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In a finite atomless measure space (X, r, n), the optimization problem of vector- 
valued n-set functions defined on a convex subfamily S of r” = f x x r is 
investigated. The necessary and sufficient conditions of Pareto optimal solution or 
proper RP,-solution of optimization problem with differentiable vector valued n-set 
functions are given. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

The general theory for optimizing set functions was first developed by 
Morris [12]. This type of problem arises in various areas and has many 
interesting applications in mathematics, engineering, and statistics, for 
example, in fluid flow, electrical insulator design, optimal plasma conline- 
ment (see Ref. [ 12]), and Neyman-Pearson lemma of statistics (see 
Ref. [3]). There are many results on the optimization problem of set 
functions, one can consult Refs. [12, 1, 2, 410, 141. All the previous 
results on this type of problem are only confined to set functions of a single 
set. Corley [3] started to give the concepts of partial derivatives and 
derivatives of real-valued n-set functions and developed the general theory 
of n-set functions. In [7], we study the vector valued n-set functions 
optimization problem. This paper is a continuous work of [7]. 
Throughout this paper, we assume that (X, r, p) is a finite atomless 
measure space with ,5,(X, r, p) separable. For any n E N, we let [w” be the 
n-dimensional Euclidean space. We also let SC P’= TX ... x r be a 
subfamily of r” and F: S + Rp, H: S --+ R’, and G: S -+ R” be vector- 
valued n-set functions defined on S. 
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We consider two optimization problems as 

minimize F(n, , . . . . A,) 
(P) 

subject to (/ii, . . . . ~,)ES, G(/i,, . . . . /i,)SO, H(n,, . . . . /i,)=O, 
and 

minimize F(n,, . . . . A,) 

subject to (A,, . . . . /i”)~r”, G(/i,, . . . . /i,) SO. 
(Pl) 

In [7], we define the derivative of vector-valued n-set functions, we 
establish the necessary and sufficient conditions for the existence of a weak 
local minimum to problem (Pl ) in terms of the partial derivative of vector- 
valued n-set functions involved. This paper is a continuous work of [7]. 
The sufficient conditions of Pareto optimal solution to problem (P) and 
the necessary conditions of pareto optimal solution of (Pl) with non- 
convex differentiable n-set functions are developed. The necessary and 
sufficient conditions of proper WC -solution to problem (Pl) with convex 
differentiable vector-valued n-set function are also derived. 

2. PRELIMINARIES 

We define a pseudometric don T”=rx . . . ~r={(n,,.,.,n,)(n~~r, 
i= 1, 2, . . . . n} as 

4-W,, . . . . Q,), (A 1, . . . . i [Pu(aiAnj)]2 

w 
3 

i= 1 

where (a,, . . . . Q,), (/ii, . . . . A,) E r” and s2, dni denote the symmetric dif- 
ference for 52, and ni. For f EL,(X, r, p) and Sz~r, the integral jn f dp 
will be denoted by (f, xn), where xn denotes the characteristic function 
of Q. 

DEFINITION 2.1. A set function F: r+ R is said to be differentiable at 
Sz E r if there exists f E L,(X, r, p) the derivative of F at Q such that 

FM I= F(Q) + <f, xn - xo > + ,W AA) E&4 A ), 

where lim jtw,u~-roW, A)=O. 

We define the partial derivatives of n-set functions. 

DEFINITION 2.2. Let F: r” + IR and (In,, . . . . Q,) E r”. Then F is said to 
have partial derivative with respect to Ai if the set function 

H(Ai)=F(s21, . . ..52i-l./ii,s2i+l,...,52,) 
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has derivative hoi at 52,. In this case we define the ith partial derivative of 
F at WI, . . . . Q,) to be fh ,,..., Rn = b,. 

Using the partial derivative of n-set function, we can define the derivative 
of vector-valued n-set functions. 

DEFINITION 2.3 [7]. Let Scf”, F=(F,, . . . . F,): S-+ R”, and 
(Q r, . . . . Q,)E S. Then F is said to be differentiable at (Q,, . . . . Q,) if the 
partials f$, ,,,,, R,, i = 1, 2, . . . . n, of Fj exist for each j= 1, 2, . . . . m and satisfy 

F(A 11 . . . . A,) 

=F(Q,r-,Q,)+ 
( 

i <fii ,,.... n,~n,-XP,) 
i= 1 i=l 

+ W,((Q,, . . . . Q,), (A,, . . . . 4J), 

for all (/i, , . . . . A,) E S, where 

wF((Q,, . . . . Q”), (A,, ..., A”)) --*. 
4(Q, 3 ...3 f&I), (A, > .*., A,)) 

as 4(Q,, . . . . Q,), (A 1, . . . . A,)) + 0. If F is differentiable at every point 
(Q,, . . . . Q,) of S, we say that F is differentiable on S. 

Throughout the paper if F=(F,,...,F,): Scf" --) Rp G=(G1,...,G,): 
S-, TV” and H= (H,, . . . . H,): S + R’ are differentiable at (Sz,, . . . . a,), we 
will denote f i’, gV, and h” the ith partial derivatives of Fj, G,, and Hi at 
(Q r, . . . . Q,) respectively. 

For two vectors x = (x1, . . . . xP) and y = (y,, . . . . y,) in p-dimensional 
Euclidean space Rp, we introduce the following notations 

(1) x < y iff xi < yi for all i = 1, 2, . . . . p. 

(2) x < y iff xi < yi for all i = 1,2, . . . . p and x # y. 
(3) x~yiffxi<yiforalli=1,2 ,..., p. 

The nonnegative orthant and the nonpositive orthant in RP are denoted by 

rw; = {xERP;x~o} and Rip = {xElRP;X~O}, 

respectively, where 0 is the zero vector (0, 0, . . . . 0) in RP. We also denote 
(x, y) =Cip,, x,y, as the inner product of x=(x,, . . . . xP) and y= 
(Y 1, ..*, yP) in Rp. For a set E c Rp, the set of all interior points of E will 
be denoted by int E and the set of closure of E in Rp will be denoted by i?. 

DEFINITION 2.4. A set E c IRP is said to be [w P,-convex if E + R ", is a 
convex set in Rp. 
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DEFINITION 2.5. A point x* is a lower efficient point of E c RP if x* E E 
and there is no XE E such that x <x*. We denote the set of all lower 
efficient points of E by g(E). 

LEMMA 2.6 [ 143. Suppose that for a point x* E E E Rp, there exists a 
$~int lR$ such that (ji, x*) < (,L, x) for xgE. Then x*~g(E). 

DEFINITION 2.7. A point x* E Rp is said to be a properly efficient point 
ofEcRPifx*E_e(E)andE+RP,-x*nRP={O}. 

DEFINITION 2.8. Given a p-dimensional vector-valued function f = 
(fi, . . . . f,): X+ Rp, L.eLI(X, I’, p), i= 1, . . . . p, we say that f separates 
Qgf if ((fly xn>, . . . . (f,, xn>) is a properly efficient point of the set 
y= {((fi, x/i>, ...> <fp, x/l>); ‘4 ET). 

It follows from [12, Proposition 3.2 and Lemma 3.33, for any (a, /i, A) E 
TX TX [0, 11, there exist sequences {Q,) and {A,> in r such that 

Xn. + RXn,n and x/l, -5 (1 - 4xn\n (1) 

implies 

XR.“n.“(Rnn+ AX.4 + (1 -n)x, 
where IV* stands for the w*-convergence. The sequence { V,(n) = 52, u A, u 
(Q n A)> satisfying (1) and (2) is called the Morris sequence associated 
with (Q, A, A). 

DEFINITION 2.9. A subfamily S of r” is convex if given (Sz,, . . . . Sz,), 
V r, . . . . A,)E S, and 1~ [0, 11, there exists a Morris sequence {V:(n)} 
in r associated with (Qi, ni, 1) for each i= 1, . . . . n such that 
( VW. 11 ..*, V:(A)) E S for all k E N, where N is the set of natural numbers. 

DEFINITION 2.10. A set function F = (F, , . . . . F,): S + Rp is called convex 
on a convex subfamily S of r” if for each (Q,, . . . . Sz,) and (A,, . . . . A,) ES, 
il E [O, l] there exists a Morris sequence { Vf(l)} in r associated with 
(52,, ni, 2) for each i= 1, . . . . n such that (V:(A), . . . . V:(~))E S for all k~ N 
and 

lim 
k-m 

F( V:(A), . . . . V;(l)) 

= (k5m F,( V&l), . . . . Vi(A)), . . . . ki$m F,( V:(l), . . . . V;(A))) 

S 1F(A,, . . . . A,)+ (1 -A)F(Q,, . . . . 52,). 
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LEMMA 2.11 [15, Lemma 2.41. Let E be a IRT-convex set. Then yO~ E 
satisfies 

[E+RP,-y,]nRP={O} 

ijjf there exists a vector p E int R “, such that 

<I4 Yo) d (I4 Y> for any y E E. 

LEMMA 2.12 (Liapunov [13]). Let fI, . . . . fPE L,(X, f, p), then the set 
{((f, , x,, ), . . . . (f,, x,, )), A E r} is convex and compact. 

3. MAIN RESULTS 

Throughout this paper, we will denote A = {(A r, . . . . A,) E P’, 
G(A I, . . . . A,)sO}, A’= {(A, ,..., A,)E~“, G(A, ,..., A,)<O}, and a= 
w 1 ,..., A,)ES, G(Ar ,..., A,)sO, H(.4, ,..., A,)=O}. The following 
lemma follows immediately from the definition of convex subfamily and 
properties of Morris sequence. 

LEMMA 3.1. Let (52,) . . . . 12,) E F’ and G : r” + R” be convex, then for 
each 6 > 0 the set 

= {(A,, . . . . A,) E f”; d((A,, . . . . A,), (Q,, . . . . Q,,)) < 6, GM,, . . . . A,) < 0) 

is a convex subfamily of r”. 

Proof: Suppose (A,, . . . . A,), (fir, . . . . 8,) E B6((SZ1, . . . . a,)) and A E [0, 11. 
Then (A,, . . . . A,), (Sz,, . . . . hn)~I’“, 

(aI, . . . . Q,))c6, 
G(A,: . . . . A,)<O, G(&,, . . . . fi,)<O, 

4(/l,, . . . . A,), d((fiil, . . . . a,), (a,, . . . . Q,))<4 and for 
each i = 1, 2, ,,., n, there exists a Morris sequence {V:(A)} in r associated 
with (d,, Ain) such that (V:(A), ,.., V:(A)) E I”’ for all k E IV. Since 

lim k-a dU v’r(4, . . . . W)), (52,, . . . . Q,)) 

= lim k-t~ i llx~,i,-x~tll~l}1’2 
1 i= I 

= 
( 

$, Ilki, + (1 - A)xfi, - x&i)1’2 

= 
{ 

i$, lIn(x.-x~.)+(~-r)(x~,-xn.i:‘)‘;’ 
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GA i IlLi-X&l ( > 
w 

+(1-l) i IIXa,-X&l 
( > 

l/2 

i=l i=l 

=A i [p(niAQi)]2 ( > 
112 

+ (1-A) f [p(BiAsZi)]’ 
i= 1 ( 

112 

i=l > 

= Ad((Al, . . . . A,), (Q,, . . . . Q,)) + (1 - 2) w%, .-., aA (J-21, . . . . Q,)) 

<16+(1-1)6=6. 

Hence there exists a natural number M, such that 

4(W), . . . . W)), (Q,, *-., Q,)) < 6 forall k>M,, (3) 

since G is convex, 

iii-i-i G( V$l), . . . . V-;(i)) 5 AG(A,, . . . . A,) + (1 -1) G(Si,, . . . . si,) < 0. 
k-w 

Therefore, there exists a natural number M, such that 

G( V;(A), . . . . V;(A)) < 0. (4) 

Let M=max{M,, M,}, then from (3) and (4), we see that if k>M, 

4(W), ee.3 ma), (Ql, .*-, Q,)) < 6 and G( V’;(A), . . . . V;(l)) < 0. 

Thus (l’!(A), . . . . I’;(A))E&((& . . . . a,)) for ka M. This shows that 
b((Q, 9 **., 0,)) is a convex subfamily of r”. 

COROLLARY 3.2. Let (Q,, . . . . 52,) E F’ and G: F’ + IL!” be a convex set 
function, then the set A’ is a convex subfamily of r”. 

ProoJ It is easy to see that A’= lJ,“= 1 B,((Q,, . . . . Q,)) where 

&n((Q,, .--9 Q”)) 

= {(A,,..., A,)Er”;d((A ,,..., A,),(Q, ,..., Q,))<mandG(A, ,..., A,)<O) 

and the corollary follows immediately from Lemma 3.1. 
For any SC r, we denote 3 the w*-closure of xs = (x,,; A ES} in 

L,(X, r, ,u), then r= {f~ &,(A’, r, p); 0 <J< l} Cl, Corollary 3.61. For 
f~ F, we denote N(f) the family of all w*-neighborhood off in i=‘. Since 
i= is w*-compact and L,(X. r, p) is separable, i= is metrizable [l]. 
Therefore r x . . . x 7= (r)” is also metrizable. 
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LEMMA 3.3 [7]. Let F= (F,, . . . . F,): Y’+ Rp be differentiable and 
conuex on f”, then for all (/iI, . . . . A,), (Q,, . . . . Q2,) E r” 

F(A 1, . . . . 4) 

2 F(sZ,, . . . . Qrl)+ i (fi’&i-Xn,) Y...? .c, <fipJ/l-XQ,) 
( ) i= I 

A set function F: S + iRp is said to be w*-continuous at (a,, .,., Sz,) E S, 
if for any sequence {(Szf, . . . . C$)> in S and for each i = 1, . . . . n, xnk --% x0, 
as k -+ co implies F(Q,, . . . . 52,) = lim,, o. F(@, . . . . QE). F is said to be 
w*-continuous on S, if F is w*-continuous at each point (52,) . . . . 52,) E S. 

LEMMA 3.4. Let S be a convex subfamily of r” and F: S -+ Rp be a 
w*-continuous and convex set function. Then the set F(S) is RP,-convex. 

Proof The proof of this lemma is similar to Lemma 3.1 of [2] 

LEMMA 3.5. Let F: r” + Rp be w*-continuous and G: r” --* W” be con- 
vex. Suppose that there exists (b,, . . . . 6,) E r” such that G@, , . . . . fi,) -C 0. 
Then F(A) = F(A’) and F(A) is RP,-convex. 

Proof Since (si,, . . . . 8,) < 0, A’ is not empty. Let (Q,, . . . . Sz,) E A’ and 
(A r, . . . . /i,) E A, for each i = 1, . . . . n and each positive integer m, let { Vk,, } 
be the Morris sequence in r such that 

By the convexity of G, 

lim G(( V;,,, . . . . v;,,))$-+((f& ,..., Q,))+ G((A, ,..., A,))<O. 
k-a: 

Thus there exists a natural number M such that 

G((v;,,, ..a, v;,,)) < 0 for k>M. 

This shows that ( V!,,k, . . . . Vz,,) E A’ for k 2 M. Hence 

(X b$, ***9 Xv+Xx= {(Xe,, ..‘, I!&), (B,, . . . . &J-q crx ... x r 

We note that (xn,, . . . . xnJ is a cluster point of {(xv; p, . . . . XC”, ,), m, k E IV}. 
Since i= is metrizable in the w*-topology and l’x ‘. . . x r is metrizable, 
there exists a subsequence {(V:, . . . . V;)} of { ( V!,,k, . . . . Vi,,)} such that 
x5 Iv* + asl-tm x,,, for each i= 1, . . . . n. Since F is w*-continuous, we have 

lim 
l-m 

F(( Vi, . . . . v;)) = F((A,, . . . . 4,)). 
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This shows that F(A,, . . . . A,,) EF(A’). Therefore F(A) = F(A’) and the 
lemma follows immediately from Lemma 3.4 and Corollary 3.2. 

We say (Ql, . . . . SZ,)EA (resp. (Q,, . . . . 0,) E A) is a Pareto optimal solu- 
tion to problem (P) (resp. (Pl )) if 

JIQ, 7 ..*, 52,) E g(a) (resp. F(Q2,, . . . . 9,) E g(A)). 

DEFINITION 3.6. (a,, ..,, 52,) E A is said to be a proper IWP,-solution of 
(Pl)ifF(A)+RP,--F(Q,,...,IR,)nIW~={O}. 

LEMMA 3.7. Suppose that S is a nonempty subfamily of r”, F= 
VI, . . . . Fr): S+ Rp, and F(S) is RP, -convex. Then (Q,, . . . . Q,)E S is a 
proper RP,-solution of (Pl) if and only if (Q,, . . . . Sz,) is optimalfor (Pl(2)) 
for some ,I E int R:, where 

min i &FJA,, . . . . A,) 
i=l W(A)) 

subject to (A,, . . . . A,) E S. 

Proof The proof of this lemma is the same as Theorem 3.1 of [2]. 

THEOREM 3.8. Let F= (F,, . . . . F,): r” + Rp be w*-continuous and 
convex and G: r”+R” be convex. Suppose that there exists 
@ 1, . . . . fi,)~r” such that G(fi,, . . . . fi,) < 0. Then (Q,, . . . . 52,) E A is a 
proper RP,-solution if and only zf (Q,, . . . . a,) is optimal for (MPl(A)) for 
some 1= (A,, . . . . 1,) E int R “, where 

min i &Fi(A,, . . . . A,) 
i=l WPl(l)) 

subject to (A,, . . . . A,) E A. 

Proof: This theorem follows immediately from Lemmas 3.5 and 3.7. 

DEFINITION 3.9. A point (52,) . . . . 0,) E r” is said to be a local minimum 
to problem (Pl) if there exists 6 > 0 such that F(Q,, . . . . 52,) 5 F(A,, . . . . A,) 
for all (A, ,..., A,)E~“, G(A, ,,,., A,)50 satisfying d[(A, ,..., A,,), 
(0 19 . . . . QJI < 6. 

LEMMA 3.10 [3, Corollary 3.91. In problem (Pl) if F: P+ Iw' and 
G= (G,, . . . . G,): r” + R” are differentiable at (O,, . . . . a,,) EY. Suppose 
that (Q,, . . . . 
(fi 

Q,) is a local minimum to problem (Pl ) and that there exists 
, , . . . . 6,) E r” such that 

G#, , . . . . Qn)+ 2 <gs I...., sj,Jrj,-xXn,)4 j= 1, . . . . m. (5) 
i=l 
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Then there exist A,, . . . . A,, such that 

( fi+ f Ajg’j,Xn,-Xo, 3O 
,=l > 

(6) 

.for all Ai E Z, i = 1, . . . . n. 

/ljGj(Ol, . . . . s2,) = 0 

2 1, . . . . I, 2 0 

Gj(Q,, . . . . s2,) < 0, j = 1, . . . . m, 

where & ,,..., on is the ith partial derivative of G, at (6,, . . . . a,,). 

(7) 

(8) 

(9) 

THEOREM 3.11 (Necessary and Sufftcient Conditions for Constrained 
Local Minimum). In problem (Pl), if F= (FI, . . . . F,): Z” + Rp and 
G= (G,, . . . . G,): Z” -+ 58”’ are convex on Z” and differentiable at 
(Q 1, . . . . Q,)E Z”, suppose that (Q,, . . . . S2,) is a proper RP,-solution of 
problem (Pl). Suppose further that there exist (a,, . . . . d,) and 
(B, , . . . . B,) E Z” such that 

G(Q,, . . . . QJ+ i <di ,,..., ri.3 Xri,-Xn,)? . ..Y $, <g$ ,.__) si,m,-Xn,) 
i=l > 

-co 
(10) 

and 
G(B 1, . . . . B,) < 0. (11) 

Then there exist A= (A,, . . . . I.,) E int WC, u = (u,, . . . . uL,) E RT such that 

( 
f, Ajfq+ f ujgg”, a,,-~~,) 20, i= 1, . . . . m, n,u, (12) 

j=l 

PjGj(Qt > ...y Qn) = 0, j = 1, . . . . m (13) 

Gj(Ql, ..-T Q,)<O, j = 1, . . . . m. (14) 

Conversely, if there exist A= (A,, . . . . A,) E int IJ!:, u = (ul, . . . . y,) E RT, and 
(B I, .a*, B,)Er” such that (ll), (12), (13), and (14) hold, then (Q ,,.,., Q,) 
is a proper IF! P,-solution of problem (Pl ). 

Proof Since (a,, . . . . Q,) is a proper R P,-solution of problem (Pl ), it 
follows from Theorem 3.8 that there exists A= (A,, . . . . I,,) E int W: such that 

(4 W,, . . . . 4) 2 (A FW,, . . . . a,)> 

for all (A,, . . . . AJEA. Then by Lemma 3.10, there exists p= (pr, . . . . F,)E 
lRy such that (12), (13), (14) are true. 

409/161:?-6 
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Conversely, if there exist I = (I,, . . . . A,) lint rW$, p = (p,, . . . . &,) E WQ 
and (B,, . . . . B,)E~” such that (ll), (12), (13), and (14) hold. Since F and 
G are differentiable and convex on r”, it follows from Lemma 3.3 that for 
all (A I, . . . . A,) E r” 

Ft’(n , , . . . . 4) - FWJ,, . . . . Q,) 

2 ,cl <filJn,-Xn,L .**9 i (f’,xn.-xd) 

(. 

(15) 

i=l 

G(A 1, . . . . A) - G(Q, , . . . . f&z) 

L 

( 

is Wh,-Xn,) 9***3 i mXn,-X*,)) (16) 
i= 1 

Since IEint KIT, pEE[Wm+, it follows from (15), 16), and (12) that 

<A FM,, ..a, 4) -W-2,, A.., 52,)) + <pL, GUI, . . . . A,)- G(Q,, . . . . f&z)) 

2 A ig, (fi’dn,-XXn,) Y...Y ic, <f”&,-x*,))) 

(( 

+ PL, i: WXn,-h,) 7*..3 

( ( i= 1 
i$ ( gim, Xn, - XQ,))) 

= i ( i Ajfj+ f  /ijLig’, Xn,-xfi;) 20. 
i=l j=l j=l 

As p E Rm,, /+GJQ,, . . . . Q,) = 0, j= 1, . . . . m, we have 

(4 F(A,, . . . . A,,)-f’@2,, . . . . Q,)> 

2 (A., F(A,, . . . . A,)-J-W,, . . . . Q,,)) + <pL, W,, . . . . 4)-G(Q,, . . . . Q,)) 

2 0. 

For any (/II, . . . . A,) E A, (Q,, . . . . a,) is a proper RP,-solution follows 
immediately from Theorem 3.8. 

Remark 3.12. In Theorem 3.11, if the condition 

( 5 Ajf”+ 2 jijggij,Xn,-Xa, 20 
j=l j= 1 > 

for all i = 1, . . . . n and all ,4 i E r is replaced by 

for all (A 1, . . . . A,) E r”, we see that the theorem is still true. 
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As a consequence of Theorem 3.11, we have the following two theorems. 

THEOREM 3.13. In problem (PI ), let F= (F1, . . . . F,): r” -+ 53 p, and 
G = (G,, . . . . G,): r” -+ ET” be convex on r” and differentiable at 
(a,, ..,, Q,) E r”. Suppose that (52,, .,., Q,) is a proper RP,-solution 
of problem (Pl). Suppose further that there exist (fi, , . . . . d,) and 
(B 1, . . . . B,) E r” such that 

G(Q,>-,a,)+ 
( 

i: <g: ,,.... h~xn.-x&-,i~, Cd’: ,..., ti,m,-xn,) -co 
i= I 1 

and G(B,, . . . . B,) < 0, then there exists p = (pL1, . . . . pL,) E 0;s: such that for 
each i= 1, . . . . n, 

( f"+ f /ijg' ) . ..) fi" + f pjgo separates Qi, (17) 
j= 1 j=l 

PjGj(Qn, ...y Qn)=o, j= 1, . . . . m (18) 

Gj(Q,, ...y Q,) < 0, j = 1, . . . . m, (19) 

where di,......, d” denotes ith partial derivative of G, at (B,, ..,, 5,). 

ProojI It follows from Theorem 3.11, there exist 1= (A,, . . . . 1,) E 
int[WP,, p=(pi,...,p,)~ EW”, such that (12), (13), and (14) are true. 
Without loss of generality, we may assume that I,!‘=, Aj= 1. In view of 
(12), we have for each i = 1,2, . . . . n, 

(4 ( (f"? Xn, - Xn, >, . ..Y <fiP, XA,-XC?,>)> + f Pjg', XA,-XC?, a0 
j=l > 

for all n+r. (20) 

Since C:=, Ai = 1, it follows from (20) that 

(~,((fjl,Xn,-Xn,),..., (fi”,Xn,-Xn,>) 

Therefore for each i = 1, . . . . n and (/ii, . . . . /i,) E r”, 

( (( 

2, f i‘ + f pjgg”, XA, 3 ...? f ip + jJ Pj g”, X.4, 
j= 1 > ( j=l >)i 

2 IL, 
( Cl 

fi’+ t I*ig",XQ, )...) fi”+ g /Jjg’,XQ, . (21) 
j=l ! ( .j= I >)> 
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Then by Lemma 2.6 and (21), 

where 

Since Yi is convex by Liapunov’s Lemma (Lemma 2.12), we get by (21) 
and Lemma 2.11 that 

(( 

f  j1 + ~ ,Uj gi’, Xn, ) . ..) f  jp + ~ CLj g”, Xn; 

j=l > ( j=l >I 

is a properly efficient point of Yi for each i= 1, . . . . n. 
This shows that for each i= 1, . . . . n 

( fil+ 5 Sgv,...,f”+ f Ajg” 
> 

separates Qi 
j=l j=l 

and the proof of the theorem is completed. 

The following theorem gives the sufficient conditions for the existence of 
the proper R “, -solution. 

THEOREM 3.14. In problem (Pl) if F and G are differentiable and convex 
on r”. Suppose that there exist (B,, . . . . B,) E Z”, A= (A,, . . . . A,) E int RT, 
P = (Pl, ..-, P,) E wy such that (ll), (17), (18), and (19) hold, then 
VJ 1, ..,, 52,) E r” is a proper IRP, -solution of problem (Pl ). 

Proof: By Lemmas 2.11 and 2.12, there exists A = (A,, . . . . A,) E int W$ 
such that for each i = 1, . . . . n and for all Ai E Z, 

( cc ;1, fil+ 2 /l.jjg', Xn, 3 ...T f”+ f PjLi'3 XAi 
j=l > ( j=l >I> 

> 1, 

( (( 

f  j1 + f  /ijg”, XQ, 9 ee.9 f  jp + f  Pj 99 Xi?, 
j=l > ( j=l >>> 

or 

j1 + f  jljuig”, XA, - XQ, + f  Pj L?‘v XA~- XQ, 20 (22) 
j=l j=l 
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for all i = 1, . . . . n and ni E r. Without loss of generality, 
that Cip_, Aj = 1. From (22) and Cp=, 31, = 1, we see that 
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we may assume 

for all (A,, . . . . A,) E P. By Theorem 3.11 and Remark 3.12, we complete 
the proof of the theorem. 

DEFINITION 3.15. A set function F: S + [w is called quasiconvex on a 
convex subfamily S of P if for each (In,, . . . . Sz,), (,4,, . . . . A,,) in S, 
2 E [0, 11, there exists a Morris sequence {V;(n)> in r associated with 
(Q,, /li, 1) for each i = 1, . . . . n such that (V:(n), . . . . V:(n)) E S for all k E N 
and T- 

hm 
k-a. 

F( V’;(A), . . . . V:(i)) <max{F(Q,, . . . . Q,), F(A,, . . . . A,)}. 

DEFINITION 3.16. A set function F= (F,, . . . . Fp): S+ [wp is called 
quasiconvex on a convex subfamily S of P, if for each i = 1, . . . . p, F, is 
quasiconvex on S. 

Remark. It is easy to see that if a set function is convex, then it is 
quasiconvex, but the converse is not true, in [S], we give an example of a 
quasiconvex set function which is not convex. 

LEMMA 3.17. Let S be a nonempty convex subfamily of r” and F= 
F ): S -+ Iwp be differentiable and quasiconvex on S. Zf for any 

!2:,‘:::, sz”,,), (A,, . . . . A,)ES with F(A,, . . . . .4,)sF(SZ,, . . . . 9,) then 

( 
,!, (f i’Y X/l,-Xn,) >...? f <fiPJn,-In,) 50. 

i=l ) 

Proof. Since F is quasiconvex on S, it follows that F, is quasiconvex on 
S for each j= 1, . . . . n. Let 1 E (0, l), then there exists a Morris sequence 
{V;(A)} in r associated with (Q,, ni, I) for each i= 1, . . . . n such that 
(V;(n), . . . . V;(n)) E S for all k E N and 

lim 
k-cc 

Fj( V:(l), . . . . I’$)) < Fj(s2,, . . . . QJ. 

Since F is differentiable at ($2,) . . . . Q,,) E S, it follows that 

Fj(vf/:(l), -.T vE(J-1) 

=Fj(Ql, ...y Qn)+ i (f”, x~(A)-xo,) 
i=l 

+ 4( J’:W> . . . . CW), (Q,, . . . . Q,)) -E(( v:(n), . . . . v;(n)), (a,, . . . . sz,)), 
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E(( W), . . . . q(m (521, . . . . f-2")) -+ 0 

as d((Vf(l), . . . . Vf(l)), (Q,, . . . . Q,)) --) 0. 

In theorem 3 of [7], we show that 

G-i 
k-cc 

dW’#), . . . . V:(A)), (Q,, . . . . ~2,)) 

. E(( W), a.-, V34), (Ql, . . . . 52,)) E o(A). 

Hence 

lim zy q(n), . ..) v;(n)) 
k+ao 

= Fj(Q,, . . . . Q,) + A i cf-‘? X/l, - x0,> + o(A) 
i=l 

< Fj(s2,, . . . . a,). 

That is, 

tJ i <fVJn,-xn,>+44a, for all j= 1, . . . . p. 
i=l 

Dividing both sides of the above inequality by A and letting A --) 0, we have 

It follows that 

( if <filJA,-XR,LY i (fip~xA.-x*+o. 
i=l 

The following theorem gives sufhcient conditions for existence of a 
Pareto optimal solution to problem (P) with convex objective function and 
non-convex constrained functions. 

THEOREM 3.18. In problem (P), if S is a convex subfamily of r” and 
(Q 1, ..a, 52,) ES. Suppose that 

(i) F, G, and H are dlyferentiable at (Q,, .,,, a-,,). 

(ii) F: S+ Rp is a convex set function. 



OPTIMALITY OF n-SET FUNCTIONS 381 

(iii) G,= (G,, , . . . . G,,) and H = (H,, . . . . H,) are quasiconvex on S, 
where I= {i; Gi(Q,, . . . . a,) =0} = {sl, . . . . sj}. 

(iv) There exists u E int RT, v, E If@+, w E Rl, such that 

+ 
( ( 

w, i: (hi’, xn, - xn,>, . . . . i (h”, I,,, - xo,) 2 0. 
;= I i= 1 

(v) G(Q,, . . . . 8,) 5 0. 
(vi) H(SZ,, . . . . sZ,)=O. 

Then (52 1, . . . . 62,) is a Pareto optimal solution to problem (P), 

Proof. Suppose that (a,, . . . . 0,) is not a Pareto optimal solution to 
problem (P). Then there exists (A,, . . . . A,)E r” such that 

F(A 1, . . . . A,) - WI,, . . . . Q,) < 0, 

W I, . . . . AJso, 

H(A,, . . . . A,) = 0. 

Hence 

G&f,, . . . . 4) 5 G,(Q1, . . . . Q,,) = 0, 

WA 1, . . . . A,) = H(Q,, . . . . Q,) = 0. 

By the convexity of F and quasiconvexity of G, and H, Lemmas 3.3 and 
3.18, we have 

jl, <.I-“~ Xn, - X62,>> . ..Y ic, (f"wn*,)) 

5 F(A 1, . . . . . A,) -f-W,, . . . . Q,) < 0, (23) 

(24) 

(. 
,g, (h”, xn, - xn,>, ..a, i: (hi’, ~,,~-xn,) 500. 

> 
(25) 

i= 1 
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Since u > 0, u 2 0, w 2 0, it follows from (23), (24), (25) that we have 

This inequality contradicts hypothesis (iv). Hence (52,) . . . . 0,) is a Pareto 
optimal solution to problem (P). 

DEFINITION 3.19. Let S be a nonempty subfamily of r” and let 
F= (F,, . . . . F,): S + Rp be differentiable on S. The set function F is said 
to be pseudoconvex on S if for each (Q,, ..,, 52,) and (/ii, . . . . A,) in S, with 

( 
j$l We X/l, - xn,>3 ee.9 ig, uip, X/i, - XQ,)) L 0 

we have 

HA, , . . . . 4 4 F(Q,, . . . . 0,). 

Remark. It follows from Lemma 3.3 that if F is a convex set function, 
then it is pseudoconvex, but the converse is not true. In [8], we give an 
example to show that a pseudoconvex set function is not convex. 

THEOREM 3.20. In problem (P), suppose that 

(i) F, GI, and H are differentiable at (52,) . . . . Sz,) E S c P’, where 

I= (i; G,(SZ,, . . . . 0,) = 0} = (So, . . . . sj}. 

(ii) There exist ueint !J!c, VEIWC, and WEIR; such that 

( (. 
u, ,g, W’,Xn,-X*,)3 .-*9 f <P?x”i-Xni))) 

i=l 

for all (AI, . . . . A,)EA. 
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(iii) G(SZ,, . . . . Q,) 5 0. 
(iv) H(S2,, . . . . 52,) = 0. 
(v) Cf’=, u,F, + Cic, viGi + c>= 1 wjHj is pseudoconuex on S. 

Then (Sz,, . . . . s2,) is a Pareto optimal solution to problem (P). 

Proof. Assume that (52,) . . . . 52,) is not a Pareto optimal solution 
to problem (P), then there exists (A,, . . . . A,) E A, G(n , , . . . . /1,) s 0, 
H(/f 1, . . . . A,) = 0 such that 

FM ,r . . . . A,) d F(Q,, . . . . Q,). 

By (i), (iv), we see that 

G,(Al, . . . . A,,) 6 0 = G&2,, . . . . i-2,) 

and 

H(A 1, . . . . A,) = H&2,, . ..) s2,) = 0. 

Since u E int R “, , u E Ri, , it follows that 

<u, FM,, . . . . 4)) + (0, GM,, . . . . 4)) + (w, WA,, . . . . 4) 

< <u, F(Q,, . . . . Q,)) + (0, G,(fJ2,, . . . . Q,J> + (w, H(Q,, . . . . Q,)>. 

By assumption, Xi”= r u,F, + Cic, uiGi + C>=, wjHj is pseudoconvex 
(52 1, . . . . Q,), we have 

at 

+ w, ( i <hi’, xn,- ~a,), . . . . n 
i=l 

ic, wh,-h,) ’ ~0 (27) 
1, 

for all (A,, . . . . LI,)E~. But (27) contradicts hypothesis (ii). Hence 
(Q r, . . . . a,) is a Pareto optimal solution to problem (P). 

THEOREM 3.21. In problem (P), suppose that S is a convex subfamily of 
r”, w I, .**, Q,)ES, and 

(i) F, G, and Hare differentiable at (a,, . . . . Q,). 
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(ii) There exist uEint IL!:, v~[Wm+, WER’, such that 

P 

(a) 1 u,F, ispseudoconvex on S, 
i= 1 

(b) c viGi is quasiconvex on S, 
iel 

(c) i wiHi is quasiconvex on S, 
i=l 

(d) 
( ( 

UP ig, uil~Xn,-Xo,)~ **.> i, wp~xA,-xQi))) 

+ v, i (g”, Xn,-Xni), ..* 
u i= I 

7 ;c, (g”, XKX,.,)) 

+ w, 
( ( 

i (hi’, xn, -xn,>, . . . . i (hi’, xni- xni> 20 

i= 1 i= I >> 

for all (A,, . . . . A,)EA. 

(iii) (v, G(Q,, . . . . Q,)) =O. 
(iv) G(Q,, . . . . 52,) 5 0. 
(v) H(Q,, . . . . J-2,)=0. 

Then (Q,, . . . . 52,) is a Pareto optimal solution to problem (P). 

Proof: Since (v, G(B,, . . . . Q,)) =O, G(Q1, . . . . Q,)sO, ~20, it follows 
that 

viGi(12,, . . . . 0,) = 0 for all i. 

Therefore 
c v,G,(!~~, . . . . Q,) = 0. 
isI 

For any (/i 1, . . . . A,,) E S with G(/i 1, . . . . A,) 5 0, we have 

1 viGi(-4,, ---y A,) < C viGi(Q,, **v Q,). 

isI iel 

Since ~jp,viGi is quasiconvex on S, it follows that 

( (. 
VI7 .g, <b+‘~Xn,-Xa,)9 *..3 $, (E?J? X/i, - XQ,))) G 0 (28) 

for (AI, . . . . &)~a. As vj=O for each Jo (1, . . . . m}\Z=(t,, . . . . tr), we have 

(v~,.....m~,ri(~, <g”‘,xA,-xn.)~...,~, <g”:Xn,-x&)=0 (29) 
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for all (A,, . . . . A,) E A. Similarly ZlJ,I wjHj(A19 ...3 An) = 
CJ= 1 wjHj(Q19 ...9 O,)=O for all (Al, . . . . A,)E A. As cl=1 wiH, is 
quasiconvex on S, we have 

( ( 
w, i (h”,xn,-xn,),..., i W’,x,,,-xn,) 

>> 
GO (30) 

i=l i=l 

for all (A,, . . . . A,)E~. By (ii)(d), (28) (29), and (30) we have 

for all (A r, . . . . A,) E a. Since Cf= r uiFi is assumed to be pseudoconvex on 
S, we have 

(u, F(A,, -.., A,)> a (4 F(Q,, ..., QJ) 

for all (A,, . . . . A,)E~. For uEintK!P,, it follows from Lemma 2.6 that 
(Q , , . . . . Q,) is a Pareto optimal solution to problem (P). 

LEMMA 3.22 [S]. In problem (Pl), (Q,, . . ..a.,) is a Pareto optimal 
solution tf and only if (Q,, . . . . Q,) minimize each F, on the constraint set 

c,= ((4, . ..> A,) E r”, Fi(A 1, . . . . A-1 G Fi(Ql, ...) Qn), 
if jandG(A,, . . . . A,)<O}. (31) 

The following theorem establishes necessary conditions for a Pareto 
optimal solution of problem (Pl ) when the set functions are differentiable. 

THEOREM 3.23. Let the set functions F= (F,, . . . . F,): Z” + Rp and G = 
(G ,, . . . . G,): Z” + R” be differentiable on Z”. Suppose that (64,) . . . . 52,) is a 
Pareto optimal solution of (PI) and for each s= 1, . . . . p there exist 
(tis,) . ..) @,) E Z” such that 

G(Q2,, . . . . QrJ+ 
( 

i <g& ,,._, o”,Js:-X52,) ,...? ,cl c&j ,..., ri;Jb:-Xa,) -co 
i=l > 

and for each j = 1, . . . . p, j # s 

( jl, (f” q,...,&“T xc2: - Xn, > > 
< 09 

then there exist v = (a,, . . . . vp) E int Rc, c,“= , v, = 1, A = (A,, . . . . A,) E rWy 
such that 

i (5 vjfb, ,_._, n.+ 2 12igb, ,..,, nn3XA,-X*,)20 (32) 
i=l j=l j=l 
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for all (A,, . . . . A,) E r” 

f v,G,(sZ 1) . . . . .a,) = 0 
j=l 

Gj(Q, 3 .**) 52,) 2 0, j= 1, . . . . m, 

where f ji, ,,..., A.3 g! ,,..., ,,, are the ith partial derivatives of Fj and Gj at 

(A I, . . . . A,), respectively. 

Proof: Since (a,, . . . . Q,) is a Pareto optimal solution of (Pl ), it follows 
from Lemma 3.23 that (a,, . . . . 52,) minimizes each Fj on the constraint set 
Cj of (31). Then by Lemma 3.9 for each i = 1, . . . . n, j = 1, . . . . p, there exist 
Blj, -*9 Pmj, Y lj3 .*.9 Yj- 1, j9 Yj+ 1, j9 .-3 ypj such that 

( 
f& ,.._, a,+ IE BIG&j ,,,,.__, *.+ 2 Y&f;, ,..., R,~XA,-X0; >O (33) 

k=l k=l > 
k#j 

for all Ai E I’ 

kgl BkjG/c(Q1) ...p Qn) ~0, 

Gk(G1, . . . . 52,) < 0, k = 1, . . . . m. 

Letting j= 1, . . . . p in (33) and then summing up, we obtain 

((l+~~Y,j)f~,,...,~.+ **. +(l+~~:Y,)f~,,...,~” 

+ i f bkj<8$~,...,fZn~ XA,-~Xni) 2’ 
j=l k=l > 

for all A,ET. 

Letting 

Ps = l+ E Ysj, 
A =c/=lbkj 

j=l 
‘j=&.p 

k Cj”= 1 Pj ’ 
i#s 

then c,?= 1 vi= 1, v = (vl, . . . . v,)~int Rc, A = (A,, . . . . 2,)~ R’J and for all 
i=l n , .-*, 

j$, vjfb, ,..., i2n+j~,n,Pi2, ,__,, O.~XAi-XCJ, 2o 
> 

fora AiEr. 

5 ljGj(12 ,,...,Qn)= ? i A- 
j=l j=, i=I~P-l~jGj(n,,...,a,) 

=& jt ,t BjiGj(Q1, .-y Qn)=O* 
II 1 
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Hence 

f ( i vjfbl,...,*,+ i Ljgi,,....f2,~ XA,-*Cd.) 2 O 
i=l j= 1 j=l 

for all (A,, . . . . /i,) E P. We complete the proof of the theorem. 
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