,..., 
w,(G(Q,, . . . . Q,))), we have 

F J-jCFj(A 1, ...y An)-Fj(Q,, ...y Qn)l 

j= 1 

L - i Ijwj(G(A,, ..., A,))+ f AjWj(G(Ql: ...f a,)) 
j= 1 j=l 

= - f Ajwj(G(A,, . . . . A,)) 

j=l 

LO for all (A,, .,,, A,)EY 

with 4(/i,, . . . . A,), (Q,, . . . . a,))<~3 (13) 
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Since J 2 0, /1# 0, it follows from (13) that there exists no (A,, . . . . A,,) E ,Y 
with G(/1,, . . . . A,,)50 and d((/i,, . . . . A,,), (!2,, . . . . !2,,))<6 such that 

F(A,, . ..) A,) < F(Q,, . . . . I?,,). 

This shows that (n, , . . . . Sz,) is a weak local minimum to (P). Q.E.D. 

The following corollary follows immediately from Theorems 3 and 5 

COROLLARY 6. Let F= (F, , . . . . F, ) : Y -+ Iw”’ he dijferentiahle and 
locally convex at (a,, . . . . Q,,) E Y, then (Q,, . . . . a,,) is a weak local minimum 
of F on .Y !f and only if 

( 
.f (f;f,Xn,-Xn,L 
r=l 

i <f,.L-x*+0 
I=1 

does not hold for any (A ,, . . . . A,) E 9. 

Following a similar argument as in the proof of Theorem 4.5 [4], we 
have 

LEMMA 7. Let F= (F,, . . . . F,): Y + II%” he dlifferentiahle and convex on 
.Y, then,for all (A,, . . . . A,), (Q,, . . . . Q,,)E.Y, 

F(A,, . ..> A,,)) 2 F(Q,, . . . . Q,,) 

Remark. It follows from Lemma 7 that if F: Y + R”’ is differentiable 
and convex on Y, then F is locally convex at any (CJ,, . . . . &2,) E .Y. 

Applying Lemma 7 and following similar arguments as in the proof of 
Theorem 6, we have 

THEOREM 8. Suppose that the set function F: Y -+ W” and G: Y + [w” 
are convex and differentiable on .Y. If there exists MS E B+ ([wp, UX”‘) such that 

w(G(Q,, . . . . Q,))=O 
and 

( 
,c, (.f’,‘Jn,-Xn,)~‘~‘? i;, <f:“.I,.-/n,)) 

+w i ~&h-Xa,) 1...2 i <g:~Xn,-Xa,) 
( > 

<o 
,=l r=l 

does not holdfor any (A,, . . . . A,) E Y, then (a,, . . . . Q,) is a weak minimum 
to (P). 
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