On the Optimality Conditions of Vector-Valued n-Set Functions*

Lai-Jiu Lin
Department of Mathematics, National Changhua University of Education, Changhua, 50058, Taiwan, Republic of China

Submitted by E. Stanley Lee
Received October 17, 1989

Abstract

In a finite atomless measure space (X, Γ, μ), the optimization problem of vectorvalued n-set functions defined on a convex subfamily S of $\Gamma^{n}=\Gamma \times \cdots \times \Gamma$ is investigated. The necessary and sufficient conditions of Pareto optimal solution or proper \mathbb{R}_{+}^{p}-solution of optimization problem with differentiable vector valued n-set functions are given. ©C 1991 Academic Press, Inc.

1. Introduction

The general theory for optimizing set functions was first developed by Morris [12]. This type of problem arises in various areas and has many interesting applications in mathematics, engineering, and statistics, for example, in fluid flow, electrical insulator design, optimal plasma confinement (see Ref. [12]), and Neyman-Pearson lemma of statistics (see Ref. [3]). There are many results on the optimization problem of set functions, one can consult Refs. [12, 1, 2, 4-10, 14]. All the previous results on this type of problem are only confined to set functions of a single set. Corley [3] started to give the concepts of partial derivatives and derivatives of real-valued n-set functions and developed the general theory of n-set functions. In [7], we study the vector valued n-set functions optimization problem. This paper is a continuous work of [7]. Throughout this paper, we assume that (X, Γ, μ) is a finite atomless measure space with $L_{1}(X, \Gamma, \mu)$ separable. For any $n \in N$, we let \mathbb{R}^{n} be the n-dimensional Euclidean space. We also let $S \subset \Gamma^{n}=\Gamma \times \cdots \times \Gamma$ be a subfamily of Γ^{n} and $F: S \rightarrow \mathbb{R}^{p}, H: S \rightarrow \mathbb{R}^{r}$, and $G: S \rightarrow \mathbb{R}^{m}$ be vectorvalued n-set functions defined on S.

[^0]We consider two optimization problems as

$$
\begin{align*}
& \operatorname{minimize} F\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \tag{P}\\
& \text { subject to }\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in S, G\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \leqq 0, H\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)=0
\end{align*}
$$

and

$$
\begin{align*}
& \operatorname{minimize} F\left(A_{1}, \ldots, A_{n}\right) \\
& \text { subject to }\left(A_{1}, \ldots, A_{n}\right) \in \Gamma^{n}, G\left(A_{1}, \ldots, A_{n}\right) \leqq 0 \tag{P1}
\end{align*}
$$

In [7], we define the derivative of vector-valued n-set functions, we establish the necessary and sufficient conditions for the existence of a weak local minimum to problem (P 1) in terms of the partial derivative of vectorvalued n-set functions involved. This paper is a continuous work of [7]. The sufficient conditions of Pareto optimal solution to problem (P) and the necessary conditions of pareto optimal solution of (P1) with nonconvex differentiable n-set functions are developed. The necessary and sufficient conditions of proper \mathbb{R}_{+}^{p}-solution to problem (P1) with convex differentiable vector-valued n-set function are also derived.

2. Preliminaries

We define a pseudometric d on $\Gamma^{n}=\Gamma \times \cdots \times \Gamma=\left\{\left(\Lambda_{1}, \ldots, A_{n}\right) \mid A_{i} \in \Gamma\right.$, $i=1,2, \ldots, n\}$ as

$$
d\left[\left(\Omega_{1}, \ldots, \Omega_{n}\right),\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)\right]=\left\{\sum_{i=1}^{n}\left[\mu\left(\Omega_{i} \Delta A_{i}\right)\right]^{2}\right\}^{1 / 2}
$$

where $\left(\Omega_{1}, \ldots, \Omega_{n}\right),\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \Gamma^{n}$ and $\Omega_{i} \Delta \Lambda_{i}$ denote the symmetric difference for Ω_{i} and Λ_{i}. For $f \in L_{1}(X, \Gamma, \mu)$ and $\Omega \in \Gamma$, the integral $\int_{\Omega} f d \mu$ will be denoted by $\left\langle f, \chi_{\Omega}\right\rangle$, where χ_{Ω} denotes the characteristic function of Ω.

Definition 2.1. A set function $F: \Gamma \rightarrow \mathbb{R}$ is said to be differentiable at $\Omega \in \Gamma$ if there exists $f \in L_{1}(X, \Gamma, \mu)$ the derivative of F at Ω such that

$$
F(\Lambda)=F(\Omega)+\left\langle f, \chi_{A}-\chi_{\Omega}\right\rangle+\mu(\Omega \Delta \Lambda) E(\Omega, \Lambda),
$$

where $\lim _{\mu(\Omega \Delta A) \rightarrow 0} E(\Omega, \Lambda)=0$.
We define the partial derivatives of n-set functions.
Definition 2.2. Let $F: \Gamma^{n} \rightarrow \mathbb{R}$ and $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in \Gamma^{n}$. Then F is said to have partial derivative with respect to Λ_{i} if the set function

$$
H\left(\Lambda_{i}\right)=F\left(\Omega_{1}, \ldots, \Omega_{i-1}, \Lambda_{i}, \Omega_{i+1}, \ldots, \Omega_{n}\right)
$$

has derivative $h_{\Omega_{i}}$ at Ω_{i}. In this case we define the i th partial derivative of F at $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ to be $f_{\Omega_{1}, \ldots, \Omega_{n}}^{i}=h_{\Omega_{i}}$.

Using the partial derivative of n-set function, we can define the derivative of vector-valued n-set functions.

Definition 2.3 [7]. Let $S \subset \Gamma^{n}, \quad F=\left(F_{1}, \ldots, F_{m}\right): S \rightarrow \mathbb{R}^{m}, \quad$ and $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in S$. Then F is said to be differentiable at $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ if the partials $f_{\Omega_{1}, \ldots, \Omega_{n}}^{i j}, i=1,2, \ldots, n$, of F_{j} exist for each $j=1,2, \ldots, m$ and satisfy $F\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)$

$$
\begin{aligned}
= & F\left(\Omega_{1}, \ldots, \Omega_{n}\right)+\left(\sum_{i=1}^{n}\left\langle f_{\Omega_{1}, \ldots, \Omega_{n}}^{i}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle f_{\Omega_{1}, \ldots, \Omega_{m}}^{i m}, \chi_{A_{1}}-\chi_{\Omega_{i}}\right\rangle\right) \\
& +W_{F}\left(\left(\Omega_{1}, \ldots, \Omega_{n}\right),\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)\right),
\end{aligned}
$$

for all $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in S$, where

$$
\frac{W_{F}\left(\left(\Omega_{1}, \ldots, \Omega_{n}\right),\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)\right)}{d\left(\left(\Omega_{1}, \ldots, \Omega_{n}\right),\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)\right)} \rightarrow 0
$$

as $d\left(\left(\Omega_{1}, \ldots, \Omega_{n}\right),\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)\right) \rightarrow 0$. If F is differentiable at every point $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ of S, we say that F is differentiable on S.

Throughout the paper if $F=\left(F_{1}, \ldots, F_{p}\right): S \subset \Gamma^{n} \rightarrow \mathbb{R}^{p} G=\left(G_{1}, \ldots, G_{m}\right)$: $S \rightarrow \mathbb{R}^{m}$ and $H=\left(H_{1}, \ldots, H_{r}\right): S \rightarrow \mathbb{R}^{r}$ are differentiable at $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$, we will denote $f^{i j}, g^{i j}$, and $h^{i j}$ the i th partial derivatives of F_{j}, G_{j}, and H_{j} at $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ respectively.

For two vectors $x=\left(x_{1}, \ldots, x_{p}\right)$ and $y=\left(y_{1}, \ldots, y_{p}\right)$ in p-dimensional Euclidean space \mathbb{R}^{p}, we introduce the following notations
(1) $x<y$ iff $x_{i}<y_{i}$ for all $i=1,2, \ldots, p$.

$$
\begin{align*}
& x \leqq y \text { iff } x_{i} \leqslant y_{i} \text { for all } i=1,2, \ldots, p \text { and } x \neq y . \tag{2}\\
& x \leqq y \text { iff } x_{i} \leqslant y_{i} \text { for all } i=1,2, \ldots, p .
\end{align*}
$$

The nonnegative orthant and the nonpositive orthant in \mathbb{R}^{p} are denoted by

$$
\mathbb{R}_{+}^{p}=\left\{x \in \mathbb{R}^{p} ; x \leqq 0\right\} \quad \text { and } \quad \mathbb{R}_{-}^{p}=\left\{x \in \mathbb{R}^{p} ; x \leqq 0\right\},
$$

respectively, where 0 is the zero vector $(0,0, \ldots, 0)$ in \mathbb{R}^{p}. We also denote $\langle x, y\rangle=\sum_{i=1}^{p} x_{i} y_{i}$ as the inner product of $x=\left(x_{1}, \ldots, x_{p}\right)$ and $y=$ (y_{1}, \ldots, y_{p}) in \mathbb{R}^{p}. For a set $E \subset \mathbb{R}^{p}$, the set of all interior points of E will be denoted by int E and the set of closure of E in \mathbb{R}^{p} will be denoted by E.

Definition 2.4. A set $E \subset \mathbb{R}^{p}$ is said to be \mathbb{R}_{+}^{p}-convex if $E+\mathbb{R}_{+}^{p}$ is a convex set in \mathbb{R}^{p}.

Definition 2.5. A point x^{*} is a lower efficient point of $E \subset \mathbb{R}^{p}$ if $x^{*} \in E$ and there is no $x \in E$ such that $x \leqslant x^{*}$. We denote the set of all lower efficient points of E by $\underline{e}(E)$.

Lemma 2.6 [14]. Suppose that for a point $x^{*} \in E \subseteq \mathbb{R}^{p}$, there exists a $\hat{\mu} \in$ int \mathbb{R}_{+}^{p} such that $\left\langle\hat{\mu}, x^{*}\right\rangle \leqslant\langle\hat{\mu}, x\rangle$ for $x \in E$. Then $x^{*} \in e(E)$.

Definition 2.7. A point $x^{*} \in \mathbb{R}^{p}$ is said to be a properly efficient point of $E \subset \mathbb{R}^{p}$ if $x^{*} \in \underline{e}(E)$ and $\overline{E+\mathbb{R}_{+}^{p}-x^{*}} \cap \mathbb{R}_{-}^{p}=\{0\}$.

Definition 2.8. Given a p-dimensional vector-valued function $f=$ $\left(f_{1}, \ldots, f_{p}\right): X \rightarrow \mathbb{R}^{p}, f_{i} \in L_{1}(X, \Gamma, \mu), i=1, \ldots, p$, we say that f separates $\Omega \in \Gamma$ if $\left(\left\langle f_{1}, \chi_{\Omega}\right\rangle, \ldots,\left\langle f_{p}, \chi_{\Omega}\right\rangle\right)$ is a properly efficient point of the set $Y=\left\{\left(\left\langle f_{1}, \chi_{A}\right\rangle, \ldots,\left\langle f_{p}, \chi_{A}\right\rangle\right) ; \Lambda \in \Gamma\right\}$.

It follows from [12, Proposition 3.2 and Lemma 3.3], for any $(\Omega, A, \lambda) \in$ $\Gamma \times \Gamma \times[0,1]$, there exist sequences $\left\{\Omega_{n}\right\}$ and $\left\{\Lambda_{n}\right\}$ in Γ such that

$$
\begin{equation*}
\chi_{\Omega_{n}} \xrightarrow{w^{*}} \lambda \chi_{A \backslash \Omega} \quad \text { and } \quad x_{A_{m}} \xrightarrow{w^{*}}(1-\lambda) \chi_{\Omega \backslash \Lambda} \tag{1}
\end{equation*}
$$

implies

$$
\begin{equation*}
\chi_{\Omega_{n} \cup A_{n} \cup(\Omega \cap A)} \xrightarrow{w^{*}} \lambda \chi_{A}+(1-\lambda) \chi_{\Omega} \tag{2}
\end{equation*}
$$

where w^{*} stands for the w^{*}-convergence. The sequence $\left\{V_{n}(\lambda)=\Omega_{n} \cup \Lambda_{n} \cup\right.$ ($\Omega \cap \Lambda$) \} satisfying (1) and (2) is called the Morris sequence associated with $(\Omega, \lambda, \lambda)$.

Definition 2.9. A subfamily S of Γ^{n} is convex if given $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$, $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in S$, and $\lambda \in[0,1]$, there exists a Morris sequence $\left\{V_{i}^{k}(\lambda)\right\}$ in Γ associated with $\left(\Omega_{i}, A_{i}, \lambda\right)$ for each $i=1, \ldots, n$ such that $\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right) \in S$ for all $k \in N$, where N is the set of natural numbers.

Definition 2.10. A set function $F=\left(F_{1}, \ldots, F_{n}\right): S \rightarrow \mathbb{R}^{p}$ is called convex on a convex subfamily S of Γ^{n} if for each $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ and $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in S$, $\lambda \in[0,1]$ there exists a Morris sequence $\left\{V_{i}^{k}(\lambda)\right\}$ in Γ associated with $\left(\Omega_{i}, \Lambda_{i}, \lambda\right)$ for each $i=1, \ldots, n$ such that $\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right) \in S$ for all $k \in N$ and

$$
\begin{aligned}
\varlimsup_{k \rightarrow \infty} & F\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right) \\
& =\left(\overline{\lim _{k \rightarrow \infty}} F_{1}\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right), \ldots, \varlimsup_{k \rightarrow \infty} F_{p}\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right)\right) \\
& \leqq \lambda F\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)+(1-\lambda) F\left(\Omega_{1}, \ldots, \Omega_{n}\right)
\end{aligned}
$$

Lemma 2.11 [15, Lemma 2.4]. Let E be a \mathbb{R}_{+}^{P}-convex set. Then $y_{0} \in E$ satisfies

$$
\overline{\left[E+\mathbb{R}_{+}^{p}-y_{0}\right]} \cap \mathbb{R}_{-}^{p}=\{0\}
$$

iff there exists a vector $\mu \in \operatorname{int} \mathbb{R}_{+}^{p}$ such that

$$
\left\langle\mu, y_{0}\right\rangle \leqslant\langle\mu, y\rangle \quad \text { for any } \quad y \in E .
$$

Lemma 2.12 (Liapunov [13]). Let $f_{1}, \ldots, f_{p} \in L_{1}(X, \Gamma, \mu)$, then the set $\left\{\left(\left\langle f_{1}, \chi_{A}\right\rangle, \ldots,\left\langle f_{p}, \chi_{A}\right\rangle\right), \Lambda \in \Gamma\right\}$ is convex and compact.

3. Main Results

Throughout this paper, we will denote $A=\left\{\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \Gamma^{n}\right.$, $\left.G\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \leqq 0\right\}, \quad A^{\prime}=\left\{\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \Gamma^{n}, \quad G\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)<0\right\}$, and $\hat{A}=$ $\left\{\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in S, \quad G\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \leqq 0, \quad H\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)=0\right\}$. The following lemma follows immediately from the definition of convex subfamily and properties of Morris sequence.

Lemma 3.1. Let $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in \Gamma^{n}$ and $G: \Gamma^{n} \rightarrow \mathbb{R}^{m}$ be convex, then for each $\delta>0$ the set

$$
\begin{aligned}
& B_{\delta}\left(\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right) \\
& \quad=\left\{\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \Gamma^{n} ; d\left(\left(A_{1}, \ldots, A_{n}\right),\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right)<\delta, G\left(A_{1}, \ldots, A_{n}\right)<0\right\}
\end{aligned}
$$

is a convex subfamily of Γ^{n}.
Proof. Suppose $\left(A_{1}, \ldots, \Lambda_{n}\right),\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right) \in B_{\delta}\left(\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right)$ and $\lambda \in[0,1]$. Then $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right),\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right) \in \Gamma^{n}, G\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)<0, G\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right)<0$, $d\left(\left(\Lambda_{1}, \ldots, \Lambda_{n}\right), \quad\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right)<\delta, d\left(\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right),\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right)<\delta$, and for each $i=1,2, \ldots, n$, there exists a Morris sequence $\left\{V_{i}^{k}(\lambda)\right\}$ in Γ associated with $\left(\hat{\Omega}_{i}, \Lambda_{i} \lambda\right)$ such that $\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right) \in \Gamma^{n}$ for all $k \in N$. Since

$$
\begin{aligned}
\lim _{k \rightarrow \infty} & d\left(\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right),\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right) \\
& =\lim _{k \rightarrow \infty}\left\{\sum_{i=1}^{n}\left\|\chi_{V_{i}^{k}(i)}-\chi_{\Omega_{i}}\right\|_{L^{1}}^{2}\right\}^{1 / 2} \\
& =\left(\sum_{i=1}^{n}\left\|\lambda \chi_{A_{i}}+(1-\lambda) \chi_{\Omega_{i}}-\chi_{\Omega_{i}}\right\|_{L^{1}}^{2}\right)^{1 / 2} \\
& =\left\{\sum_{i=1}^{n} \| \lambda\left(\chi_{A_{i}}-\chi_{\Omega_{i}}\right)+(1-\lambda)\left(\chi_{\Omega_{i}}-\chi_{\Omega_{i}} \|_{L^{1}}^{2}\right\}^{1 / 2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \lambda\left(\sum_{i=1}^{n}\left\|\chi_{A_{i}}-\chi_{\Omega_{i}}\right\|_{L^{1}}^{2}\right)^{1 / 2}+(1-\lambda)\left(\sum_{i=1}^{n}\left\|\chi_{\Omega_{i}}-\chi_{\Omega_{i}}\right\|_{L^{1}}^{2}\right)^{1 / 2} \\
& =\lambda\left(\sum_{i=1}^{n}\left[\mu\left(\Lambda_{i} \Delta \Omega_{i}\right)\right]^{2}\right)^{1 / 2}+(1-\lambda)\left(\sum_{i=1}^{n}\left[\mu\left(\hat{\Omega}_{i} \Delta \Omega_{i}\right)\right]^{2}\right)^{1 / 2} \\
& =\lambda d\left(\left(\Lambda_{1}, \ldots, \Lambda_{n}\right),\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right)+(1-\lambda) d\left(\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right),\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right) \\
& <\lambda \delta+(1-\lambda) \delta=\delta
\end{aligned}
$$

Hence there exists a natural number M_{1} such that

$$
\begin{equation*}
d\left(\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right),\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right)<\delta \quad \text { for all } \quad k \geqslant M_{1} \tag{3}
\end{equation*}
$$

since G is convex,

$$
\varlimsup_{k \rightarrow \infty} G\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right) \leqq \lambda G\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)+(1-\lambda) G\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right)<0
$$

Therefore, there exists a natural number M_{2} such that

$$
\begin{equation*}
G\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right)<0 \tag{4}
\end{equation*}
$$

Let $M=\max \left\{M_{1}, M_{2}\right\}$, then from (3) and (4), we see that if $k \geqslant M$,

$$
d\left(\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right),\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right)<\delta \quad \text { and } \quad G\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right)<0
$$

Thus $\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right) \in B_{\delta}\left(\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right)$ for $k \geqslant M$. This shows that $B_{\delta}\left(\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right)$ is a convex subfamily of Γ^{n}.

Corollary 3.2. Let $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in \Gamma^{n}$ and $G: \Gamma^{n} \rightarrow \mathbb{R}^{m}$ be a convex set function, then the set A^{\prime} is a convex subfamily of Γ^{n}.

Proof. It is easy to see that $A^{\prime}=\bigcup_{m=1}^{\infty} B_{m}\left(\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right)$ where

$$
\begin{aligned}
& B_{m}\left(\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right) \\
& \quad=\left\{\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \Gamma^{n} ; d\left(\left(\Lambda_{1}, \ldots, \Lambda_{n}\right),\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right)<m \text { and } G\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)<0\right\}
\end{aligned}
$$

and the corollary follows immediately from Lemma 3.1.
For any $S \subset \Gamma$, we denote \bar{S} the w^{*}-closure of $\chi_{S}=\left\{\chi_{A} ; \Lambda \in S\right\}$ in $L_{\infty}(X, \Gamma, \mu)$, then $\bar{\Gamma}=\left\{f \in L_{\infty}(X, \Gamma, \mu) ; 0 \leqslant f \leqslant 1\right\}$ [1, Corollary 3.6]. For $f \in \bar{\Gamma}$, we denote $N(f)$ the family of all w^{*}-neighborhood of f in $\bar{\Gamma}$. Since $\bar{\Gamma}$ is w^{*}-compact and $L_{1}(X . \Gamma, \mu)$ is separable, $\bar{\Gamma}$ is metrizable [1]. Therefore $\bar{\Gamma} \times \cdots \times \bar{\Gamma}=(\bar{\Gamma})^{n}$ is also metrizable.

Lemma 3.3 [7]. Let $F=\left(F_{1}, \ldots, F_{p}\right): \Gamma^{n} \rightarrow \mathbb{R}^{p}$ be differentiable and convex on Γ^{n}, then for all $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right),\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in \Gamma^{n}$

$$
\begin{aligned}
& F\left(A_{1}, \ldots, A_{n}\right) \\
& \quad \geqq F\left(\Omega_{1}, \ldots, \Omega_{n}\right)+\left(\sum_{i=1}^{n}\left\langle f^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle f^{i p}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)
\end{aligned}
$$

A set function $F: S \rightarrow \mathbb{R}^{p}$ is said to be w^{*}-continuous at $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in S$, if for any sequence $\left\{\left(\Omega_{1}^{k}, \ldots, \Omega_{n}^{k}\right)\right\}$ in S and for each $i=1, \ldots, n, \chi_{\Omega_{i}^{k}} \xrightarrow{w^{*}} \chi_{\Omega_{i}}$ as $k \rightarrow \infty$ implies $F\left(\Omega_{1}, \ldots, \Omega_{n}\right)=\lim _{k \rightarrow \infty} F\left(\Omega_{1}^{k}, \ldots, \Omega_{n}^{k}\right) . F$ is said to be w^{*}-continuous on S, if F is w^{*}-continuous at each point $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in S$.

Lemma 3.4. Let S be a convex subfamily of Γ^{n} and $F: S \rightarrow \mathbb{R}^{p}$ be a w^{*}-continuous and convex set function. Then the set $\overline{F(S)}$ is \mathbb{R}_{+}^{p}-convex.

Proof. The proof of this lemma is similar to Lemma 3.1 of [2].
Lemma 3.5. Let $F: \Gamma^{n} \rightarrow \mathbb{R}^{p}$ be w^{*}-continuous and $G: \Gamma^{n} \rightarrow \mathbb{R}^{m}$ be convex. Suppose that there exists $\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right) \in \Gamma^{n}$ such that $G\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right)<0$. Then $\overline{F(A)}=\overline{F\left(A^{\prime}\right)}$ and $\overline{F(A)}$ is \mathbb{R}_{+}^{p}-convex.

Proof. Since $\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right)<0, A^{\prime}$ is not empty. Let $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in A^{\prime}$ and $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in A$, for each $i=1, \ldots, n$ and each positive integer m, let $\left\{V_{m, k}^{i}\right\}$ be the Morris sequence in Γ such that

$$
\chi_{V_{m, k}^{i}} \xrightarrow[\text { ask } w^{*}]{w_{n}} \frac{1}{m} \chi_{\Omega_{i}}+\left(1-\frac{1}{m}\right) \chi_{A_{i}} .
$$

By the convexity of G,

$$
\overline{\lim }_{k \rightarrow \infty} G\left(\left(V_{m, k}^{1}, \ldots, V_{m, k}^{n}\right)\right) \leqq \frac{1}{m} G\left(\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right)+\left(1-\frac{1}{m}\right) G\left(\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)\right)<0
$$

Thus there exists a natural number M such that

$$
G\left(\left(V_{m, k}^{1}, \ldots, V_{m, k}^{n}\right)\right)<0 \quad \text { for } \quad k \geqslant M
$$

This shows that $\left(V_{m, k}^{1}, \ldots, V_{m, k}^{n}\right) \in A^{\prime}$ for $k \geqslant M$. Hence

$$
\left(\chi_{v_{m, k}^{1}}, \ldots, \chi_{V_{m, k}^{n}}\right) \in \chi_{A^{\prime}}=\left\{\left(\chi_{B_{1}}, \ldots, \chi_{B_{n}}\right),\left(B_{1}, \ldots, B_{n}\right) \in A^{\prime}\right\} \subset \bar{\Gamma} \times \cdots \times \bar{\Gamma}
$$

We note that $\left(\chi_{A_{1}}, \ldots, \chi_{A_{n}}\right)$ is a cluster point of $\left\{\left(\chi_{\nu_{m, k}^{1}}, \ldots, \chi_{\nu_{m, k}^{n}}\right), m, k \in N\right\}$. Since $\bar{\Gamma}$ is metrizable in the w^{*}-topology and $\bar{\Gamma} \times \cdots \times \bar{\Gamma}$ is metrizable, there exists a subsequence $\left\{\left(V_{l}^{1}, \ldots, V_{l}^{n}\right)\right\}$ of $\left\{\left(V_{m, k}^{1}, \ldots, V_{m, k}^{n}\right)\right\}$ such that $\chi_{\nu_{l}^{i}} \xrightarrow[\text { as } i \rightarrow \infty]{w^{*}} \chi_{A_{i}}$ for each $i=1, \ldots, n$. Since F is w^{*}-continuous, we have

$$
\lim _{l \rightarrow \infty} F\left(\left(V_{l}^{1}, \ldots, V_{l}^{n}\right)\right)=F\left(\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)\right)
$$

This shows that $F\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \overline{F\left(A^{\prime}\right)}$. Therefore $\overline{F(A)}=\overline{F\left(A^{\prime}\right)}$ and the lemma follows immediately from Lemma 3.4 and Corollary 3.2.

We say $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in \hat{A}$ (resp. $\left.\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in A\right)$ is a Pareto optimal solution to problem (P) (resp. (P1)) if

$$
F\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in \underline{e}(\hat{A})\left(\text { resp. } F\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in \underline{e}(A)\right)
$$

Definition 3.6. $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in A$ is said to be a proper \mathbb{R}_{+}^{P}-solution of (P1) if $\overline{F(A)+\mathbb{R}_{+}^{p}-F\left(\Omega_{1}, \ldots, \Omega_{n}\right)} \cap \mathbb{R}_{-}^{p}=\{0\}$.

Lemma 3.7. Suppose that S is a nonempty subfamily of $\Gamma^{n}, F=$ $\left(F_{1}, \ldots, F_{p}\right): S \rightarrow \mathbb{R}^{p}$, and $\overline{F(S)}$ is \mathbb{R}_{+}^{p}-convex. Then $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in S$ is a proper \mathbb{R}_{+}^{p}-solution of $(\mathrm{P} 1)$ if and only if $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ is optimal for $(\mathrm{P} 1(\lambda))$ for some $\lambda \in$ int \mathbb{R}_{+}^{p}, where

$$
\begin{align*}
& \min \sum_{i=1}^{p} \lambda_{i} F_{i}\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \\
& \text { subject to }\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in S
\end{align*}
$$

Proof. The proof of this lemma is the same as Theorem 3.1 of [2].
Theorem 3.8. Let $F=\left(F_{1}, \ldots, F_{p}\right): \quad \Gamma^{n} \rightarrow \mathbb{R}^{p}$ be w^{*}-continuous and convex and $G: \Gamma^{n} \rightarrow \mathbb{R}^{m}$ be convex. Suppose that there exists $\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right) \in \Gamma^{n}$ such that $G\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right)<0$. Then $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in A$ is a proper \mathbb{R}_{+}^{p}-solution if and only if $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ is optimal for $(\operatorname{MP1}(\lambda))$ for some $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in$ int \mathbb{R}_{+}^{p} where

$$
\begin{align*}
& \min \sum_{i=1}^{p} \lambda_{i} F_{i}\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \tag{MP}\\
& \text { subject to }\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in A
\end{align*}
$$

Proof. This theorem follows immediately from Lemmas 3.5 and 3.7.
Definition 3.9. A point $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in \Gamma^{n}$ is said to be a local minimum to problem (P1) if there exists $\delta>0$ such that $F\left(\Omega_{1}, \ldots, \Omega_{n}\right) \leqq F\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)$ for all $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \Gamma^{n}, \quad G\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \leqq 0$ satisfying $d\left[\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)\right.$, $\left.\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right]<\delta$.

Lemma 3.10 [3, Corollary 3.9]. In problem (P1) if $F: \Gamma^{n} \rightarrow \mathbb{R}^{1}$ and $G=\left(G_{1}, \ldots, G_{m}\right): \Gamma^{n} \rightarrow \mathbb{R}^{m}$ are differentiable at $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in \Gamma^{n}$. Suppose that $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ is a local minimum to problem (P 1) and that there exists $\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right) \in \Gamma^{n}$ such that

$$
\begin{equation*}
G_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right)+\sum_{i=1}^{n}\left\langle g_{\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}}^{i j}, \chi_{\Omega_{i}}-\chi_{\Omega_{i}}\right\rangle<0, \quad j=1, \ldots, m \tag{5}
\end{equation*}
$$

Then there exist $\lambda_{1}, \ldots, \lambda_{n}$ such that

$$
\begin{equation*}
\left\langle f^{i}+\sum_{j=1}^{m} \lambda_{j} g^{i j}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle \geqslant 0 \tag{6}
\end{equation*}
$$

for all $\Lambda_{i} \in \Gamma, i=1, \ldots, n$.

$$
\begin{align*}
\lambda_{j} G_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right) & =0 \tag{7}\\
\lambda_{1}, \ldots, \lambda_{m} & \geqslant 0 \tag{8}\\
G_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right) & \leqslant 0, \quad j=1, \ldots, m \tag{9}
\end{align*}
$$

where $g_{\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}}^{i j}$ is the ith partial derivative of G_{j} at $\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right)$.
Theorem 3.11 (Necessary and Sufficient Conditions for Constrained Local Minimum). In problem (P 1), if $F=\left(F_{1}, \ldots, F_{p}\right): \Gamma^{n} \rightarrow \mathbb{R}^{p}$ and $G=\left(G_{1}, \ldots, G_{m}\right): \Gamma^{n} \rightarrow \mathbb{R}^{m}$ are convex on Γ^{n} and differentiable at $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in \Gamma^{n}$, suppose that $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ is a proper \mathbb{R}_{+}^{p}-solution of problem (P1). Suppose further that there exist $\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right)$ and $\left(B_{1}, \ldots, B_{n}\right) \in \Gamma^{n}$ such that

$$
\begin{equation*}
G\left(\Omega_{1}, \ldots, \Omega_{n}\right)+\left(\sum_{i=1}^{n}\left\langle g_{\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}}^{1}, \chi_{\Omega_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle g_{\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}}^{i m}, \chi_{\hat{\Omega}_{i}}-\chi_{\Omega_{i}}\right\rangle\right)<0 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
G\left(B_{1}, \ldots, B_{n}\right)<0 \tag{11}
\end{equation*}
$$

Then there exist $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in$ int $\mathbb{R}_{+}^{p}, \mu=\left(\mu_{1}, \ldots, \mu_{m}\right) \in \mathbb{R}_{+}^{m}$ such that

$$
\begin{align*}
\left\langle\sum_{j=1}^{p} \lambda_{j} f^{i j}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{\Lambda_{i}}-\chi_{\Omega_{i}}\right\rangle \geqslant 0, & i=1, \ldots, m, \Lambda_{i} \in \Gamma \tag{12}\\
\mu_{j} G_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right)=0, & j=1, \ldots, m \tag{13}\\
G_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right) \leqslant 0, & j=1, \ldots, m . \tag{14}
\end{align*}
$$

Conversely, if there exist $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in$ int $\mathbb{R}_{+}^{p}, \mu=\left(\mu_{1}, \ldots, \mu_{m}\right) \in \mathbb{R}_{+}^{m}$, and $\left(B_{1}, \ldots, B_{n}\right) \in \Gamma^{n}$ such that (11), (12), (13), and (14) hold, then $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ is a proper \mathbb{R}_{+}^{p}-solution of problem ($\mathbf{P} 1$).

Proof. Since ($\Omega_{1}, \ldots, \Omega_{n}$) is a proper \mathbb{R}_{+}^{p}-solution of problem (P1), it follows from Theorem 3.8 that there exists $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in$ int \mathbb{R}_{+}^{p} such that

$$
\left\langle\lambda, F\left(\lambda_{1}, \ldots, \Lambda_{n}\right)\right\rangle \geqslant\left\langle\lambda, F\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right\rangle
$$

for all $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in A$. Then by Lemma 3.10, there exists $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right) \in$ \mathbb{R}_{+}^{m} such that (12), (13), (14) are true.

Conversely, if there exist $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in$ int $\mathbb{R}_{+}^{p}, \mu=\left(\mu_{1}, \ldots, \mu_{m}\right) \in \mathbb{R}_{+}^{m}$ and (B_{1}, \ldots, B_{n}) $\in \Gamma^{n}$ such that (11), (12), (13), and (14) hold. Since F and G are differentiable and convex on Γ^{n}, it follows from Lemma 3.3 that for all $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \Gamma^{n}$

$$
\begin{align*}
& F\left(A_{1}, \ldots, A_{n}\right)-F\left(\Omega_{1}, \ldots, \Omega_{n}\right) \\
& \quad \geqq\left(\sum_{i=1}^{n}\left\langle f^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle f^{i p}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right) \tag{15}\\
& \quad G\left(A_{1}, \ldots, \Lambda_{n}\right)-G\left(\Omega_{1}, \ldots, \Omega_{n}\right) \\
& \quad \geqq\left(\sum_{i=1}^{n}\left\langle g^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle g^{i m}, \chi_{\Lambda_{i}}-\chi_{\Omega_{i}}\right\rangle\right) \tag{16}
\end{align*}
$$

Since $\lambda \in$ int $\mathbb{R}_{+}^{p}, \mu \in \mathbb{R}_{+}^{m}$, it follows from (15), 16), and (12) that

$$
\begin{aligned}
\langle\lambda, F & \left.\left(\Lambda_{1}, \ldots, A_{n}\right)-F\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right\rangle+\left\langle\mu, G\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)-G\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right\rangle \\
\geqslant & \left\langle\lambda,\left(\sum_{i=1}^{n}\left\langle f^{i 1}, \chi_{\Lambda_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle f^{i p}, \chi_{\Lambda_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \\
& +\left\langle\mu,\left(\sum_{i=1}^{n}\left\langle g^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle g^{i m}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \\
= & \sum_{i=1}^{n}\left\langle\sum_{j=1}^{p} \lambda_{j} f^{j}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{\Lambda_{i}}-\chi_{\Omega_{i}}\right\rangle \geqslant 0 .
\end{aligned}
$$

As $\mu \in \mathbb{R}_{+}^{m}, \mu_{j} G_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right)=0, j=1, \ldots, m$, we have

$$
\begin{aligned}
& \left\langle\lambda, F\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)-F\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right\rangle \\
& \quad \geqslant\left\langle\lambda, F\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)-F\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right\rangle+\left\langle\mu, G\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)-G\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right\rangle \\
& \quad \geqslant 0
\end{aligned}
$$

For any $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in A,\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ is a proper \mathbb{R}_{+}^{p}-solution follows immediately from Theorem 3.8.

Remark 3.12. In Theorem 3.11, if the condition

$$
\left\langle\sum_{j=1}^{p} \lambda_{j} f^{i j}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle \geqslant 0
$$

for all $i=1, \ldots, n$ and all $\Lambda_{i} \in \Gamma$ is replaced by

$$
\sum_{i=1}^{n}\left\langle\sum_{j=1}^{p} \lambda_{j} f^{i j}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{\Lambda_{i}}-\chi_{\Omega_{i}}\right\rangle \geqslant 0
$$

for all $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \Gamma^{n}$, we see that the theorem is still true.

As a consequence of Theorem 3.11, we have the following two theorems.
Theorem 3.13. In problem (P1), let $F=\left(F_{1}, \ldots, F_{p}\right): \Gamma^{n} \rightarrow \mathbb{R}^{p}$, and $G=\left(G_{1}, \ldots, G_{m}\right): \quad \Gamma^{n} \rightarrow \mathbb{R}^{m}$ be convex on Γ^{n} and differentiable at $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in \Gamma^{n}$. Suppose that $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ is a proper \mathbb{R}_{+}^{P}-solution of problem (P1). Suppose further that there exist $\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right)$ and $\left(B_{1}, \ldots, B_{n}\right) \in \Gamma^{n}$ such that

$$
G\left(\Omega_{1}, \ldots, \Omega_{n}\right)+\left(\sum_{i=1}^{n}\left\langle g_{\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}}^{i}, \chi_{\Omega_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle g_{\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}}^{i m}, \chi_{\hat{\Omega}_{i}}-\chi_{\Omega_{i}}\right\rangle\right)<0
$$

and $G\left(B_{1}, \ldots, B_{n}\right)<0$, then there exists $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right) \in \mathbb{R}_{+}^{m}$ such that for each $i=1, \ldots, n$,

$$
\begin{gather*}
\left(f^{i 1}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \ldots, f^{i p}+\sum_{j=1}^{m} \mu_{j} g^{i j}\right) \text { separates } \Omega_{i}, \tag{17}\\
\mu_{j} G_{j}\left(\Omega_{n}, \ldots, \Omega_{n}\right)=0, \quad j=1, \ldots, m \tag{18}\\
G_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right) \leqslant 0, \quad j=1, \ldots, m \tag{19}
\end{gather*}
$$

where $g_{\Omega_{1}, \ldots,, \hat{\Omega}_{n}}^{i j}$ denotes ith partial derivative of G_{j} at $\left(\hat{\Omega}_{1}, \ldots, \hat{\Omega}_{n}\right)$.
Proof. It follows from Theorem 3.11, there exist $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in$ int $\mathbb{R}_{+}^{\mu}, \mu=\left(\mu_{1}, \ldots, \mu_{m}\right) \in \in \mathbb{R}_{+}^{m}$ such that (12), (13), and (14) are true. Without loss of generality, we may assume that $\sum_{j=1}^{p} \lambda_{j}=1$. In view of (12), we have for each $i=1,2, \ldots, n$,

$$
\begin{array}{r}
\left\langle\lambda,\left(\left\langle f^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots,\left\langle f^{i p}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle+\left\langle\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle \geqslant 0 \\
\text { for all } \Lambda_{i} \in \Gamma . \tag{20}
\end{array}
$$

Since $\sum_{i=1}^{n} \lambda_{i}=1$, it follows from (20) that

$$
\begin{aligned}
& \left\langle\lambda,\left(\left\langle f^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots,\left\langle f^{i p}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right. \\
& \left.\quad+\left(\left\langle\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots,\left\langle\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \geqslant 0 \quad \text { for all } \Lambda_{i} \in \Gamma .
\end{aligned}
$$

Therefore for each $i=1, \ldots, n$ and $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \Gamma^{n}$,

$$
\begin{align*}
& \left\langle\lambda,\left(\left\langle f^{i 1}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{A_{i}}\right\rangle, \ldots,\left\langle f^{i p}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{A_{i}}\right\rangle\right)\right\rangle \\
& \quad \geqslant\left\langle\lambda,\left(\left\langle f^{i 1}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{\Omega_{i}}\right\rangle, \ldots,\left\langle f^{i p}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{\Omega_{i}}\right\rangle\right)\right\rangle \tag{21}
\end{align*}
$$

Then by Lemma 2.6 and (21),

$$
\left(\left\langle f^{i 1}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{\Omega_{i}}\right\rangle, \ldots,\left\langle f^{i p}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{\Omega_{i}}\right\rangle\right) \in e\left(Y_{i}\right),
$$

where

$$
Y_{i}=\left\{\left(\left\langle f^{i 1}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{\Lambda_{i}}\right\rangle, \ldots,\left\langle f^{i p}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{A_{i}}\right\rangle\right) ; A_{i} \in \Gamma\right\} .
$$

Since Y_{i} is convex by Liapunov's Lemma (Lemma 2.12), we get by (21) and Lemma 2.11 that

$$
\left(\left\langle f^{i 1}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{\Omega_{i}}\right\rangle, \ldots,\left\langle f^{i p}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{\Omega_{i}}\right\rangle\right)
$$

is a properly efficient point of Y_{i} for each $i=1, \ldots, n$.
This shows that for each $i=1, \ldots, n$

$$
\left(f^{i 1}+\sum_{j=1}^{m} \lambda_{j} g^{i j}, \ldots, f^{i p}+\sum_{j=1}^{m} \lambda_{j} g^{i j}\right) \text { separates } \Omega_{i}
$$

and the proof of the theorem is completed.
The following theorem gives the sufficient conditions for the existence of the proper \mathbb{R}_{+}^{p}-solution.

Theorem 3.14. In problem (P 1) if F and G are differentiable and convex on Γ^{n}. Suppose that there exist $\left(B_{1}, \ldots, B_{n}\right) \in \Gamma^{n}, \lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in \operatorname{int} \mathbb{R}_{+}^{p}$, $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right) \in \mathbb{R}_{+}^{m}$ such that (11), (17), (18), and (19) hold, then $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in \Gamma^{n}$ is a proper \mathbb{R}_{+}^{p}-solution of problem (P 1).

Proof. By Lemmas 2.11 and 2.12 , there exists $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in$ int \mathbb{R}_{+}^{p} such that for each $i=1, \ldots, n$ and for all $\Lambda_{i} \in \Gamma$,

$$
\begin{aligned}
& \left\langle\lambda,\left(\left\langle f^{i 1}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{A_{i}}\right\rangle, \ldots,\left\langle f^{i p}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{\Lambda_{i}}\right\rangle\right)\right\rangle \\
& \quad \geqslant\left\langle\lambda,\left(\left\langle f^{i 1}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{\Omega_{i}}\right\rangle, \ldots,\left\langle f^{i p}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{\Omega_{i}}\right\rangle\right)\right\rangle
\end{aligned}
$$

or

$$
\begin{equation*}
\left\langle\lambda,\left(\left\langle f^{i 1}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots,\left\langle f^{i p}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \geqslant 0 \tag{22}
\end{equation*}
$$

for all $i=1, \ldots, n$ and $\Lambda_{i} \in \Gamma$. Without loss of generality, we may assume that $\sum_{j=1}^{p} \lambda_{j}=1$. From (22) and $\sum_{j=1}^{p} \lambda_{j}=1$, we see that

$$
\sum_{i=1}^{n}\left\langle\sum_{j=1}^{p} \lambda_{j} f^{i j}+\sum_{j=1}^{m} \mu_{j} g^{i j}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle \geqslant 0
$$

for all $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \Gamma^{n}$. By Theorem 3.11 and Remark 3.12, we complete the proof of the theorem.

Definition 3.15. A set function $F: S \rightarrow \mathbb{R}$ is called quasiconvex on a convex subfamily S of Γ^{n} if for each $\left(\Omega_{1}, \ldots, \Omega_{n}\right),\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)$ in S, $\lambda \in[0,1]$, there exists a Morris sequence $\left\{V_{i}^{k}(\lambda)\right\}$ in Γ associated with $\left(\Omega_{i}, \Lambda_{i}, \lambda\right)$ for each $i=1, \ldots, n$ such that $\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right) \in S$ for all $k \in N$ and

$$
\lim _{k \rightarrow \infty} F\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right) \leqslant \max \left\{F\left(\Omega_{1}, \ldots, \Omega_{n}\right), F\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)\right\}
$$

Definition 3.16. A set function $F=\left(F_{1}, \ldots, F_{p}\right): S \rightarrow \mathbb{R}^{p}$ is called quasiconvex on a convex subfamily S of Γ^{n}, if for each $i=1, \ldots, p, F_{i}$ is quasiconvex on S.

Remark. It is easy to see that if a set function is convex, then it is quasiconvex, but the converse is not true, in [8], we give an example of a quasiconvex set function which is not convex.

Lemma 3.17. Let S be a nonempty convex subfamily of Γ^{n} and $F=$ $\left(F_{1}, \ldots, F_{p}\right): S \rightarrow \mathbb{R}^{p}$ be differentiable and quasiconvex on S. If for any $\left(\Omega_{1}, \ldots, \Omega_{n}\right),\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in S$ with $F\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \leqq F\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ then

$$
\left(\sum_{i=1}^{m}\left\langle f^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{m}\left\langle f^{i p}, \chi_{\Lambda_{i}}-\chi_{\Omega_{i}}\right\rangle\right) \leqq 0 .
$$

Proof. Since F is quasiconvex on S, it follows that F_{j} is quasiconvex on S for each $j=1, \ldots, n$. Let $\lambda \in(0,1)$, then there exists a Morris sequence $\left\{V_{i}^{k}(\lambda)\right\}$ in Γ associated with $\left(\Omega_{i}, \Lambda_{i}, \lambda\right)$ for each $i=1, \ldots, n$ such that $\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right) \in S$ for all $k \in N$ and

$$
\varlimsup_{k \rightarrow \infty} F_{j}\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right) \leqslant F_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right)
$$

Since F is differentiable at $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in S$, it follows that $F_{j}\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right)$

$$
\begin{aligned}
= & F_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right)+\sum_{i=1}^{n}\left\langle f^{i j}, \chi_{V_{i}^{k}(\lambda)}-\chi_{\Omega_{i}}\right\rangle \\
& +d\left(\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right),\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right) \cdot E\left(\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right),\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& E\left(\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right),\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right) \rightarrow 0 \\
& \quad \text { as } d\left(\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right),\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right) \rightarrow 0 .
\end{aligned}
$$

In theorem 3 of [7], we show that

$$
\begin{aligned}
\varlimsup_{k \rightarrow \infty} & d\left(\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right),\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right) \\
& \cdot E\left(\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right),\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right) \in o(\lambda)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \overline{\lim }_{k \rightarrow \infty} F_{j}\left(V_{1}^{k}(\lambda), \ldots, V_{n}^{k}(\lambda)\right) \\
& \quad=F_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right)+\lambda \sum_{i=1}^{n}\left\langle f^{i j}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle+o(\lambda) \\
& \quad \leqslant F_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right)
\end{aligned}
$$

That is,

$$
\lambda \sum_{i=1}^{n}\left\langle f^{i j}, \chi_{A_{i}}-\chi_{s_{i}}\right\rangle+o(\lambda) \leqslant 0, \quad \text { for all } j=1, \ldots, p
$$

Dividing both sides of the above inequality by λ and letting $\lambda \rightarrow 0$, we have

$$
\sum_{i-1}^{n}\left\langle f^{i j}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle \leqslant 0, \quad \text { for all } j=1, \ldots, p
$$

It follows that

$$
\left(\sum_{i=1}^{n}\left\langle f^{i 1}, \chi_{\Lambda_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle f^{i p}, \chi_{\Lambda_{i}}-\chi_{\Omega_{i}}\right\rangle\right) \leqq 0
$$

The following theorem gives sufficient conditions for existence of a Pareto optimal solution to problem (P) with convex objective function and non-convex constrained functions.

Theorem 3.18. In problem (P), if S is a convex subfamily of Γ^{n} and $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in S$. Suppose that
(i) F, G, and H are differentiable at $\left(\Omega_{1}, \ldots, \Omega_{-n}\right)$.
(ii) $F: S \rightarrow \mathbb{R}^{p}$ is a convex set function.
(iii) $G_{I}=\left(G_{s_{1}}, \ldots, G_{s_{j}}\right)$ and $H=\left(H_{1}, \ldots, H_{r}\right)$ are quasiconvex on S, where $I=\left\{i ; G_{i}\left(\Omega_{1}, \ldots, \Omega_{n}\right)=0\right\}=\left\{s_{1}, \ldots, s_{j}\right\}$.
(iv) There exists $u \in$ int $\mathbb{R}_{+}^{p}, v_{l} \in \mathbb{R}_{+}^{j}, w \in \mathbb{R}_{+}^{r}$, such that

$$
\begin{aligned}
& \left\langle u,\left(\sum_{i=1}^{n}\left\langle f^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle f^{i p}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \\
& \quad+\left\langle v_{I},\left(\sum_{i=1}^{n}\left\langle g^{i s_{i}}, \chi_{\Lambda_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle g^{i s_{j}}, \chi_{A_{i}}-\chi_{s_{i}}\right\rangle\right)\right\rangle \\
& \quad+\left\langle w,\left(\sum_{i=1}^{n}\left\langle h^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle h^{i r}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \geqslant 0 .
\end{aligned}
$$

(v) $G\left(\Omega_{1}, \ldots, \Omega_{n}\right) \leqq 0$.
(vi) $H\left(\Omega_{1}, \ldots, \Omega_{n}\right)=0$.

Then $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ is a Pareto optimal solution to problem (P).
Proof. Suppose that ($\Omega_{1}, \ldots, \Omega_{n}$) is not a Pareto optimal solution to problem (P). Then there exists $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \Gamma^{n}$ such that

$$
\begin{array}{r}
F\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)-F\left(\Omega_{1}, \ldots, \Omega_{n}\right) \leqslant 0 \\
G\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \leqq 0 \\
H\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)=0 .
\end{array}
$$

Hence

$$
\begin{aligned}
G_{I}\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) & \leqq G_{I}\left(\Omega_{1}, \ldots, \Omega_{n}\right)=0 \\
H\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) & =H\left(\Omega_{1}, \ldots, \Omega_{n}\right)=0
\end{aligned}
$$

By the convexity of F and quasiconvexity of G, and H, Lemmas 3.3 and 3.18, we have

$$
\begin{gather*}
\left(\sum_{i=1}^{n}\left\langle f^{n 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle f^{i p}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right) \\
\leqq F\left(A_{1}, \ldots ., \Lambda_{n}\right)-F\left(\Omega_{1}, \ldots, \Omega_{n}\right) \leqslant 0 \tag{23}\\
\left(\sum_{i=1}^{n}\left\langle g^{i s_{1}}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle g^{i s_{j}}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right) \leqq 0 \tag{24}\\
\left(\sum_{i=1}^{n}\left\langle h^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle h^{i r}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right) \leqq 0 . \tag{25}
\end{gather*}
$$

Since $u>0, v \geqq 0, w \geqq 0$, it follows from (23), (24), (25) that we have

$$
\begin{aligned}
& \left\langle u,\left(\sum_{i=1}^{n}\left\langle f^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle f^{i p}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \\
& \quad+\left\langle v_{I},\left(\sum_{i=1}^{n}\left\langle g^{i s_{1}}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle g^{i s_{j}}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \\
& \quad+\left\langle w,\left(\sum_{i=1}^{n}\left\langle h_{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle h^{i r}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle<0 .
\end{aligned}
$$

This inequality contradicts hypothesis (iv). Hence $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ is a Pareto optimal solution to problem (P).

Definition 3.19. Let S be a nonempty subfamily of Γ^{n} and let $F=\left(F_{1}, \ldots, F_{p}\right): S \rightarrow \mathbb{R}^{p}$ be differentiable on S. The set function F is said to be pseudoconvex on S if for each $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ and $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)$ in S, with

$$
\left(\sum_{i=1}^{n}\left\langle f^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle f^{i p}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right) \geqq 0
$$

we have

$$
F\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \geqq F\left(\Omega_{1}, \ldots, \Omega_{n}\right)
$$

Remark. It follows from Lemma 3.3 that if F is a convex set function, then it is pseudoconvex, but the converse is not true. In [8], we give an example to show that a pseudoconvex set function is not convex.

Theorem 3.20. In problem (P), suppose that
(i) F, G_{I}, and H are differentiable at $\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in S \subset \Gamma^{n}$, where

$$
I=\left\{i ; G_{i}\left(\Omega_{1}, \ldots, \Omega_{n}\right)=0\right\}=\left\{s_{1}, \ldots, s_{j}\right\} .
$$

(ii) There exist $u \in \operatorname{int} \mathbb{R}_{+}^{p}, v \in \mathbb{R}_{+}^{j}$, and $w \in \mathbb{R}_{+}^{r}$ such that

$$
\begin{align*}
& \left\langle u,\left(\sum_{i=1}^{n}\left\langle f^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle f^{i p}, \chi_{\Lambda_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \\
& \quad+\left\langle v,\left(\sum_{i=1}^{n}\left\langle g^{i s_{1}}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle g^{i s_{j}}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \\
& \quad+\left\langle w,\left(\sum_{i=1}^{n}\left\langle h^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle h^{i r}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \geqslant 0 \tag{26}
\end{align*}
$$

for all $\left(\Lambda_{1}, \ldots, A_{n}\right) \in \hat{A}$.
(iii) $G\left(\Omega_{1}, \ldots, \Omega_{n}\right) \leqq 0$.
(iv) $H\left(\Omega_{1}, \ldots, \Omega_{n}\right)=0$.
(v) $\sum_{i=1}^{p} u_{i} F_{i}+\sum_{i \in I} v_{i} G_{i}+\sum_{j=1}^{r} w_{j} H_{j}$ is pseudoconvex on S.

Then $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ is a Pareto optimal solution to problem (\mathbf{P}).
Proof. Assume that $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ is not a Pareto optimal solution to problem (P), then there exists $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \hat{A}, \quad G\left(A_{1}, \ldots, \Lambda_{n}\right) \leqq 0$, $H\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)=0$ such that

$$
F\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \leqslant F\left(\Omega_{1}, \ldots, \Omega_{n}\right)
$$

By (i), (iv), we see that

$$
G_{I}\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \leqq 0=G_{I}\left(\Omega_{1}, \ldots, \Omega_{n}\right)
$$

and

$$
H\left(A_{1}, \ldots, A_{n}\right)=H\left(\Omega_{1}, \ldots, \Omega_{n}\right)=0
$$

Since $u \in \operatorname{int} \mathbb{R}_{+}^{p}, v \in \mathbb{R}_{+}^{j}$, it follows that

$$
\begin{aligned}
& \left\langle u, F\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)\right\rangle+\left\langle v, G_{I}\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)\right\rangle+\left\langle w, H\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)\right\rangle \\
& \quad<\left\langle u, F\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right\rangle+\left\langle v, G_{I}\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right\rangle+\left\langle w, H\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right\rangle .
\end{aligned}
$$

By assumption, $\sum_{i=1}^{p} u_{i} F_{i}+\sum_{i \in I} v_{i} G_{i}+\sum_{j=1}^{r} w_{j} H_{j}$ is pseudoconvex at $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$, we have

$$
\begin{align*}
& \left\langle u,\left(\sum_{i=1}^{n}\left\langle f^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle f^{i p}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \\
& \quad+\left\langle v,\left(\sum_{i=1}^{n}\left\langle g^{i s_{1}}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle g^{i s_{j}}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \\
& \quad+\left\langle w,\left(\sum_{i=1}^{n}\left\langle h^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle h^{i r}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle<0 \tag{27}
\end{align*}
$$

for all $\left(\Lambda_{1}, \ldots, A_{n}\right) \in \hat{A}$. But (27) contradicts hypothesis (ii). Hence ($\Omega_{1}, \ldots, \Omega_{n}$) is a Pareto optimal solution to problem (P).

Theorem 3.21. In problem (P), suppose that S is a convex subfamily of $\Gamma^{n},\left(\Omega_{1}, \ldots, \Omega_{n}\right) \in S$, and
(i) F, G, and H are differentiable at $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$.
(ii) There exist $u \in$ int $\mathbb{R}_{+}^{p}, v \in \mathbb{R}_{+}^{m}, w \in \mathbb{R}_{+}^{r}$ such that
(a) $\sum_{i=1}^{p} u_{i} F_{i}$ is pseudoconvex on S,
(b) $\sum_{i \in I} v_{i} G_{i}$ is quasiconvex on S,
(c) $\sum_{i=1}^{r} w_{i} H_{i}$ is quasiconvex on S,
(d) $\left\langle u,\left(\sum_{i=1}^{n}\left\langle f^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle f^{i p}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle$

$$
\begin{aligned}
& +\left\langle v,\left(\sum_{i=1}^{n}\left\langle g^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle g^{i m}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \\
& +\left\langle w,\left(\sum_{i=1}^{n}\left\langle h^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle h^{i r}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \geqslant 0
\end{aligned}
$$

for all $\left(A_{1}, \ldots, A_{n}\right) \in \hat{A}$.
(iii) $\left\langle v, G\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right\rangle=0$.
(iv) $G\left(\Omega_{1}, \ldots, \Omega_{n}\right) \leqq 0$.
(v) $H\left(\Omega_{1}, \ldots, \Omega_{n}\right)=0$.

Then ($\Omega_{1}, \ldots, \Omega_{n}$) is a Pareto optimal solution to problem (P).
Proof. Since $\left\langle v, G\left(\Omega_{1}, \ldots, \Omega_{n}\right)\right\rangle=0, G\left(\Omega_{1}, \ldots, \Omega_{n}\right) \leqq 0, v \geqq 0$, it follows that

$$
v_{i} G_{i}\left(\Omega_{1}, \ldots, \Omega_{n}\right)=0 \quad \text { for all } i
$$

Therefore

$$
\sum_{i \in I} v_{i} G_{i}\left(\Omega_{1}, \ldots, \Omega_{n}\right)=0
$$

For any $\left(A_{1}, \ldots, A_{n}\right) \in S$ with $G\left(A_{1}, \ldots, A_{n}\right) \leqq 0$, we have

$$
\sum_{i \in I} v_{i} G_{i}\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \leqslant \sum_{i \in I} v_{i} G_{i}\left(\Omega_{1}, \ldots, \Omega_{n}\right) .
$$

Since $\sum_{i \in I} v_{i} G_{i}$ is quasiconvex on S, it follows that

$$
\begin{equation*}
\left\langle v_{I},\left(\sum_{i=1}^{n}\left\langle g^{i s_{1}}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle g^{i s_{j}}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \leqslant 0 \tag{28}
\end{equation*}
$$

for $\left(A_{1}, \ldots, A_{n}\right) \in \hat{A}$. As $v_{j}=0$ for each $j \in\{1, \ldots, m\} \backslash I=\left(t_{1}, \ldots, t_{l}\right)$, we have

$$
\begin{equation*}
\left\langle v_{\{1, \ldots, m\} \backslash I}\left(\sum_{i=1}^{n}\left\langle g^{i t_{1}}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle g^{i t_{i}}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle=0 \tag{29}
\end{equation*}
$$

for all $\quad\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \hat{A}$. Similarly $\quad \sum_{j=1}^{r} w_{j} H_{j}\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)=$ $\sum_{j=1}^{r} w_{j} H_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right)=0$ for all $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \hat{A}$. As $\sum_{j=1}^{r} w_{j} H_{j}$ is quasiconvex on S, we have

$$
\begin{equation*}
\left\langle w,\left(\sum_{i=1}^{n}\left\langle h^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle h^{i r}, \chi_{A_{i}}-\chi_{\left.\Omega_{i}\right\rangle}\right\rangle\right)\right\rangle \leqslant 0 \tag{30}
\end{equation*}
$$

for all $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \hat{A}$. By (ii)(d), (28), (29), and (30), we have

$$
\left\langle u,\left(\sum_{i=1}^{n}\left\langle f^{i 1}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle f^{i p}, \chi_{\Lambda_{i}}-\chi_{\Omega_{i}}\right\rangle\right)\right\rangle \geqslant 0
$$

for all $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \hat{A}$. Since $\sum_{i=1}^{p} u_{i} F_{i}$ is assumed to be pseudoconvex on S, we have

$$
\left\langle u, F\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)\right\rangle \geqslant\left\langle u, F\left(\Omega_{1}, \ldots, \Omega_{m}\right)\right\rangle
$$

for all $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \hat{A}$. For $u \in$ int \mathbb{R}_{+}^{p}, it follows from Lemma 2.6 that ($\Omega_{1}, \ldots, \Omega_{n}$) is a Pareto optimal solution to problem (P).

Lemma 3.22 [5]. In problem (P 1), $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ is a Pareto optimal solution if and only if $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ minimize each F_{j} on the constraint set

$$
\begin{align*}
& C_{j}=\left\{\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \Gamma^{n}, F_{i}\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \leqslant F_{i}\left(\Omega_{1}, \ldots, \Omega_{n}\right),\right. \\
&\left.i \neq j \text { and } G\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \leqslant 0\right\} . \tag{3}
\end{align*}
$$

The following theorem establishes necessary conditions for a Pareto optimal solution of problem (P1) when the set functions are differentiable.

Theorem 3.23. Let the set functions $F=\left(F_{1}, \ldots, F_{p}\right): \Gamma^{n} \rightarrow \mathbb{R}^{p}$ and $G=$ $\left(G_{1}, \ldots, G_{m}\right): \Gamma^{n} \rightarrow \mathbb{R}^{m}$ be differentiable on Γ^{n}. Suppose that $\left(\Omega_{1}, \ldots, \Omega_{n}\right)$ is a Pareto optimal solution of (P 1) and for each $s=1, \ldots, p$ there exist $\left(\hat{\Omega}_{1}^{s}, \ldots, \hat{\Omega}_{n}^{s}\right) \in \Gamma^{n}$ such that
$G\left(\Omega_{1}, \ldots, \Omega_{n}\right)+\left(\sum_{i=1}^{n}\left\langle g_{\hat{S_{1}}, \ldots, \Omega_{n}^{i}}^{i,}, \chi_{\hat{\Omega}_{i}^{i}}-\chi_{\Omega_{i}}\right\rangle, \ldots, \sum_{i=1}^{n}\left\langle g_{\Omega_{1}}^{i m}, \ldots, \hat{\Omega}_{n}^{s}, \chi_{\Omega_{i}}-\chi_{\Omega_{i}}\right\rangle\right)<0$
and for each $j=1, \ldots, p, j \neq s$

$$
\left(\sum_{i=1}^{n}\left\langle f_{i S_{i}, \ldots, \delta_{n}}^{i j}, \chi_{\Omega_{2}}-\chi_{\Omega_{i}}\right\rangle\right)<0,
$$

then there exist $v=\left(v_{1}, \ldots, v_{p}\right) \in \operatorname{int} \mathbb{R}_{+}^{p}, \sum_{j=1}^{p} v_{j}=1, \lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}_{+}^{m}$ such that

$$
\begin{equation*}
\sum_{i=1}^{n}\left\langle\sum_{j=1}^{p} v_{j} f_{\Omega_{1}, \ldots, \Omega_{n}}^{i j}+\sum_{j=1}^{m} \lambda_{j} g_{\Omega_{1}, \ldots, \Omega_{n}}^{i j}, \chi_{\Lambda_{i}}-\chi_{\Omega_{i}}\right\rangle \geqslant 0 \tag{32}
\end{equation*}
$$

for all $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \Gamma^{n}$

$$
\begin{aligned}
\sum_{j=1}^{m} v_{j} G_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right) & =0 \\
G_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right) & \geqslant 0, \quad j=1, \ldots, m
\end{aligned}
$$

where $f_{\Lambda_{1}, \ldots, \Lambda_{n}}^{i j}, g_{A_{1}, \ldots, \Lambda_{n}}^{i j}$ are the i th partial derivatives of F_{j} and G_{j} at $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)$, respectively.

Proof. Since ($\Omega_{1}, \ldots, \Omega_{n}$) is a Pareto optimal solution of (P1), it follows from Lemma 3.23 that ($\Omega_{1}, \ldots, \Omega_{n}$) minimizes each F_{j} on the constraint set C_{j} of (31). Then by Lemma 3.9 for each $i=1, \ldots, n, j=1, \ldots, p$, there exist $\beta_{1 j}, \ldots, \beta_{m j}, \gamma_{1 j}, \ldots, \gamma_{j-1, j}, \gamma_{j+1, j}, \ldots, \gamma_{p j}$ such that

$$
\begin{equation*}
\left\langle f_{\Omega_{1}, \ldots, \Omega_{n}}^{i j}+\sum_{k=1}^{m} \beta_{k j} g_{\Omega_{1}, \ldots, \ldots, \Omega_{n}}^{i k}+\sum_{\substack{k=1 \\ k \neq j}}^{p} \gamma_{k j} f_{\Omega_{1}, \ldots, \Omega_{n}}^{i k}, \chi_{\Lambda_{i}}-\chi_{\Omega_{i}}\right\rangle \geqslant 0 \tag{33}
\end{equation*}
$$

for all $\Lambda_{i} \in \Gamma$

$$
\begin{aligned}
& \sum_{k=1}^{m} \beta_{k j} G_{k}\left(\Omega_{1}, \ldots, \Omega_{n}\right)=0 \\
& G_{k}\left(\Omega_{1}, \ldots, \Omega_{n}\right) \leqslant 0, \quad k=1, \ldots, m
\end{aligned}
$$

Letting $j=1, \ldots, p$ in (33) and then summing up, we obtain

$$
\begin{aligned}
& \left\langle\left(1+\sum_{j=2}^{p} \gamma_{1 j}\right) f_{\Omega_{1}, \ldots, \Omega_{n}}^{i 1}+\cdots+\left(1+\sum_{j=1}^{p-1} \gamma_{p j}\right) f_{\Omega_{1}, \ldots, \Omega_{n}}^{i p}\right. \\
& \left.\quad+\sum_{j=1}^{p} \sum_{k=1}^{m} \beta_{k j}\left\langle g_{\Omega_{1}, \ldots, \Omega_{n}}^{i k}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle\right\rangle \geqslant 0 \quad \text { for all } \Lambda_{i} \in \Gamma .
\end{aligned}
$$

Letting

$$
\mu_{s}=1+\sum_{\substack{j=1 \\ j \neq s}}^{p} \gamma_{s j}, \quad v_{j}=\frac{\mu_{j}}{\sum_{j=1}^{p}} \mu_{j}^{p}, \quad \lambda_{k}=\frac{\sum_{j=1}^{p} \beta_{k j}}{\sum_{j=1}^{p} \mu_{j}},
$$

then $\sum_{j=1}^{p} v_{j}=1, v=\left(v_{1}, \ldots, v_{p}\right) \in \operatorname{int} \mathbb{R}_{+}^{p}, \lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}_{+}^{m}$ and for all $i=1, \ldots, n$

$$
\begin{aligned}
&\left\langle\sum_{j=1}^{p} v_{j} f_{\Omega_{1}, \ldots, \Omega_{n}}^{i j}+\sum_{j=1}^{m} \lambda_{j} g_{\Omega_{1}, \ldots, \Omega_{n}}^{i j}, \chi_{A_{i}}-\chi_{\Omega_{i}}\right\rangle \geqslant 0 \quad \text { for all } A_{i} \in \Gamma . \\
& \sum_{j=1}^{m} \lambda_{j} G_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right)=\sum_{j=1}^{m} \sum_{i=1}^{p} \frac{\beta_{j i}}{\sum_{j=1}^{p} \mu_{j}} G_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right) \\
&=\frac{1}{\sum_{j=1}^{p} \mu_{j}} \sum_{j=1}^{m} \sum_{i=1}^{p} \beta_{j i} G_{j}\left(\Omega_{1}, \ldots, \Omega_{n}\right)=0
\end{aligned}
$$

Hence

$$
\sum_{i=1}^{n}\left\langle\sum_{j=1}^{p} v_{j} f_{\Omega_{1}, \ldots, \Omega_{n}}^{i j}+\sum_{j=1}^{m} \lambda_{j} g_{\Omega_{1}, \ldots, \Omega_{n}}^{i j}, \chi_{\Lambda_{i}}-\chi_{\Omega_{i}}\right\rangle \geqslant 0
$$

for all $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right) \in \Gamma^{n}$. We complete the proof of the theorem.

References

1. J. H. Chou, W. S. Hsia, and T. Y. Lee, Epigraph of convex set functions, J. Math. Anal. Appl. 118 (1986), 247-254.
2. J. H. Chou, W. S. Hsia, and T. Y. Lee, Proper D-solution of multiobjective programming with set functions, J. Optim. Theory Appl. 53 (1987), 247-258.
3. H. W. Corley, Optimization for n-set functions, J. Math. Anal. Appl. 127 (1987), 193-205.
4. H. C. Lai and L. J. Lin, The Fenchel-Moreau theorem for set functions, Proc. Amer. Math. Soc. 103 (1988), 85-90.
5. H. C. Lai and L. J. Lin, Moreau-Rockafellar type theorem of convex set functions, J. Math. Anal. Appl. 132 (1988), 558-571.
6. H. C. Lai and L. J. Lin, Optimality for set functions with values in ordered vector space, J. Optim. Theory Appl. 63 (1989), 405-423.
7. L. J. Lin, Optimality of differentiable vector-valued n-set functions, J. Math. Anal. Appl. 149 (1990), 255-270.
8. L. J. Lin, On the optimality of differentiable nonconvex n-set functions, J. Math. Anal. Appl., to appear.
9. H. C. Lai, S. S. Yang, and George R. Hwang, Duality in mathematical programming of set functions-On Fenchel duality theorem, J. Math. Anal. Appl. 95 (1983), 223-234.
10. H. C. Lai and S. S. Yang, Saddle point and duality in the optimization theory of convex set functions, J. Austral. Math. Soc. Ser. B 24 (1982), 130-137.
11. D. G. Luenberger, "Optimization by Vector Space Methods," Wiley, New York, 1969.
12. R. J. T. Morris, Optimal constrained selection of measurable subset, J. Math. Anal. Appl. 70 (1979), 546-562.
13. W. Rudin, "Functional Analysis," McGraw-Hill, New York, 1969.
14. K. Tanaka and Y. Maruyama, The multiobjective problem of set functions, J. Inform. Optim. Sci. 5 (1984), 283-306.
15. T. Tanino and Y. Sawaragi, Duality theory in multiobjective programming, J. Optim. Theory Appl. 27 (1979), 509-529.

[^0]: * This research was supported by the National Science Council of the Republic of China.

