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Our main contribution is the extension of the concepts of quasiconvexity and 
pseudoconvexity to n-set functions. Some properties of differentiable nonconvex 
n-set functions are established. Necessary and sufficient conditions for the 
existence of an optimal solution of the nonconvex program with n-set functions 
are characterized by derivatives of the n-set functions involved. A duality 
theorem for the nonconvex program with n-set functions is also developed in 
this paper. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Throughout this paper let (A’, r, p) be a finite atomless measure space 
with L,(X, r, flu) separable, and let F, G,, . . . . G,, HI, . . . . H, be real-valued 
n-set functions defined on a convex subfamily S of P = r x TX . . . x E 
Then we consider an optimization problem as 

Minimize: F(sZ,, . . . . Cl,,) 

Subject to: (a,, . . . . Q,) E Sand 

GAQ,, 
(P) 

. . . . 52,) d 0, i = 1, 2, . . . . m. 

Hj(Q,, . . . . In,) = 0, j = 1, 2, . . . . 1. 

This type of problem arises in various mathematical areas. For example, 
see the Neyman-Pearson lemma of statistics [20], which gives the 
sufficient condition for maximizing an integral over a single set. The 
necessity of this condition, and the existence of a solution were established 
in [S]. These kesults were generalized to n sets and a duality theory was 
developed in [S, 61. However, all these results were for a special case for 
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set functions involving integrals. Morris [lS, 191 had first developed the 
general theory for optimizing set functions. Subsequent works [2-4, 9-13, 
203 on the optimization problem are only confined to functions of a single 
set and the optimization problem does not have equality constraints and 
the set functions are convex. Corley [7] started to develop the general 
theory for n-set functions and gave the concepts of partial derivatives and 
the derivative of the n-set function. In this paper, we begin to give the 
concepts of pseudoconvexity and quasiconvexity of set functions, then we 
establish some properties of nonconvex, differentiable n-set functions. In 
Theorem 3.8, we show a sufficient condition for the existence of optimal 
solutions to problem (P) with equality constraints and nonconvex n-set 
functions. If the problem (P) does not have equality constraints and the 
set functions we consider are convex, then Theorem 3.8 reduces to 
Theorem 4.7 of [7]. A necessary condition for the existence of local 
minimum and a duality theorem for (P) with nonconvex n-set functions are 
also developed in this paper. Because the n-set functions are defined on a 
subfamily of a semialgebra rather than on a linear space, there are a good 
deal of differences between the optimization problem of nonconvex, 
differentiable n-set functions on a convex subfamily of a semialgebra and 
for usual functions on a linear space. 

2. PRELIMINARIES 

Throughout the paper, let r” = ((Q,, . . . . Q,), s2, E r, i= 1,2, . . . . n}. As a 
matter of fact r” is only a semialgebra but not a o-algebra. 

We defined a pseudometric d on the semialgebra r” in the following 
way: 

4(Ql, ..., Q,), (A 1, .*., nn))= i CPL(BidAi)lz i I 
112 

3 
i=l 

Sz,, Ai~r, i= 1,2, . . . . n, where A denotes the symmetric difference. Each 
D E r can be identified with its characteristic function xn E L,(X, I-, p) c 
L,(X, r, p) and so that the o-field r is identified as a subset 
xn = {x~~.QE~} of t,(X, r, p). Essentially (Q,, . . . . Q,) and (/ii, . . . . A,,) 
will be regarded as equivalent if d((Q,, . . . . Q,), (,4,, . . . . A,)) = 0. We 
admit F(Q,, . . . . Q,=F(ni, . . . . A,,) if d((Qi, . . . . Q,), (A,, . . . . n,))=O. For 
JeL,(X, r, p) and 0~ r, the integral Infdp will be denoted by (f; xn). 
Similar to [19, Proposition 3.2 and Lemma 3.31, for any (0, A, 2)~ 
TX rx [0, 11, there exist sequences (0,) and {A,,} in r such that 

Xn n w* ki\n and ;s,,,& (1-1)~ Q\A (1) 
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imply 

where w* stands for the w*-convergence. The sequence (V,,(n) = 
0, un,u (Qn A)} satisfying (1) and (2) is called the Morris sequence 
with (IR, /1,1). 

DEFINITION 2.1. A subfamily S of P’ is convex if given (Q, , . . . . Q,) and 
V , , . . . . A,) in S and ,I E [O, 11, there exists a Morris sequence { V:(L)) 
in I’ associated with (Qi, /li, A) for each i= 1,2, . . . . n such that 
( v:(4, . ..1 V:(l)) E S, for all k E N, where N is the set of natural numbers. 

EXAMPLE. For a fix (01, . . . . Q,,) E P and 6 > 0, the subfamily A = 
W 1 ,..., A,)~r”ld((A ,,..., A,), (Q, ,..., 12,))<6) is a convex subfamiZy 
0frn. 

Proof: Suppose (A,, . . . . A,,), (fir, . . . . ~,)EA and 1~ [0, 11. Then 
(A 1, . . . . A,), @,, . . . . fin) E r”, 4(/l,, . . . . A,), (a,, . . . . 52,)) < 6, d(@, , . . . . &A, 
(0 1, . . . . 52,)) < 6, and for each i= 1, . . . . n, there exists a Morris sequence 
(V:(L)> in r associated with (di, Ai, 2) such that (V:(l), . . . . Vi(A)) E r” 
for all k E iV. 

Since 

lim d((V#), . . . . V,k@)), (Q,, . . . . Q,)) k-cc 

= ( i II&, -+ (1 - A)xii, - XOil12, “2 i-1 > 

= ic, CA llXni-Xn,llL, +(I -A) Ilxn.-m,llL,12)“2 
( 

G 1 i llxn,-xn,llt, ( > 
112 

+ (1 -2) i fIIXfii-Xn,llt,)“* 
i=l i=l 

=I. i [p(A,AQi)2] I’* 

( i= I > 

+ (1 -#I) i 
( 

[/.L(d&2i)2]“2 
i=l > 

=Ad((A,, . . . . A,), (a,, . . . . %A)+ (1 -W(@, 3 -.., &I, (a,, --, Q,)) 

<As+(1 -A)S=S. 
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Hence there exists a natural number M such that 

4( a43 ...> Jw)), (Q,, ..., Q,)) < fJ for k 2 M. 

This shows that (V;(n), . . . . V:(n)) EA for k 2 M and that A is a convex 
subfamily of r”. 

DEFINITION 2.2. Let F: r” + Iw and ?+I c P. Then (52,) . . . . a,) E g is 
a global minimum of F on 99 if F(l2,, . . . . Q,,)< F(A,, ..,, A,) for 
all (A, ,..., A,)E.%?. (Sz, ,..., Q,) is a local minimum of F on 9 if there 
exists 6>0 such that F(sZ, ,..., Q,)<F(Al ,..., A,) for all (A, ,..., ,4,)~@ 
satisfying d((Q,, . . . . Sz,), (A,, . . . . -4,)) < 6. 

DEFINITION 2.3. A set function F: r+ R is differentiable at 52 E r if 
there exists f~ L,(X, r, p), the derivative of F at Q such that 

F(~)=F(S~)+(~,X,-X~)+~(~~A)E(~,A), 

where limPCndnj-o E(SZ, A) = 0. 

DEFINITION 2.4. Let F: P --f 58 and (Q,, . . . . 0,) E P. Then F is said to 
have a partial derivative at (Q,, .., Sz,) with respect to ni if the set function 
H(/iJ = F(Q,, . . . . Qiel, /ii, Qi+ r, . . . . Sz,) has derivative ho, at Qi. In this 
case we define the ith partial derivative of F at (Q,, . . . . Sz,) to be 
fh ,,..., *.=hn,. 

Now, we define the derivative of n-set functions. 

DEFINITION 2.5. Let F: S -P R and (Q,, . . . . Sz,) E S. Then F is said to be 
differentiable at (52,) . . . . Q,) E S if the partial fh ,,,,,, n,, i = 1, 2, . . . . n, exist 
and satisfy 

FfA 1, . . . . A,) = F(Q,, . . . . QJ+ i: crh, ,..., n.Jni-h2,) 
i= 1 

+ d(Wn,, ..*, QJ, (A,, . . . . 4)) 

x E((Q,, . . . . Q,), Ml, . . . . Al)), for all (A,, . . . . /i,)~ S, 

where 

lim 
d((RI z.... Qn), (AI . . . . . A.)) H(Q,, .“, Q,), (A,, . . . . A,)1 =o + 0 

and S is a nonempty subfamily of P. 
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Remark. (1) Definitions 2.4 and 2.5 are due to Corley [7]. 
(2) If F: S c r” + R! is differentiable, its partial derivatives are 

unique 171. 
(3) Throughout this paper, if F, Gj: S c r” + R’ are differentiable at 

(Q I, . . . . 52,) E S, then j’i and gi:, will denote the ith partial derivatives of F 
and Gj at (a,, . . . . Sz,,), respectively. 

3. MAIN RESULTS 

We can extend the concepts of quasiconvexity, strict quasiconvexity, and 
pseudoconvexity to set functions. 

DEFINITION 3.1. A set function F: S -+ R is called quasiconvex (resp. 
convex) on a convex subfamily S of f n if for each (52,) . . . . Q,), (/ii , . . . . A,) 
in S and II E [0, I], there exists a Morris sequence { Vf (A)} in r associated 
with (a,, ni, A) for each i = 1,2, . . . . n such that (V:(n), . . . . Vi(n)) E S for all 
kEN and 

lim 
k-m 

F( l’:(l), . . . . vk(l)) G max{F@, , . . . . -W, FV,, . . . . A)> 

(resp. !‘“, F( V’;(l), . . . . V:(A)) < AF(A,, . . . . A,) + (1 - A) F((sZ,, . . . . a,))). 

F is called quasiconcave on S if -F is quasiconvex on S. 

DEFINITION 3.2. A set function Z? S + R! is called strongly quasiconvex 
(resp. strictly quasiconvex) on a convex subfamily S of r” if for each 
(f-J 1, *.., Q,), (A,, . . . . A,) in S with (Q,, . . . . B,)# (/ii, . . . . A,) (resp. 
f’(Q , , .F., Q,) # W 1, . . . . A,,)) and 1 E (0, 1 ), there exists a Morris sequence 
{ V:(n)} in r associated with (Q,, ni, 1) for each i= 1,2, . . . . n such that 

- 
hm 

k-cc 
F( V:(A), . . . . VfXJ)) <max{W,, . . . . Q,), FM,, . . . . A)}. 

Remark. From Definition 3.1, it is easy to see that if F is a convex set 
function, then F is a quasiconvex set function, but the converse is not true; 
for example, if g E L,(X, l-‘, p) and S is a convex subfamily of r, let G(8) = 
CJQ g w3, QE s. It is easy to see from Proposition 3.1 that G is a 
quasiconvex set function, but G is not a convex set function. 

DEFINITION 3.3. Let S be a nonempty subfamily of r” and let F: S-r Iw 
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be differentiable on S. The set function F is said to be pseudoconvex on S 
if for each (Q,, . . . . Q,) and (A,, . . . . A,) in S with 

i& <.f*, Xn,-Xn,)>O 

we have 
F(A 1, **., A,) 2 F(Q,, . . . . a,). 

The following proposition shows the existence of quasiconvex and 
pseudoconvex set functions. 

PROPOSITION 3.1. Let S be a convex subfamily of Z” and F(A , , ,‘., A,,) = 
4 (IT1 9 X/i, 1, ..-3 (g,, &), where u: R” -+ R is a differentiable function, 
gl,...,g,~L1(~,r,pL) and(A,,...,h,)ES. 

(a) Zf u is a quasiconvex function, then F is a quasiconvex set function. 
(b) Zf u is strictly quasiconvex, then F is a strictly quasiconvex set 

function. 
(c) Zf u is a pseudoconvex function, then F is a pseudoconvex set 

function. 

Proof (a) Assume that u is a quasiconvex function. Let (Sz,, . . . . a,), 
(A t, . . . . A,) ES and 1~ (0, 1). There exists a Morris sequence {V:(A)} 
in r associated with (/ii, sZi, ,I) for each i= 1,2, . . . . n such that 
(W), . . . . V:(n)) E S for all k E N and 

iii-i 
k-too 

F( V;(I), . . . . V;(n)) 

=kFm u(<g1, xv:(n)>> ...? (gn, xvj,,,)) 

=U((gl,lZXD,+(l-il)Xnl),...,(g,,IXa”+(l-~)Xn,)) 

=uc4<g1, Xa,), **.9 (gm xn,>)+ (1 -n)(<gl, X/II)> ...Y (%I3 X/i,>)1 
Gmax{4(gl, xR,h . . . . (g,$ x~,>)~ u((gly xn,), . . . . Cg,, xn.>)l 
=max(F(Q,, . . . . Sz,), F(A,, . . . . A,)}. 

This shows that F is a quasiconvex set function. 
(b) The proof of the strictly quasiconvex case is similar to (a). 
(c) Suppose u is a pseudoconvex function. Let (Q,, . . . . Q,), 

(A 1, . . . . A,) E S, then it follows from Definition 2.4 that 

fi*=“i((gl~ XL?l)3 <g29 xl&>, .*v <gn, X*.>)gi3 

where ui denotes the ith partial derivative of u. 
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Hence if C;=, (fi,, xA, - xa, > 3 0, we have 

357 

i= 1 

That is, 

W(g,, Xn,L (g2, XR2)’ ...2 (g,, xa,))’ 

Since U: R” -+ R! is a pseudoconvex function, if follows that 

f’(A 13 *.., 4)=4(gl, X.4,), ...T (&I, X/l”>) 

3u((g,, x*,)3 ..*> (&I? Xn,>) 

= F(Q,, . . . . Q,). 

This shows that F is a pseudoconvex set function. Q.E.D. 

PROPOSITION 3.2. Let S be a convex subfamily of r” and F: S + !J! is a 
differentiable convex set function. Then F is a pseudoconvex set function. 

ProojI The proof of Proposition 3.2 follows immediately from the 
definition of pseudoconvex set functions and Theorem 4.5 of [7]. 

Remark. The converse of the above theorem is not true; for example, if 
gE L,(X, f, p) and S is a convex subfamily of F, the set function F: S + R 
is defined by F(0) = ln g dp + (ls2 g dp)3. It is easy to see that F is a 
pseudoconvex set function, but F is not a convex set function. 

PROPOSITION 3.3 [15]. Let S be a nonempty convex subfamily of r” and 
let F: S + Iw be dqferentiable and quasiconvex on S. rffor any (Q,, . . . . Q,), 
(A 1, . . . . A,) ES with F(A 1, . . . . A,) d F(Q,, . . . . 8,) then 

jI, <s*, Xn, - Xn,> 6 0. 
PROPOSITION 3.4. Let S be a convex subfamily of r”, and F: S--t [w. rf 

for each real number CX, the set S, = {(Ql, . . . . Q,) E S, F(Q,, . . . . a,,) <a} is a 
convex subfamily of I-“, then F is a quasiconvex set function. 

ProoJ: Suppose that for each real number ~1, the set S, is a convex sub- 
family of f *. Let (a,, . . . . Sz,) and (.4,, . . . . A,) E S and ;1 E (0, 1). Note that 
(Q 1, . . . . 52,) and (.4 1, . . . . A,)ES, for c1 =max{F(SZ,, . . . . G?,), F(A,, . . . . ,4,)}. 
By assumption, S, is a convex subfamily of S, and there exists a Morris 

4091168/2-6 
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sequence { Vf (;.)j in r associated with (sZi, /ii, 1) for each i= 1, 2, . . . . n 
such that (VT(n), . . . . Vi(I)) E S, for all k E N. Therefore 

F( V:(A), . . . . Vi(i)) 6 a for all k E N. 

Hence 
lim F( V:(A), . . . . V;(A)) 6 a = max{F(SZ,, . . . . &I,), F(.4,, . . . . A,)} 
k-cc 

and F is quasiconvex on S. 

The following proposition relates a local optimal solution and a global 
optimal solution. 

THEOREM 3.5. Let S be a convex subfamily of r” and let F: S + R be 
strongly quasiconvex. Consider the problem to minimize F(A , , . . . . A,) subject 
to (A 1 ) *.., AJES. zf(Q,, *.., Q,) is a local optimal solution, then (Q,, . . . . Q,) 
is the unique global optimal solution. 

Proof. Since (52,) . . . . 52,) is a local optimal solution, it follows that there 
exists a 6 > 0 such that 

W-J 1, . . . . Q,) < F(A,, . . . . 4) for (A,, . . . . ~,)ES 

with d((A,, . . . . A,,), (Q,, . . . . Q,))<6. (3) 

Assume on the contrary that there exists (6,, . . . . 8,) ES such that 
tb r, . . . . 6,) #(a,, . . . . Qn) and F(6,, . . . . fi,)< F(Q,, . . . . a,). By the con- 
vexity of S and strong quasiconvexity of F, there exists a Morris sequence 
(V:(A)> in r associated with (Q,, fii, 2) for each i= 1, 2, . . . . n and 
1 E (0, 1) such that (V:(n), . . . . V:(n)) E S for all ke N and 

lim F( V’;(A), . . . . V’:(A)) 
k-m 

<max{F(fi,, . . . . Sz,), F(Q,, . . . . a,)> = F(Q,, . . . . Q,). 

Since 

d(( v:(4, . ..> v:(4), U-J,, . . . . Q,)) = { i CPWW w1’)“’ 
k=l 

= ,g, 11 
1. 

112 
XVf(i) - Xc&II t, 

I 

=A i [p(siJa,)]* 1’2 1 i= 1 I 

= Ad((si,, . . . . si,), (Sz,, . . . . 0,)). 
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Hence there exists y > 0 and a natural number M, such that 

4 fq4, . . . . wu (Q, 3 ..., Q,)) < 6 forall O<l<yandk>MM,. 

Thus 

W’ , > . . . . Q,) d W’:(A), . . . . V:(A)) forall 0<1<yandk>M,. (4) 

Since 

i&ii 
k-m 

F( I”;(n), . . . . V;(n)) < F(Q,, . . . . Q,), 

it follows that there exists a natural number M2 such that 

F( v:(4, . . . . qw < F(Q, 9 ..., Q,) for kaM,. 

Let M= max{M,, M2}, then 

F( v:w, . . . . f’:(4) < 40, > . . . . 52,) forallO<I<yandkkM. (5) 

Inequality (4) is not compatible with (5). Therefore (a,, . . . . S,) is the 
unique global optimal solution. Q.E.D. 

THEOREM 3.6. Let S be a convex subfamily of r” and let F: S + R be 
a strictly quasiconvex set function. Consider the problem to minimize 
J’(A 1, . ..> A,,) subject to (A,, . . . . A,)ES. If (a,, . . . . 52,) is a local optimal 
solution, then (52,) . . . . 52,) is also a global optimal solution. 

ProoJ: Assume on the contrary that there exists (6,, . . . . 6,) ES such 
that F(b 1, . . . . 8,) < F(s2 t, . . . . 52,). Let 1 E (0, l), then there exists a Morris 
sequence { V:(n)} in r associated with (Qi, ai, 1) for each i= 1,2, . . . . n 
such that (V:(n), . . . . V,k(l))~Sfor all kENand 

lim F( V’;(n), . . . . V;(Q) 
k-m 

-=c max{F(b,, . . . . d,), F(Q,, . . . . 52,)) = F(Q,, . . . . a,). 

Hence there exists a natural number M, such that 

Ft v;(Q, . . . . v:(4) < WJ,, . . . . 52,) for kaM,. (6) 

Since (Gr, . . . . a,) is a local optimal solution, there exists a 6 > 0 such that 

W-2 1 f . . . . Q”) 

< 4A 1, . . . . A,) for all (AI, . . . . A,) ES with d((Q,, . . . . Q,), (A,, . . . . A,,)) < 6. 

(7) 
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As in the proof of Theorem 3.6, there exist y > 0 and a natural number M, 
such that 

d((Q,, ..., Q,), ( W), ‘.., wm < 6 whenever O<l<yandk>,M,. 

Let M=max(M,, M2}, then 

d((Q, , ...? Q,), (q4, ..‘> m4)) < 6 

and 

F( WV, ..., q(4) < F(Q, , “., Q,) for O<A<yandk>M. 

The above two inequalities lead to a contraction with (7). This shows that 
(0 1, “‘, 0,) is the global optimal solution. Q.E.D. 

In [4, Corollary 3.6 Chou, Hsia, and Lee show that i== {f~ L,(X, r, p), 
0 <fG 1 }, where r denotes the weak*-closure of r. 

DEFINITION 3.4. Let A be a nonempty subfamily of f and let 
g = (g, 1 . . . . g,)E(6)“= (hlh=(h,, . . . . h,), h,~& i= 1, . . . . n}, where A 
denotes the weak*-closure of A. The cone of tangents of (6)” at g denoted 
by T is the set (h 1 h = (h,, . . . . h,) E L, x .. x L, and &(x@ - gi) --% hi, 
where A,> 0, Szy~ A, and xnf-% gi}. 

The following theorem gives a necessary condition for the existence of an 
optimal solution. 

THEOREM 3.7. Let A” be a nonempty subfamily of P’ and let A denote 
the weak*-closure of A in L,(X, r, u). Let (Sz,, . . . . !J,)EA”. Suppose 
F: A -+ R is differentiable at (Q,, . . . . Q,) and (Q,, . . . . Q,) locally solves 
the problem to minimize F(A,, . . . . A,) subject to (A,, . . . . A,)E A. Then 
F, n T = @, where F, = {g = (g, , . . . . gn)EL”,(X3r,P)IC1=l <.P*Y gi)<O}9 
( , ) denotes the dual pair between L,(X, r, u) and LI(X, r, u), and T is 
the cone of tangents of (A)” at (xn,, . . . . I~,). 

Proof. Let (g,, . . . . g,)E T. Then there exists ik > 0, Szy E A for each 
k E N and for each i= 1,2, . . . . n such that xnk 5 xn, and 
l,(xa; -xn,)s gi. By the differentiability of F at (Sz,, . . ..a.), we get 

F(Q:, . . . . Q:, = F(Q,, . . . . Q,) + i <f*, In: - Xn,> 
i= I 

+ i IIK ( 
112 

nf - Xn,ll:, > E((Q, 9 . ..> Q,), w:, ..., Q:)), (8) 
i= 1 

where E((S2,, . . . . Sz,), (Sz:, . . . . ai)) + 0 as d((Q,, . . . . Q,), (Qt, . . . . Qz)) --f 0. 
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Since (!2,, . . . . 52,) is the local optimal solution, it follows that there exists 
a 6 > 0 such that 

F(Q,, . . . . Q,) G F(A 1, . . . . A,) whenever d((a,, . . . . a,,), (AI, . . . . /1,))<6. 

(9) 

Since for each i = 1, 2, . . . . n, ~a; -% xn,, it follows that there exists A4 > 0 
such that 

112 
< 6 whenever k 2 M. 

By (8) and (9), we get 

i <Y*, Xnf - xc&) + ( i IIXnf - xo,ll :,y2 
i= 1 i=l 

x E[(Q,, . . . . Q,), (Q’;, . . . . @)I 20 whenever k 3 M. 

Multiplying by I, and taking the limit as k -+ 00, we obtain 

So far we have shown that gE T implies that 

and F, n T = 0. The proof is complete. Q.E.D. 

The following theoem generalizes Theorem 4.7 of [7] and gives sufficient 
conditions for the existence of optimal solutions to problem (P) with 
equality constraints. 

THEOREM 3.8. Let S be a nonempty convex subfamily of P, (&I,, . . . . Q,) 
a feasible solution to problem (P), and I= {iI Gi(Q,, . . . . Q,) = O}. Suppose 
thatF,GjforjEIandHjforj=1,2 ,..., I are differentiable on S and that the 
Kuhn-Tucker condition holds at (Q,, . . . . a,,); that is, there exist scalars 
ui>Ofor iEIandvifor i=l,2,...,Isuch that 

ig, CT*, XA,-X*,) + C f: uj(g$, XA,-X*,) 
jtl i=l 

+ i i uj(h$c,Xn,-Xn,)~O, 

j=l i=l 

(10) 
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where hi denotes the ith partial derivative of H-i at (Sz,, . . . . Q,). Let 
J= {i: vi > 0) and K = {i: vi < 0). Further suppose that F is pseudoconvex on 
S and Gi is quasiconvex on S for iE I, Hi is quasiconvex on S for i E J, and 
Hi is quasiconcave on S for iE K. Then (Sz,, . . . . 0,) is a global optimal 
solution. 

Proof. Let (A,, . . . . A,,) be a feasible solution to problem (P). Then 
Gi@, , . . . . A,) < G,(Q,, . . . . m,) for iE I. In view of Proposition 3.3, we have 

Similarly, we have 
n 

c (h~,xAg-xn,><O for jcJ (12) 
i=l 

n 

c (h:,X,,,-x0,)20 for jEK. (13) 

Multiplying (ll), (12) and (13) respectively by u,>O, vj> 0, and vj< 0 
and adding, we get 

~n,-~n,)+ C f: uj(hz, Xxt,-Xn,)GO* 
JEJUK i= 1 

It follows from (lo), we have 

By pseudoconvexivity of F, we have F(/1,, . . . . A,) B F(R,, . . . . s2,) and the 
proof is complete. Q.E.D. 

Remark. In Theorem 4.7 of [7], the problem (P) does not have the 
equality constraint, and the functions F, Gi, i = 1, 2, . . . . m, are assumed to 
be convex. In Theorem 3.8 if we let Hi = 0, i = 1, 2, . . . . I, and assume that F, 
Gi, i= 1, 2, . . . . m, are convex, then in view of Proposition 3.2, Theorem 3.8 
reduces to Theorem 4.7 of [7]. 

DEFINITION 3.5. A differentiable set function F: r” -+ [w is said to be 
locally convex at (n,, . . . . Sz,) E J’” if there exists 6 > 0 such that 

On,, . . . . 4) ? W?, , . . . . QJ+ i <f*, X/l-X*,) 
i=l 

for all (ft , , . . . . A,,) E r” with d((Q,, . . . . Q,), (A,, . . . . A,)) < 6. 
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Remark. It follows from Theorem 4.5 of [7] that if F: r” + R is 
differentiable and convex on r”, then r is locally convex. 

4. DUALITY THEOREM FOR SET FUNCTIONS 

In this section let F: r” + R and Gi: r” + R, i = 1,2, . . . . m, be differen- 
tiable set functions. We consider the following problem: 

minimize F(A, , . . . . /i,) 

subject to (A,, . . . . A,) E r”, GJA,, . . . . A,) Q 0 

for i= 1, 2, . . . . m. 

w 

Then we formulate the dual problem of (P’) by 

maximize F(a,, . . . . az,) + i uiGi(a,, . . . . 0,) 
i= 1 

(Q) 

subject to ui > 0, i = 1, 2, . . . . m, (a,, . . . . 6,) E P, 

and 

jcl CT**, XA,-XC?,) + f i uj(gz*9 XA,-X0,) a09 
j=1 i=l 

for all (A i, . . . . A,) E r”, whereS’,, and gi+ denote the ith partial derivative 
of F and Gi at (0,) . . . . D,), respectively. 

LEMMA 4.1 [7, Corollary 3.91. Let F, G,, . . . . G,: r” + Iw be differen- 
tiable at (Q,, . . . . Q,). Zf (Q,, . . . . 0,) is a local minimum for (P’) and if there 
exists (a,, . . . . Q,,) E P for which 

Gj(Ql, . . . . Q,)+ f: <g: 3 xn,-xo,) ~0, 
i=l 

then there exist scalars A,, ..,, I.,,, such that 

( 
fi* + f Ajgi, X,4,-X*, 3O 

> 
forall A+r, i= 1,2, . . . . n, 

j=l 

AjGj(O,, . . . . Q,) = 0, j = 1, 2, . . . . m, 1,) . . . . 1, 2 0 

Gj(Q,, . . . . 52,) < 0, j= 1, 2, . . . . m. 

We say (O,, . . . . 52,, u,, . . . . u,) solves problem (Q) locally if (52,, . . . . Sz,, 
ul, . . . . u,) is a feasible solution to (Q) and there exist 6 > 0 such that 
W-J,, . . . . Q,)+Cy=l UiGi(f21,..*,Q,) 2 F(;I,y...yJn)+Cy!“=, ~?iGi(/ily...yA,)p 
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for any feasible solution (AI, . . . . X-,, ii;, . . . . U,) to (Q) with d((SZ,, . . . . Sz,), 
(2 1, ...> A,,)) < 6. 

THEOREM 4.2. Suppose that F and Gj, j= 1, 2, . . . . m, are locally convex 
on r”. If (a,, . . . . s2,) is a local minimum for problem (P’) and if there exists 
(6,) . . . . G,) E r” for which 

Gj(Q,, ...> Q,)+ i (&Xri,-Xn,)4 j= 1, 2, . . . . m, 
i=l 

then there exists (G1, . . . . a,) 20 such that (CJ,, . . . . Sz,, Cl, . . . . 2,) solves the 
problem (Q) locally. Furthermore, the local minimum of (P’) at (QI, . . . . R,) 
is equal to the local maximum of(Q) at (LJ,, . . . . O,, li,, . . . . a,,,). 

Proof. Let (0,) . . . . a,, U,, . . . . 6,) be a feasible solution to (Q). Then 
u = (221) . ..) ii,) > 0 and 

,c, <f**, X.4,-X0,) + f i uj(gi*, X*,-10,) a0 
ix1 i=l 

for all (A,, . . . . A,) E r”. 
Since F and Gj, j = 1, 2, . . . . m, are locally convex, there exists 6 > 0 such 

that d((A,, . . . . A,), (a,, . . . . a,)) < 6 implies 

W 1,...,n,)~F(Q,,...,a,,+ i (f*,~n,-xn,> 
i=l 

and 

Gj(A 13 ...y An) 2 Gj(Q1, ...y an) + i (gi*, Xn,-Xai)> j= 1, 2, . . . . m. 
i=l 

Now for d((A,, . . . . A,,), (a,, . . . . a,)) < 6 

W 1, . . . . A,)- 
C 

F@,, . . . . icz,) + f UjGj(@, . . . . a,) 
,j= I I 

i= 1 j=l 

2 - f i uj(g:*, XA, - x0,) - 5 iijGj(@, . . . . an) 

> - c tij[Gj(A,, . . . . A,)-Gj(@, . . . . fin)] - 2 iijG,(a,, . . . . an) 
j=l j=l 

= - f tijGj(A,, . . . . A,)>.. 
j= 1 
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Thus 

F(A 1, -.., A,) B F(& . . . . f2,) + i [UjGj(& . . . . i&J] 
j=l 

for any feasible solution (a,, . . . . a,, U,, . . . . 17,) to problem (Q) and any 
(A r, . . . . A,) EY with d((/l,, . . . . A,), (!?r, . . . . a,)) < 6. 

As (a,, . . . . I?,) is a local optimal solution to problem (P’), it follows 
from Lemma 4.1 that there exists li = (ti,, . . . . ~2,) 3 0 such that 

and 

tijG,#2,, . . . . 0,) = 0, j=l,2 m. , . . . . (14) 

igl <f**, XA,-Xl2,) + f i li,<S$*, IA,-X*,) 
j=l i=l 

20 for all (A r, . . . . /i,) E r”. (15) 

In other words, (Sz,, . . . . 52,,, ti,, . . . . ~2,) is a feasible solution to (Q). By (14) 
and (15), 

= F(Q,, . . . . i-2,) 2 I;@,, . . . . a,) + f iijGj@,, . . . . D,) 
j=l 

holds for any feasible solution (fir, . . . . a,, U,, . . . . IS,) to problem (Q) with 
4(Q, 9 .“, Q,), @I, .*a, 0,)) < 6. This shows that (Sz,, . . . . 52,, li,, ,,., 6,) 
solves problem (Q) locally and the locally minimum value of (P') at 
(Q ,, . . . . a,,) is equal to the local maximum value of (Q) at (a,, . . . . Sz,,, 
” 
Ul, . . . . GJ- Q.E.D. 
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