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Let X, Y, and Z be real topological vector spaces and E C X be a convex set.
C C Y, D C Z are to be pointed convex cones. Let F: X — 2¥ be C-convex and
G: X — 24 be D-convex set-valued functions.

We consider the problems

V — minimize F(x), subject to x € G (- D). (P)
x€E

This paper generalizes the Moreau-Rockafellar type theorem and the Farkas—
Minkowski type theorem for set-valued functions. When ¥ = R and Z = R™, we
established the necessary and sufficient conditions for the existence of Geoffrion
efficient solution of (P) and the relationship between the proper efficient solutions
and Geoffrion efficient solutions of (P). The Mond-Weir type and Wolfe type
vector duality theorems are also considered in this paper.  © 1994 Academic Press. Inc.

1. INTRODUCTION

Let X, Y, and Z be real topological vector spacesand C C ¥, D C Z be
pointed convex cones. Let £: X — 2% be C-convex and G: X — 27 be D-
convex set-valued functions. We consider the problem

V — minimize F(x), subject to x € G (—D), P)

EE

i.e., to find all x, € E N G (—D) for which y, € F(xp) and y, € w — min
FIE N G~ (—D)] or yy is a Geoffrion efficient value of (P).
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This type of problem has a wide range of applications. For example,
Klein and Thompson [9] surveyed their use in economics, in addition to
presenting their theory, Zangwill [16] used them to present a unified treat-
ment of convergence of nonlinear programming algorithms, while Hogan
[7] studied their properties from this viewpoint. Generalized equations
[10] and differential inclusions [4] are other applications.

In this paper, we define the weak-subdifferential of set-valued func-
tions, and generalize the Moreau-Rockafellar type theorem for set-valued
functions. We prove that if z; € F(u), zo € Fy(u), then

0.(Fy + F)lu; 21 + 22) C anFi(u; 29) + 8uFalu; 20) (D

holds, but not reverse inclusion; a counterexample [15] shows that equal-
ity in (1) does not hold. If F,, F, are real single-valued functions, then this
theorem reduces to the Moreau—-Rockafellar theorem.

We also generalize the Farkas—Minkowski type theorem for set-valued
functions. By applying the Moreau—Rockafellar type theorem and the
Farkas—Minkowski type theorem and other results for set-valued func-
tions, we establish the Kuhn-Tucker necessary conditions for the exis-
tence of a weak minimum of the problem (P).

When Y = R” and Z = R™, we also established the relationship between
the proper efficient solutions and Geoffrion efficient solution of (P) and
the necessary and sufficient conditions for the existence of Geoffrion
efficient solutions of (P).

In the final section, the duality theorems and weak duality theorems of
Mond-Weir and Wolfe types of vector set-valued functions are also es-
tablished.

Because the objective functions of duality problems are single-valued
functions, we deduce the optimization problem of set-valued functions to
the optimization problem of the usual single-valued functions. Hence this
paper provides a useful method for solving the optimization problem of
set-valued functions.

2. PRELIMINARY

Throughout this paper let X, Y, and Z be real topological vector spaces,
each with zero element 8, and let F: X — 2Y and G: X — 2Z be set-valued
functions. The domain of F is given by D(F) = {x € X: F(x) # J}.

AsetCinYisaconeif Ay € C,forally € Cand A = 0.

A convex cone is one for which Ay, + Ayy, € Cforall A, A2 =0, y,,
y: € C.

A pointed cone is one for which C N (—=C) = {6}.
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Let X*, Y* and Z* be the dual spaces of X, Y, and Z, respectively, and
(-, *) be the dual pairs. Let C C Yand D C Z be the pointed convex cones.
The polar cone C* of Cis C* = {y* € Y*|(y*,y) = 0forally € C}. IfE,
FCY,a€ER,wedefineE+ F={x+y|xEE, yEF},aE ={ax:x E E},
and int E as the set of interior point of E.

In adding and multiplying sets by scalars, the convention is made A +
& = J and o = J for any a. Let B(Z, Y) be the set of all continuous
linear operators from Z to Y and B*(Z, Y) = {w € B(Z, Y) | w(D) C C}.
For yy, y2 € Y, we write

Yi S »n if y» — y1 € C\{6},
Y1 S ify, -y €C,

and
i <c¢ y2 if y— y1 € int C.

A point yo € B C Y is called a weak minimal element of B, denoted by
yo € w — min B, if there does not exist y € B such that y <, yo.

Throughout this paper, let Y be ordered by the pointed convex cone
C C Y and Z be ordered by the pointed convex cone D C Z, and let C and
D have non-empty interior. ForA CX, F: X—=2Y, G: X— 22, VC Z, we
denote

F(A) = U Fx) and G (V)={x€X:GNYV+}

XEA

For yo € Y, we denote F(x) < o, F(x) =¢ yo, and F(x) = y, if for all
y € Flxp), y <c Yo, ¥ =c Yo, and y =¢ yy, respectively.

The zero vector in R” is also denoted by 0. The nonnegative and non-
positive orthants are denoted by R% and R”, respectively.

Leta =(a, ..., a,), b = (b, ..., b,) €E R". We write a < b if a <g- b,
a<bifa =g b,anda=bifa =g b.

DEFINITION 1[2]. Let A C X be convex and let F: X — 2%, Then F is
C-convex on A if for any x;, x; € A, A € [0,1]

AF(x)) + (1 — MF(x) C F(ax; + (1 — Mxp) + C.

DEFINITION 2. Let A C X be convex and let F: X — 2Y; then F is
strictly C-convex on A if, for any x;, x; € A, x; # x5, A € (0,1),

AF(x)) + (1 — MF(x) C Flhx; + (1 — Axp] + int C.
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DEfFINITION 3[14]). Let F: ACX—2Y, u € A and z € F(u). A linear
operator T € B(X, Y) is said to be a weak subgradient for z of F at u if

2~ T € w ~ minU {F(v) — T(v)}.

VEA

The set of all weak subgradients for z of F at u is called the weak
subdifferential for z at # and is denoted by 4, F(u; z). Moreover, F is said
to be weakly subdifferentiable at u if for all z € F(u), 3, F(u; z) # &.

Remark. Ifx € A and y, € F(X), it is easy to see from Definition 2 that
yo € w — min U,c4 F(v) if and only if 0 € 4, F(x; yo).

DEFINITION 4[14]. The set-valued function F: A C X — 2¥is said to be
connected at u € A if there exists a continuous function H: A — Y such
that H(v) € F(v) for all v in some neighborhood of u.

DerFinITION 5. Givenaset Ain R?, a point a € R” is said to be a lower
efficient (resp. upper efficient) point of A if 4 € A and thereisnoa’ € A
such that ¢’ = @ (resp. a’ = a). We denote this by a € eff A (resp. a € eff
A).

DEFINITION 6[14]. In problem (P), if F: E— 2%, G: E— 2%, a point
xp € E N G~ (R™ is called a proper efficient solution to problem (P) if
there exists y such that y € F(x,) and

FIEN G-(R™] + R. — y N (R") = {0}.

For two sets A and B in R, we denote A < B (resp. A < B) if x < y (resp.
x<y)foralx€ A,y €EB.

DEFINITION 7. In problem (P), if F = (F,, ..., F,) E—2¥ G E—
28" a point xg € E N G~ (R”) is a Geoffrion efficient solution to the
problem (P) if there exists y = (¥, ..., yn) € F(xo) such thaty € eff F[E N
G (R7)] and if there exists M > 0 such that for each i and x € E N
G ~(R?), w; € Fyx) satisfying w; < y;, there exist 1 =j = n, and w; € F;(x)
with w; > y; and y; — w; < M(w; — y)).

In this case y is called the Geoffrion efficient value of the problem (P).

Let H: E— 2R, we call x € E N G (R.) a minimal solution of the

problem.
Minimize H(x), subject to x € E, G(x) N R_ # O, if there exists y €
H(xy) such that y = min H{E N G (R.)}. (P)

3. MAIN RESULTS

In Theorem 3.1, we prove the Moreau-Rockafellar type theorem for
set-valued functions.
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THEOREM 3.1. Let Fy and F> be set-valued functions from the set E =
{vE X | Fi(v) # O, Fa(v) # O} into 2V, E be convex, and Fy and F, be C-
convex on E. If F\ is connected at some uy € int E, thenforu € Eand z, €
Fi(u), 22 € F>(1), we have

0u(F1 + F))u; 20 + 20) C 8uFi(u; z0) + 9.82(u; 22).
Proof. Let T € 8,(F| + F3)(u; zy + z;) and define
H@w) =Fi@) -z — Tv — ), Hy(v) = F»(v) — z,.

Since F,, F»: E— 2Y are C-convex, it follows that H, and H, are C-convex
set-valued functions and 8 € H,(u) N H,(u).
Because T € a,.(F, + Fa)(u; z; + z»), it follows that

21+ 2 — T() € w — min U [(F, + F)(@) — TW)].
vEE
This implies that
# € w — min U (F1 + F)(v) — (z; + 22) — Tw — w).

vEE
But (H, + H))(v) = (Fi + Fo)(v) — (1 + z2) — T(v — w).

This shows that 0 € 4, (H, + H,)(u; ) and 6 € w — min U,er (H; +
H>)(v). We define

A
B

epi H, = {(u,z) EE X Y|z € Hu) + C},
{(u, —2) E E X Y| (4, 2) € epi H,}.

Since H, and H, are C-convex, it follows that A and B are convex
subsets of E X Y. Because F) is connected at u, € int E, H, is connected
at ug and A has a nonempty interior.

We wish to show that (int A) N B = (J. Suppose that (v, y) € (int A) N
B; then there exist a € int C, w; € H,(v), w; € H3(v), such that,

IIA

wy <cy—a and wy S — y.
Thus wy + wy <pg—a<c¢ 6.
This contradicts § € w — min U, (H, + H;)(v) and shows that
(intA) N B = (.
Hence there exist nonzero (w*, z*) € X* X Y* and a € R such that

W*, v) + (2%, @) = a < (w*, w) + (z*, b) )
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for all (v, a) € A and (w, b) € B. Furthermore (w*, v) + (z*, a) < « for all
(v, a) € int A.

Because (4, 8) € A N B it follows that o = (w*, u). Next we wish to
show that z* # 0. Suppose that z* = 0; then (w*, uy — w) <Oforallw € E.
Since uy € int E, this leads to a contradiction. Hence z* # 0.

On the other hand if there exists ¥ € C such that (z*, y) > 0, then by
taking any v € F and sufficiently large A > 0, we have

(w*, v) + (2%, 2 +AP) > « for any z € H,(v).

This contradicts (2). Hence z* € —C* is nonzero. Let Z € —int C # &
satisfy (z*, 7) = 1.

We define 7: X — Y by T1(v) = —(w*, v) Z.

We wish to show that

T\ € 0, Hi(u; 6) N (=0, Ha(u; 0)).

Forif T, & 3. H(u; 9), thenthere exist z’ € Yand «’ € E, such thatz' €
H](ll’) and - Tl(u') <c 6 — T|(ll).

Hence 2z’ + (W*, u)7 <c 6 + {(w*, w)Z.

Since z* € —C* is nonzero, it follows that (z*, y) < Oforall y € int C.

Therefore

(Z5, 2y + wH, u')y > (W™, u) = a.

This leads to a contradiction with (2); hence T, € 3, H(u; 6).

Similarly, T, € —ad,. Hy(u; 9).

By the definition of the weak subdifferential, it is easy to see that T, €
d,.H(u; 8) if and only if —T\(«) € w — min U, {H,(v) — T,(v)}, if and
only if =T\(z) € w — min U,eg {F1(2) — 21 — T(v — u) — Ty(v)}, if and only
ifzy — (T + T)w) € w — min U,ee {Fi(v) — (T + T}

This shows that T + T, € 0, F\(u; z;). Hence T, € o9, F(u; z;) — T.
Similarly, =7, € d,,H»(u; 6) implies — T, € 8, F>(u; z3). Thus, 6 = T, +
(=T €0, Fi(u; z) + 0,Fxu;z0) ~ Tand T € 9, F (u; z)) + 0, F-(u; 7).
Therefore o,,(Fy + F2)(u; z) + 22) C 8, F\(u; z1) + 9, F2(u; 22) and the proof
is completed.

COROLLARY 3.2. In Theorem 3.1 if Y = R, then we have
3(F1 + F)u; 7y + 22) = 8.F1(u; 7y) + 3.F2(u; z2).

Proof. By Theorem 3.1 we have 4,(F) + Fy))(u; z) + z2) C 0. F(u;
z1) + 8, F>(u; 22). The inclusion 9, F,(u; z,) + 0,.F2(u; 22} C 0,.(F, + Fa)Xu;
zZ) + z») follows immediately from the definition of weak subdifferential
and the proof of the corollary is completed.
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Remark 1. If F, and F, are real and single valued functions, then
Corollary 3.2 reduces to the Moreau—Rockafellar theorem [11].

Remark 2. If Y # R, the inclusion a,.F,(u; z;) + 0,.F2(u; 22) C 9,.(F, +
F>)u; 7y + ;) may not be true.

ExaMPLE [15]. Let X = R', Y = R?, and C = R%, g,(x) = (—x, 2x),
g:(x) = (2x, —x); then g,, g,: R' — R? are continuous, R2-convex func-
tions and g,(0) = g-(0) = 0.

It is easy to see

9,.£1(0; (0, 0)) = {(a, b) € R?| (0, 0) € w — min{(—x, 2x)
— (ax, bx), x € R}}
={a,b)eERa=<=-1,b=20ra=—1,b=2}

Similarly

8,.£200; (0, 0)) = {(a, b) € RY (0, 0) € w — min{(2x, —x)
— (ax, bx), x € R}

={a, bER)a<2,b=—-1lora=2b=—1}.

Next

(g1 + g2)x) = (x, x), (g1 + g2(0) = (0, 0).

d.(g1 + £2(0; (0, 0)) = {(a, b E R} (0,00 Ew
— min{(x, x) — (ax, bx)| x € R}

={a, b)ERa=1l,b=lora=<1,b=1}
It is obvious that d,.g,(0; (0, 0)) + d.,.£2(0; (0, 0)) = R? 2 d.(g1 + £2)(0;
(0, 0)).

THEOREM 3.3. (Generalized Farkas—-Minkowski theorem for set-
valued functions). Let E be a convex subset of X. If the set-valued func-
tion F: E— 2Y is C-convex, G: E — 2% is D-convex, and the system

{F(x) <c 0
G(X) <D (7]

has no solution in E, then there exists (y*, z2*) # (0, 6) in C* X D* such
that for x € E

(y*, Fx)) + (z*, G(x)) = 0; (3)

ie, {y*.y) +(z*, ) = 0 forall y € F(x), z € G(x).
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Proof. Let A = {(y, z) € Y x Z| there exists x € E such that u <¢ y
and v <p z for some 4 € F(x) and v € G(x)}.

It is obvious that A does not contain origin (8, ) of Y x Z.

We wish to show that A is convex in ¥ X Z.

Let (y, z) and (¥, 7) be in A; then there exists x;, x € E such that

u <cy, vy <p 2, and Uy <cy, 12 <pZ

for some u; € F(x;), v, € G(xy), u» € F(x3), and v; € G(x,).
By the convexity of F and G, we have

AF(x) + (1 — MF(x) C Flax, + (1 — Mx] + C,
AG(xy) + (1 — MG(x2) C GlAx; + (1 = Mx2] + D.

Therefore there existc E Candd € Danda € F[Ax; + (1 — Nxp], b €
GIAx, + (1 — X)x3] such that

Ay + (1 — Nu=a + c, A+ (1 —MNuv,=b+ d.

Hence
Ay + (1= Ny —¢cZchuy+ (1 = Ny <cAy + 1 — Ny,
b=Ay+ (I = Nvz—d=pAivy + (1 = Nva<prz+ (1 —AZ

IS
I

This shows that A(y, z) + (I — A}y, 2) € A and A is convex in ¥ X Z.

Since int C # & and int D + &, it follows that A has a non-empty
interior. By the separation theorem there exists a nonzero element (y*,
Z*) € Y* x Z* such that

(y*, ) + (z*, 20 =0  forall (y, 2) € A. 4)

If x € E, and forany y € F(x), z € G(x) and any ¢ € int C, d € int D we
have (y + ¢,z + d) € A.
By (4), we get

(Y5, + (5, 20+ Yo+ {5 dH=0 forc € int C, d € int 1)(.5)

It is obvious that (y*, z*) € C* X D*.
Letting ¢ — 6 and d — @ in (5), we obtain

G+ =0 forally € F(x), z € G(x), and x € E.

Hence {y*, F(x)} + (z*, G(x)) = 0 for all x € E.
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COROLLARY 3.4. In Theorem 3.3, if we assume further that there ex-
ists £ € E such that G(X) N (—=D) £ &, then there exists a W € B*(Z, Y)
such that

Flx) + W(G(x)) <c 8

does not hold for any x € E.

Proof. It follows from Theorem 3.3 that there is a nonzero (y*, z*) €
C* x D* such that (3) holds. We wish to show that y* # 0. Suppose y* =
0; then z* # 0 in D*. Hence (z*, z) > 0 for all z € int D.

Since by assumption G(£) N (—int D) # & for some £ € E, it follows
that there exists z € G(£) N (—int D) and s0 0 > (z*, z) = {y*, F(®)) + (z*,
z) = 0is a contradiction. Hence 0 # y* € C* and (y*, y) > 0forall y € int
C + .

Let yo € int C be such that {(y*, y;) = 1.

Define W: Z — Y by W(2) = (z*, z) vo.

Then W € B*(Z, Y) and

(y*, Flx) + W(G)) =0  forallx € E. (6)

Since (y*, y) > 0for all y € int C, it follows from (6) that there does not
exist x € E such that F(x) + W(G(x)) <c¢ 0 and the proof is completed.

As a consequence of Theorem 3.3, we obtain a necessary conditions for
the existence of weak minimal point of the problem (P). The following
theorem is due to Corley [5]. However, we give a different proof.

THEOREM 3.5[5]. Let E be a convex subset of X and F: E — 2Y,
G: E— 27 be respectively C-convex and D-convex set-valued functions. If
Xo is a weak minimal point of the problem (P} and u € F(xy), u € w —
min F[E N G~ (=D)), then there exists a nonzero (¥§, z&) in C* x D* and
20 € G(xg) N (=D) such that {z§, z0) = 0 and

{yg, FQ)) + (z5, G)) = (¥, u) forall x € E.

Proof. By assumption, x € E N G~ (—D), u € F(xy), and u € w — min
FIEN G (-D)].
We wish to show that the system

Fx) —u<c9
(7)

Gx) <p 8

has no solution in E.
For if ¥ € E were a solution of (7), then G(X) <p 0 and F(x) — u < 6.
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This shows that there exists ¥ € E N G~ (—int D) such that F(¥) <c u.
This contradicts the assumption that xg is a weak minimal point of (P).
Hence system (7) has no solution.

It follows from Theorem 3.3 that there exists a nonzero element (yg,
z&) € C* x D* such that

(3¢, F(x) — u) + {(zf, G(x)) =0  forall x € E. ®)
Thus
(yo, @) + (25, GO)) = (y§, 1)  foralla € Fx), x EE.  (9)
Letting x = xp and a = « in (9), we obtain
(75, Glxg)) = 0. (10)

Since xp € E N G (—D), it follows that G(xg) N (—D) + .
Let

20 € Glxg) N (=D);  then{zg, zo) = 0. (11)

It follows from (10), (11), {(z5, zo) = O. (12)
Therefore

(e, F(x)) + (28, Gx)) = (v, w) for all x € E.

Applying Theorem 3.5 and following the similar arguments of Theorem
3.4, we obtain Corollary 3.6.

COROLLARY 3.6[5]. In Theorem 3.5, if we assume further that there
exists £ € E such that G(£) N (—int D) # J, then there exist wy € B*(Z,
Y) and zo € G(xg) N (—D) such that wy(zy) = 0 and xq is a weak minimal
point for the problem

w — min U F(x) + wo(G(x)).

XEE

IfY=R,x*€ B(X,R) = X*, F: E— 2R xy € X, and ys € F(xy), we see
from the definition of weak subdifferential, that

x* € 3,F(xq; yo) if Flx) — (x*, x) = yg — (x*, xo), for all x €E E.
If F: X — 2R, we denote dF(xy; yo) = 0,.F(x0; yo).

The D-convex set-valued function G: X — 2¢ is said to be weakly
regular subdifferentiable at xy if
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dw(wg © G)xg; wo(2)) = wp° 9,.Glxy; 2)
for every z € G(xo) and wo € BY(Z, Y).

Applying Theorems 3.1 and 3.5, we prove a Fritz John type theorem for
the existence of weak minimal point to the problem (P) as follows:

THEOREM 3.7. Let F: E— 2Y be C-convex and G: E— 27 be D-convex
set-valued functions, where dom F = dom G = E is a convex subset of X.
Assume that one of F and G is connected at xo € int E. If x4 is a weak
minimal point to (P), and u € w — min F[E N G~ (—=D)], then there exist
(y*, z¥) € C* x D* and zy € G{(xy) N (—D), such that {z*, z3) = 0 and

0 € ay* o F(xo; (¥*, u)) + 9z* o Glxy; (2*, z0)).

Proof. Assume xpis a weak minimal point to (P) and u € F(xy), u €
w — min F[E N G (—D)].

It follows from Theorem 3.5 that there exist (y*, z*) € C* x D* and
20 € G(xg) N (=D) such that (z*, z;) = 0 and

(y*, F(x)) + {z*, G(x)) = (y*, ) + (z*, z0) forall x € E. (13)

Because (y*, u) + {(z*, zo) € (¥*, Flxy)) + (z*, G(xy)) it follows from (13)
that x, is a minimal solution of the following problem:

min U (y*, F(x)) + (z*, G(x)).

pi=r
Hence 0 € 4,.(y* o F(x) + z* o G(x))(xq; {¥*, u} + (z*, zo)).
It follows from Theorem 3.1 that
0 € ay* o Flxo; (y*, w) + z* ° Glxo; (z*, z0)).

Thus the proof of the theorem is completed.

In Theorem 3.7, if we add a further condition, we obtain a Kuhn-
Tucker type necessary condition for the existence of weak minimal of the
problem (P).

THEOREM 3.8. Let E = dom F = dom G be a convex subset of X, and
F: E— 2Y and G: E — 22 be respectively C-convex and D-convex set-
valued functions. Assume that one of F and G is connected at uy € int E
and there exists X € E such that G(£) N (—int D) # &. If xq is a weak
minimal point to the problem (P), G is weakly regular subdifferentiable at
Xo, U € Fi(xg), and u € w — min F[E N G (—D)], then there exist wy €
B*(Z, Y) and zy € G(xy) N (—=D) such that
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wolzo) = 6 and 0 € 0, F(xp; 1) + wq o 3,.G(xy; 20).

Proof. Applying Theorem 3.1 and Corollary 3.6 and following the
arguments of Theorem 3.7, this theorem follows immediately.

COROLLARY 3.9. Let E be a convex subset of X and F, G: E— 2% be
R.-convex. Assume that one of F and G is connected at some uy € int E
and there exists £ € EN G~ (int R). If xo is a minimal solution to (P), then
there exists A = 0, zo € G(xg) N (R_), such that Agzy = 0 and 0 €
aF(xg; u) + NOG(xy; zo) where u € F(xg) and u = w — min U.cpng (g
F(x).

Proof. Since G is a real set-valued function, it follows that dIAG(x,;
Azg) = AdG(xy, z) for all A = 0. Hence G is a weakly regular subdifferentia-
ble and the corollary follows immediately from Theorem 3.8,

LEMMA 3.10. Let F: E— 2R be strictly R, -convex on a convex subset
E of X. Then, for xo € E, vy € F(xp), and x* € oF(xy; yq), we have

F(X) > yo + (x*, X — X()> for all x # X0 in E.
Proof. Since F: E — 2% is strictly R, -convex on E, we have

AF(x) + (1 — NMF(xg) C F[ax + (1 — Mxg) + int R,
for any A € (0,1) and X F Xp.

Let y € F(x); then Ay + (1 — M)y € F[Ax + (1 — Mxg] + int R,

Hence there exists « € F[Ax + (1 — XNxg] such that Ay + (I — Nyy =
u + ¢ for some ¢ > 0,

Therefore u = Ay + (1 — X)yg — ¢.

For x* € aF(xy; yo), we have

FIAx + (1 = Mxol — yo = x*, Ax + (I = Nxg — xp) = Mx*, x — xp).

This implies u — yg = A (x*, x — xq).

ButA(y —yo) —¢c=Ay + (1 = A)yg— ¢ —yo= it — yo = A{x*, x — xq).

This implies y — yo = (x*, x — x¢) + ¢/A > (x*, x — xo) for all y € F(x)
and A € (0, 1).

Therefore F(x) — yy > (x*, x — xy), for all x # xyin E.

Following the arguments of [8], we prove Theorems 3.11 and 3.12.

THEOREM 3.11. Let E be a convex subset of X, and let F = (F\y, ...,
F,): E— 2% and G: E — 2% be respectively R’.-convex and R7-convex
set-valued functions. If xo € E N G~ (R") is a Geoffrion efficient solution,
then there exists u = (u,, ..., u,) with strictly positive components such
that xq is an optimal solution to the problem (P,), where
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min 2, «;Fi(x), subject to x € E, G(x) N R™ # &. (P.)
i=1

Proof. If xo is a Geoffrion efficient solution, then there exist y =
(¥1, ..., yn) € F(xp) and M > 0 such that for eachi = 1, ..., n, the system

i > F;
{y (x) (14)

yi > Filx) + M(Fi(x) — y), i#j
has no solution in E N G (R™).

By Theorem 3.3, for the ith system, there exists A} = 0 with 27_; A} = 1
such that

MFi(0) = y) + 2 N(Fi(x) + MFi(x) — y; — My) = 0. (195

J#i
Since

(A:i 2 A}) Fi(x) € NFix) + 2, NFi(x) (16)

JEi J#i
it follows from (15) and (16) that

Fi(x) + M > NFi(x) =y, — M Y, ANy, = 0. (17)

JHi J#i

Summing up the above n inequalities, we have
2 F) + M2 3 NE() = X yi— M2 2 Ny, =0.
i=1 i=1 i+ i=1 i=1 i#J

Since

(1 + M M?) Fi(x) C Fi(x) + M D, MFi(x)

i+ i+
we have

n

:1 <1 + MY )\J’) F,-(x)zZ(l +M2)\}) ¥ (18)

g i#) j=1 i+

for all x € E N G (R7”). Since
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121(1 +M§}\}) yjejil (1 +M2)\}) Fi(xo), (19)

i#j

(18) and (19) show that x, is a solution of (P,) withu = (1 + M 2,4, A\, ...,
1+ M2, \).

THEOREM 3.12. Let u; > 0 (i = 1, ..., n) be fixed; if xy is an optimal
solution to the problem (P,), then xy is a Geoffrion efficient solution to the
problem (P).

Proof. If xo is an optimal solution to the problem (P,), then there exists
¥ = (1, -y yn) € Flxo) such that 2, w;y; = min U, cpng-mm 20 4:Fi(x).
Hence

™-

> uiy; = D, wiF(x) forallx € EN G (R7). (20)
i=1

It is obvious that

y € eff U F(x).

x€ENG (RT)

Therefore x; is a lower efficient solution to the problem (P).

We wish to show that x; is a Geoffrion efficient solution to (P) with M =
(n — 1) max;; uj/u;. Suppose, to the contrary, that for some x € E N
G~ (R™), and some { and some w; € F;(x) with w; < y;, we have y; — w; >
M(w; — y)) for all j with w; € F;(x) and w; > y;. It follows that

yi— w; > i’—;— uw; —y)  forallj + i,

Multiplying through by u;/n — 1 and summing over j # i yields

Uiy — uw; > z wi(w; — y).
J#i

It follows that 2 u;y; > 2 u;w; for x € E N G~(R”) and some (wy, ..., w,)
€ F(x) = (F|(x), ..., F,(x)), which contradicts (20).

We complete the proof of Theorem 3.12.
A set A C R”is called R%-convex if A + R is a convex set in R”,

LEMMA 3.13. Let E be a convex subset of X, and F: E — 2% and G:
E — 2R" be respectively R'i-convex and R7-convex set-valued functions;
then FIE N G~ (RD)] is a R%-convex set in R".

409/186/1-4
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Proof. Ifx;, x> € ENG-(R™,A€E[0,1],thenx;, x; €EE, Glx)) N R™ #
@, G(x2) N R™ # . We choose z, € G(x)) N R”, z; € G(x;) N R™. By the
R-convexity of G, we have

AG(x) + (1 — MG(x) C Gax, + (1 — Mxp] + RY.
Hence there exists z € G[Ax; + (1 — A)x,], b € R7T such that
z+b=ry+ (1= Nz.

Thus

2=Az + (1 =N —-bERZNGA; + (1 — Nx3] # &

Therefore Ax; + (1 = Mx; € EN G (R?)and EN G (R™) is a convex set
in X. Nextlet y,, v, € FIEN G~ (RD)], A € [0,1]; then there exists x;, x, €
E N G(R7T) such that y, € F(x,), y» € F(x;). By the R’-convexity of F,
we have

Ayi (1 = My € AF(x)) + (1 — MF(x) C F[Ax; + (1 — Mx] + RY
CFIEN G (RT] + RL.

This shows that F[E N G~ (R™)] is R%-convex.

LeMMA 3.14[13]. Let A be a R} convex set; then y, € A satisfies
A+ RT — yo N (RY) = {0}
iff there exists a vector U € int R such that

0, yoy = (0, y)  forall y € A.

THEOREM 3.15. Let E be a convex subset of X, and F: E— 2% and G:
E — 2" be respectively R -convex and R’-convex set-valued functions.
Then xy is a Geoffrion efficient solution of the problem (P) iff xy is a proper
efficient solution of the problem (P).

Proof. Theorem 3.15 follows immediately from Definition 6, Theo-
rems 3.11 and 3.12, and Lemmas 3.13 and 3.14.

Theorem 3.16 establishes a sufficient condition for the existence of
Geoffrion efficient solution of the problem (P).

THEOREM 3.16. Let E be a convex subset of X, and F = (Fy, ..., F,):
E— 2% and G: E— 2% be respectively R -convex and strictly R™-convex
set-valued functions. Suppose that xy € E and that there exists A =
A A EINtRE, B=(B, ..., B) ERT, Z=1(Z}, ..., Zm) € Gxp) N (RT),
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7= (F1s ..., ¥n) € Flxo) such that {8,7) = 0 and 0 € Z_, N;dF(xo; ;) +
271 B;0G;(xo; 7). Then x, is a Geoffrion efficient solution of the problem
(P).

Proof. By assumption, foreachi =1, ..., n,andj = 1, ..., m, there
exist x € aFi(xo; y7) and 2 € 3G;(xy; z) such that 0 = 2| Ax* + 27,
B;z; . Let x be any feasible solution of the problem (P); then G(x) N (R™) #
&, and we choose z = (z), ..., z,) € G(x) N (RT). By assumption, for each
Jj=1, ..., m, G;is strictly R.-convex, and it follows from LLemma 3.10 that

G(x)— >, x—x), Jj=1,..,m
Hence z; — Z; > (z/, x — x0),j = 1, ..., m. Since 8 € RY, B # 0, we have

0=(B,22=(B. 2B 2

=wm—a=§@m—@

> ; Bz}, x — xo) = ; (Bizf, x — xo.

Therefore

A, F(x) — 5 = > MFx) — 7) = > N ¥, x — xo)
i=1 i=1

-2 Bz, x — x0) > 0.
j=
From this

A\, 7)) <\, F)

for all feasible solutions x of problem (P) and the theorem follows immedi-
ately from Theorem 3.12.

Applying Theorems 3.11 and 3.5, and Lemma 3.1, we obtain a neces-
sary condition for the existence of the Geoffrion efficient solution of the
problem (P).

THEOREM 3.17. Let E be a convex subset of X, and F = (Fy, ..., F,):
E—-2%and G =(G,, ..., Gn): E— 2%" be respectively R"-convex and R7-
convex set-valued functions. Assume that all Fy, ..., F,, G, ..., G, except
possibly one are connected at some ug € int E and there exists X € E N
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G(int R™). If xo is a Geoffrion efficient solution of the problem (P) and
y = (¥, ..., ¥n) € F(xo) is a Geoffrion efficient value, then there exist A =

Al .o M) EINt R, B=(B1, ..., B ERT, 2= (24, ..y Zm)s Z € Glxg) N
(R?) such that (B, ) = 0 and

0e Z NoFi(xos y) + Z B;0G;(xos Z)).
i=1 =1

Proof. Given that x; is a Geoffrion efficient solution of the problem
(P), it follows from Theorem 3.11 that there exist A = (Ay, ..., A,) € int R}
such that

A\, =\, F(x)y forallx € EN G (RT).

That is, x; is an optimal solution of the problem

Min D, \;F{x), subjectto x€E,Gx)NRM +J. (Q
i=1

Then, by Theorem 3.5, there exists 8 = (B, ..., 8,) € RT and Zy € G(xp) N
(R™) such that (8, zy) = 0 and x; is an optimal solution of the problem

Min U zl NEFd(x) + Z B;Gi(x). Q"
i= i1

XEE

Hence 0 € 6(2,';, )\,'F,' + 2;11 BjGj)(Xo; 2?:] ANy Ej”il Bij).
Since A, Fi(xp; N;y) = NdF(xq; vy, it follows from Theorem 3.1 that

0 € Y, NdFi(xo; v + 2, B;0G(xo; 2),
i=1 J=1

and the proof of the theorem is completed.

4. DUALITY THEOREM OF SET-VALUED FUNCTIONS

In this section, we present and prove the Wolfe and Mond-Weir duality
theorems of vector, set-valued functions. In this section, we assume that
Y = R" and Z = RY in problem (P).
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The Mond-Weir type duality problem of (P) is as follows:

Maximize y, subject tox € E, A = (A, ..., A,) € int R?,
B = (BI LEEES] Bm) E RT’ y
= .. Yo € Flx), (D1)

= (Zl, seey ZM) e G(X), <ﬁ» Z) = Os

0€e E NoF(x; yy)
py
+ Z B;9G;(x; z)).
Jj=1

The Wolfe type duality problem of (P) is as follows:

Maximize y + {8, z)e, subject tox € E, A = (A, ..., A,) € int R,
ﬁ = (Bl sy Bm) € RT9 y = (y]9 reey Yn) € F(x)’ = (le ey Zm) € G(X),

0 € D NOF;(x; y) + 2 BjaGi(x; z), e = (1, ..., 1) € R™.
i=1 Jj=1

We say (x, A, 8, ¥, z) is a feasible solution to (D1). If A € int R}, 8 € RY,
x EE,y € Fx),z€ G, (B, 2)=0and 0 € 2% NoFix; y) + Z,
B,8G;(x; z;). The feasible solution to (D2) can be defined similarly.

THEOREM 4.1. (Weak duality theorem) Let x, be a feasible solution to
(P)and (x, \, 8, y, 2) be a feasible solution to (D1); then (A, F(xg)} = (A, y).

Proof. By assumption, there exist x; € aF,(x; y)), 2 € aG{(x; z),
Jj=1,...,m,i=1, .., nsuch that

n m
0= z )\,‘X;k + z B_,'Z}k.
i=1 j=1

Since x; is feasible to (P), it follows that G(xy) N (R”) # &, and we
choose 7 € G(xg) N R”. Then

0= (8,2 — (B, 2) = 2 BIG ~ 2) = 2 B G oxo — .
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Since (Zi-; MixF + 27, Bz, x0 — x) = 0, we have (2] Axf xo — x) = 0.

<me—ww=§umm—ngum&—ﬂ

<2 )\jxj", Xq — x> = (.
i=1

Therefore (A, F(xg)) = (A, y).

THEOREM 4.2. (Duality theorem) Suppose that E is a convex subset of
X, and F = (F,, ..., F.): E—= 2% and G = (G,, ..., G,): E — 2% are
respectively R-convex and R'!-convex, F, ..., F., Gy, ..., G, except
possibly one are connected at uy € int E and there exists X € E such that
G(®) N (int RT) # . If xo is a Geoffrion efficient solution of the problem
(P), then there exists X € int R™, E € RY, such that (xg, A, B, ¥, 2) solves
(D1) for some y € F(xy), Z € G(xp). Furthermore, problems (P) and (D1)
have the same extreme values.

Proof. Since xj is a Geoffrion efficient solution of (P) and y = (5, ...,
¥») € F(xo) is a Geoffrion efficient value of (P), it follows from Theorem

3.17 that there exist A = (A, ..., A,) €int R%, = (Bi, ..., Bn) ERT, T =
(Zy, ...s Zm) € G(xp) N R” such that (B, Z) = 0 and

0 € > NaFixo; 7) + > BioG(xo; 7).
i=1 Jj=1

In other words, (xg, A, E ¥, 2) is a feasible solution for (D1). Hence, if
{x, A, B, y, 2) is any feasible solution of (D1), then by Theorem 4.1, we
have

A 7= ).

Since A € int R7, it follows that there does not exist y with (x, A, 8, ¥, 2)
feasible solution of (D1) such that y = y. This shows that ¥ is an optimal
value of (D1).

THEOREM 4.3. (Weak duality theorem) Let xy be a feasible solution for
(P) and (x, X, B, y, 2) be a feasible solution for (D2); then (A, F(xy)} =
A,y + (B, ).

Proof. By assumption, there exists x; € dF,(x, ), z] € 3G/(x; z),
Jj=1,..,m i=1,.. n suchthat 0 = 2 \x} + 27, B,z
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<)" F(X(])) - </\$ )’> - (B! Z)

= 2 NlFi(xo) — v ~ 21 Bz
= =

zikf@f,xO—X)—ZBij

i=1 j=

= —21 Bz} xo — x) - 2} Bz

> z] Bi(z; — G(xo)) ~ 2] Biz
j= /=
= —(B, G(x¢))

Since xq is a feasible solution to problem (P), it follows that G(xp) M
(RT) # . Choosing z9 € G(xg) N (RT), we see that

(A, F(xo)) =M, y) — (B, 2) = —(B, 20) = 0.

This shows that

N\, Flxo)) = (A, ) + (B, 2)

and the theorem is completed.

THEOREM 4.4. In Theorem 4.2, if xq is a Goeffrion efficient solution
and ¥ = (¥}, ..., ¥») € F(xp) is a Geoffrion efficient value of the problem
(P), then there exist X € int R%, B € RY, such that (x,, x, E, v, 7) solves
(D2) for some ¥ € F(xy), 7 € G(xo). Furthermore, problems (P) and (D2)
have the same extreme values.

Proof. As in Theorem 4.2, there exist A € int R%, 8 € R7, § € F(x),
7 € G(xy) N R™, such that (xp, A, E ¥, Z) is a feasible solution of (D2). Let
(x, A, B, ¥, 2) be any feasible solution of (D2).

Without loss of generality, we may assume that 2=, A, = 1.

Since (8, z) = 0, it follows from Theorem 4.3 that

MF+B.Dd=A =M+ B.2=Ay+ (B e
Since A € int R, there does not exist a feasible solution (x, A, 8, v, 2)

for (D2) such that y + (B8, 2) e = ¥ = ¥ + (B, Z)e. This shows that ¥ is the
extreme value of (D2).
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THEOREM 4.5. (Converse duality theorem) Let F: E — 2R be strictly
R.-convex and G: E — 2% be R.-convex. Suppose one of F and G is
connected at ug € int E and there is a £ € E such that G(£) N (intR_) # .
If (xq, 1, Bo, Yo, 20) solves the problem (D2), then xq solves (P). Moreover,
the extreme values of problems (P) and (Q) are the same.

Proof. Suppose that x solves problem (P). By Corollary 3.9 and
Theorem 4.4 there exists 8 = 0, y € F(X), 7 € G(X), such that (x, 1, 8,7, 2)
is a solution of problem (D2) and 8z = 0. Hence ¥y + 8z = y + Bz for all
feasible solutions (x, 1, 8, y, z) of (D2).

We wish to show that x = x.

Since (xo, 1, Bo, Yo, 2o) solves problem (D2), it follows that xo € E, 89 =0
and there exist yg € F(xo), 20 € G(xp), x* € dF(xo; ¥o), z* € 3G(x0; 20), Such
that 0 = x* + Boz* and yy + Bozo = ¥ + BZ. If xp # X, then by Lemma 3.17
we have

F(x) — yo > (x*, X — xo). (2n
But it follows from (21) and y € F(X) that

¥ = yo *+ Bo(G(X) — z0) > (x*, ¥ — xo) + Bofz*, ¥ — xo)
= {x* + Boz*, X — xp) = 0.

That is,
¥+ BoG(¥) > yo + Bozo = F + BZ.
Since B8z = 0, it follows that
BoG(x) > 0. (22)
Since x solves problem (P), there exists # € G(X) N (R_) # J such that
Boit = 0. (23)

We see that (23) contradicts (22). Therefore xy = X, s0 xg is a minimal
solution for problem (P). The final part of the theorem follows immedi-
ately from Theorem 4.4.

THEOREM 4.6. (Converse duality theorem) Let E be a convex subset
of R*, and F: E — R” and G: E— R™ be respectively R’ -convex and R"-
convex set-valued functions. Let (xy, A, B, o, 20) be a feasible solution for
(D1). Suppose that there exists a feasible solution X for (P) and y € F(X)
such that (\, ¥) = (A, o + {B, z0) €). Then X is a proper efficient solution of
(P).
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Proof. It follows from Theorem 4.3 that

(A’ F(X)) = <A’ Yo + <B’ ZO) e) = <)\’ j;)

for any feasible solution x of (P). The theorem follows immediately from
Theorems 3.12 and 3.15.
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