PRE-VECTOR VARIATIONAL INEQUALITIES

LAI-JIU LIN

Existence theorems for pre-vector variational inequalities are established under different conditions on the operator T and the function η . As an application, we establish the existence of a weak minimum of an optimisation problem on η -invex functions.

1. INTRODUCTION

Throughout this paper, let X, Z be Banach spaces, (Y, D) be an ordered Banach spaces, ordered by a closed convex cone D. Let L(X,Y) be the space of all bounded linear operators from X to Y, $E \subseteq X$ and $C \subseteq Z$ be nonempty sets, $\eta : E \times E \to E$ be a function, $V : E \to 2^C$ and $G : E \to 2^E$ be set-valued maps. We consider the following three problems:

PRE-VVIP. Find $\overline{x} \in E$ such that

$$\langle T(\overline{x}), \eta(y, \overline{x}) \rangle \not< 0$$
 for all $y \in E$,

where T is a map from E to L(X,Y).

PRE-QVVIP. Find $\overline{x} \in E$, $\overline{y} \in V(\overline{x})$ such that

 $\langle H(\overline{x},\overline{y}),\eta(y,\overline{x})\rangle \not\leq 0 \text{ for all } y \in G(\overline{x}),$

where H is a map from $E \times C$ to L(X,Y).

The Pre-VVIP has some relation with vector optimisation problems of η -invex function.

(P) V-min f(x) subject to $x \in E$,

where $f: E \to Y$ is a η -invex function [8].

It is easy to see that if $\overline{x} \in E$, and $T(\overline{x})$ is the Fréchet derivative of f at \overline{x} , and if \overline{x} is a solution of Pre-VVIP, then \overline{x} is a weak-minimum of (P).

Received 16th March, 1995.

This research was supported by the National Science Council of the Republic of China. I thank the referees for many useful suggestions during the preparation of this paper.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

Hence sufficient conditions for the existence theorem of Pre-VVIP are also sufficient conditions for the existence of the weak minimum of (P). Therefore the study of Pre-VVIP is important in research concerning vector optimisation problems of η -invex functions.

In [7], F.Giannesi first introduced vector variational inequalities in a finite dimensional Euclidean space. Since then, many results have been obtained on the vectorvariational inequality and vector complementary problems [2, 3, 4, 13]. In [2, 3, 13], Cheng, Yang and Cheng, considered the case $\eta(y,x) = y - x$ in Pre-VIIP and Pre-QVVIP. In [11], Parida, Sahoo and Kumar considered the case Y = R, $D = R_+$ and $X = R^n$ in Pre-VVIP. If $X = R^n$, Y = R, $D = R_+$, $\eta(y,x) = y - x$, then Pre-VVIP reduces to the well-known Hartman and Stampacchia variational inequality problem [9]. If $X = R^n$, $Z = R^m$, Y = R, $D = R_+$, G(x) = E for all $x \in E$, then the Pre-Quasi VVIP reduces to the problem studied by Parida and Sen [10].

In this paper, we investigate existence theorems for Pre-VVIP, Pre-QVVIP and as a consequence of our results, we establish sufficient conditions for the existence theorem of a weak minima [3] of the problem (P).

2. PRELIMINARIES

Throught this paper, let D^* be the polar cone of D. Let $x, y \in Y$. We denote $x \leq y$ if $y - x \in D$ and $x \neq y$ if $y - x \notin intD$. If D is a pointed, closed, convex cone and D induces a partial order in Y, then (Y, D) is called an ordered topological vector space.

DEFINITION 1: Let $T: X \to L(X,Y)$, $\eta: X \times X \to X$. Then T is said to be η -monotone if $\langle T(x), \eta(x,y) \rangle - \langle T(y), \eta(x,y) \rangle \ge 0$ for all $x, y \in X$.

DEFINITION 2: [8] Let $f: X \to Y$ be Frèchet differentiable on X. Then f is said to be η -invex on X if there exists a function $\eta: X \times X \to Y$ such that for all $x, y \in X$,

$$f(y) - f(x) \ge \langle Df(x), \eta(y, x) \rangle,$$

where Df(x) is the Frèchet derivative of f at x.

DEFINITION 3: Let $T : E \subseteq X \to L(X,Y)$. Then T is said to be pre-vhemicontinuous if for all $x, y \in E$, the map $t \to \langle T(x + t(y - x)), \eta(y, x) \rangle$ is continuous at t = 0.

3. MAIN RESULTS

LEMMA 1. Let $E \subseteq X$ be a non-empty convex subset and $\eta: E \times E \to E$ be a map with $\eta(x, x) = 0$, for all $x \in E$. Suppose that $T: E \to L(X, Y)$ is η -monotone

and pre-v-hemicontinuous and the map $\langle T(x), \eta(u, y) \rangle$ is convex with respect to $u \in E$. Then the following two problems are equivalent.

- (a) Find $x \in E$ such that $\langle T(x), \eta(y, x) \rangle \leq 0$ for all $y \in E$.
- (b) Find $x \in E$ such that $\langle T(y), \eta(y, x) \rangle \not\leq 0$ for all $y \in E$.

PROOF: (a) That implies (b) follows immediately from the η -monotonicity of T. Conversely, if (b) holds for each $x \in E$, then

(1)
$$\langle T(\lambda y + (1-\lambda)x, \eta(\lambda y + (1-\lambda)x, x)) \rangle \not\leq 0$$
, for all $y \in E$.

Since $\langle T(x), \eta(u, y) \rangle$ is convex with respect to u and $\eta(x, x) = 0$, it follows that

$$\begin{array}{ll} (2) \quad \langle T(x+\lambda(y-x),\eta(x+\lambda(y-x),x))\rangle \\ & \leqslant \lambda \langle T(x+\lambda(y-x),\eta(y,x))\rangle \ \text{for all} \ 0<\lambda<1. \end{array}$$

(1) and (2) imply

(3)
$$\langle T(x + \lambda(y - x), \eta(y, x)) \rangle \not\leq 0 \text{ for all } \lambda \in (0, 1).$$

Since T is pre-v-hemicontinuous, it follows from (3) that

$$\langle T(x), \eta(y, x) \rangle \not< 0 ext{ for all } y \in E.$$

Hence (a) is true.

THEOREM 1. Let $intD \neq \phi$ and $intD^* \neq \phi$. Let E be a nonempty, compact convex set in X, $\eta : E \times E \to E$ be a map, $\eta(x,x) = 0$, for all $x \in E$. Suppose $T : E \to L(X,Y)$ is η -monotone, pre-v-hemicontinuous and $\langle T(x), \eta(u,y) \rangle$ is convex with respect to u, and for each fixed $y \in E$, $\eta(y,x)$ is continuous with respect to x on E. Then there exists $\overline{x} \in E$ such that

$$\langle T(\overline{x}), \eta(x, \overline{x}) \rangle \not\leq 0$$
 for all $x \in E$.

PROOF: For each fixed $y \in E$, let $F_1(y) = \{x \in E \mid \langle T(x), \eta(y, x) \rangle \neq 0\}$. Then $F_1 : E \to 2^E$. We prove that F_1 is a KKM map [12]. If this is not the case, there exists a finite set $A = \{x_1, \dots, x_n\} \subseteq E$ such that $covA \notin \bigcup_{i=1}^n F_1(x_i)$, where covA denotes the convex hull of A. Hence there exist $\alpha_i \ge 0$, for all $i = 1, \dots, n$, $\sum_{i=1}^n \alpha_i = 1$ and $x = \sum_{i=1}^n \alpha_i x_i$ such that $x \notin \bigcup_{i=1}^n F_1(x_i)$. Then $x \notin F_1(x_i)$ for all $i = 1, \dots, n$. Hence $\langle T(x), \eta(x_i, x) \rangle < 0$ for all $i = 1, \dots, n$. Since $\eta(x, x) = 0$ and $T(x) \in L(X, Y)$, it follows that

$$0 = \langle T(x), \eta(x, x) \rangle \leqslant \sum_{i=1}^{n} lpha_i \langle T(x), \eta(x_i, x)
angle < 0.$$

This leads to a contradiction. Hence F_1 is a KKM map.

Let $F_2(y) = \{x \in E \mid \langle T(y), \eta(y, x) \rangle \not\leq 0\}$.

Since T is η -monotone, it is easy to see that F_2 is also a KKM map on E. By Lemma 1

$$\bigcap_{y\in E}F_1(y)=\bigcap_{y\in E}F_2(y).$$

Since for each fixed $y \in E$, we have $T(y) \in L(X,Y)$ and $\eta(y,x)$ is continuous with respect to $x \in E$ and $Y \setminus (-int D)$ is closed, it follows that $F_2(y)$ is a compact subset in E. By the F-KKM theorem [5].

$$\bigcap_{y\in E}F_1(y)=\bigcap_{y\in E}F_2(y)\neq\phi.$$

Hence there exists $\overline{x} \in E$ such that

$$\langle T(\overline{x}), \eta(x, \overline{x}) \rangle \not< 0 ext{ for all } x \in E.$$

LEMMA 2. Let $E \subseteq X$ be a nonempty convex set and $\eta : E \times E \to E$ be a map with $\eta(x,x) = 0$ for all $x \in E$. Suppose $T = (T_1, \dots, T_n) : E \to L(X, \mathbb{R}^n)$ is η -monotone and pre-v-hemicontinuous. Suppose further that for fixed $x, y \in E$ and for each $i = 1, \dots, n$, the map $\langle T_i(x), \eta(u, y) \rangle$ is strongly qasiconvex with respect to $u \in E$ and \mathbb{R}^n is ordered by $\mathbb{R}^n_+ = \{x = (x_1, \dots, x_n) : x_i \ge 0 \text{ for all } i = 1, \dots, n\}$. Then the following two problems are equivalent.

- (a) Find $x \in E$ such that $\langle T(x), \eta(y, x) \rangle \neq 0$ for all $y \in E$.
- (b) Find $x \in E$ such that $\langle T(y), \eta(y, x) \rangle \leq 0$ for all $y \in E$.

PROOF: That (a) \Rightarrow (b) is the same as Lemma 1. Conversely, suppose (b) holds. Then there exists $x \in E$ such that $\langle T(y), \eta(y, x) \rangle \neq 0$ for all $y \in E$. Let $y \in E$, $y \neq x$ and $0 < \lambda < 1$, then $\langle T(\lambda y + (1 - \lambda)x), \eta(\lambda y + (1 - \lambda)x, x) \rangle \neq 0$. Hence there exists $1 \leq i \leq n$ such that

$$\langle T_i(\lambda y + (1-\lambda)x, \eta(\lambda y + (1-\lambda)x, x)) \rangle \ge 0.$$

Since $\langle T_i(x), \eta(u, y) \rangle$ is strongly quasiconvex with respect to $u \in E$,

$$\begin{split} 0 &\leqslant \langle T_i(\lambda y + (1-\lambda)x), \eta(\lambda y + (1-\lambda)x, x) \rangle \\ &< \max\{ \langle T_i(\lambda y + (1-\lambda)x), \eta(y, x) \rangle, \langle T_i(\lambda y + (1-\lambda)x), \eta(x, x) \rangle \} \\ &= \max\{ \langle T_i(\lambda y + (1-\lambda)x, \eta(y, x)) \rangle, 0 \}. \end{split}$$

۵

[4]

Hence $\langle T_i(\lambda y + (1-\lambda)x, \eta(y,x)) \rangle > 0$, and $\langle T(\lambda y + (1-\lambda)x), \eta(y,x) \rangle \not\leq 0$. Then following the same argument as Lemma 1, we can show that

$$\langle T(x), \eta(y, x) \rangle \not< 0 \text{ for all } y \in E.$$

THEOREM 2. Let $E \subseteq X$ be a nonempty convex set in $E, \eta : E \times E \to E$ be a function, and for each fixed $y \in E$, let the map $\eta(y, x)$ be a continuous function of x on E which, $\eta(x, x) = 0$ for all $x \in E$. Suppose that $T = (T_1, \dots, T_n) : E \to L(X, \mathbb{R}^n)$ is η -monotone and pre-v-hemicontinuous. For fixed $x, y \in E$ and for each $i = 1, 2, \dots, n$, suppose $\langle T_i(x), \eta(u, y) \rangle$ is strongly quasiconvex with respect to u. Suppose further that there exists a compact convex subset K of E such that for each $y \in E \setminus K$ there exists $x \in K$ with $\langle T(y), \eta(x, y) \rangle < 0$. Then there exists a $\overline{x} \in K$ such that $\langle T(\overline{x}), \eta(x, \overline{x}) \rangle \neq 0$ for all $x \in E$.

By Lemma 2 and with the same argument as in the proof of Theorem 1, we can show that for every compact set $M \subseteq E$ there exists an $\overline{x} \in M$ such that $\langle T(\overline{x}, \eta(x, \overline{x})) \rangle \neq 0$ for all $x \in M$. For each $y \in E$, let

$$K(y) = \{x \in K, \langle T(x), \eta(y, x) \rangle \neq 0\}.$$

Since $T : E \to L(X,Y)$ is continuous and $Y \setminus intD$ is a closed set, it follows that the set K(y) is closed in K and hence compact. Let $\{y_1, \dots, y_m\} \subseteq E$ and let $A = cov[K \cup \{y_1, \dots, y_m\}]$. Thus A is a compact and convex set in E, so there exists an $\overline{x} \in E$ such that

$$\langle T(\overline{x}), \eta(y, \overline{x}) \rangle \not< 0$$
 for all $y \in A$.

Now $\overline{x} \in K$, for otherwise, there exists a $y \in K$ such that $\langle T(\overline{x}), \eta(y, \overline{x}) \rangle < 0$, which contradits (4). Since $\langle T(\overline{x}), \eta(y, \overline{x}) \rangle \not\leq 0$ for all $x \in A$, it follows that $\overline{x} \in \bigcap_{i=1}^{m} K(y_i)$. Thus the family of closed subsets $\{K(y) : y \in E\}$ has the finite intersection property. Since K is compact, it follows that $\bigcap_{y \in E} K(y) \neq \phi$. So there exists an $x_0 \in K(y)$ for all $y \in E$. Therefore there exists a $x_0 \in K$ such that $\langle T(x_0), \eta(y, x_0) \rangle \not\leq 0$ for all $y \in E$.

LEMMA 3. [1] Let $G: X \to 2^Y$ and W be a real valued function defined on $X \times Y$, $V(x) = \sup_{y \in G(x)} W(x,y)$ and $M(x) = \{y \in G(x) \mid V(x) = W(x,y)\}$. Suppose that

- (a) W is continuous on $X \times Y$.
- (b) G is continuous [1] with compact values [1].

Then the set-valued map M is upper semi-continuous [1].

THEOREM 3. Let E be a nonempty compact convex set in X and C a compact convex set in Y. Let $V: E \to 2^C$ be upper semicontinuous, convex and closed valued and let $\phi: E \times C \times E \to R$ be continuous. Suppose that

(a)
$$\phi(x, y, x) \ge 0$$
 for all $x \in E$,

- (b) For each fixed $(x,y) \in E \times C$, $\phi(x,y,u)$ is quasiconvex with respect to $u \in E$.
- (c) $G: E \to 2^E$ is continuous with compact convex values.

Then there exists $\overline{x} \in G(\overline{x})$ and $\overline{y} \in V(\overline{x})$ such that

$$\phi(\overline{x},\overline{y},x) \ge 0$$
 for all $x \in G(\overline{x})$.

PROOF: For each $(x, y) \in E \times Y$, let

$$\pi(x,y) = \{s \in G(x) \mid \phi(x,y,s) = \min_{u \in G(x)} \phi(x,y,u)\}.$$

Then it follows from Lemma 3 that $\pi(x,y)$ is upper semicontinuous. Since $\phi(x,y,u)$ is quasiconvex with respect to u, it follows that $\pi(x,y)$ is a convex subset of E. The setvalued function $F: E \times C \to 2^E \times 2^C$ is defined by $F(x,y) = \{(\pi(x,y), V(x))\}$. Then F is nonempty, convex closed and upper semicontinuous. By the generalised Kakutani fixed point theorem [6], there exists $(\overline{x}, \overline{y}) \in E \times C$ such that $(\overline{x}, \overline{y}) \in F(\overline{x}, \overline{y})$. Hence there exist a $\overline{x} \in G(\overline{x})$ and a $\overline{y} \in V(\overline{x})$ such that

$$\phi(\overline{x},\overline{y},x) \geqslant \phi(\overline{x},\overline{y},\overline{x}) \geqslant 0 \text{ for all } x \in G(\overline{x}).$$

THEOREM 4. Let E be a nonempty convex set in X and C a closed convex set in Y. Let $V: E \to 2^C$ be an upper semicontinuous closed and convex valued map and let $\phi: E \times C \times E \to R$ be a continuous function. Suppose that

- (a) $\phi(x, y, x) \ge 0$ for all $x \in E$.
- (b) For each fixed $(x,y) \in E \times C$, $\phi(x,y,u)$ is quasiconvex with respect to $u \in E$.
- (c) There exists nonempty compact convex set $K \subseteq E$ such that for each $(x, y) \in E \times C$ with $x \notin K$, there exists $u \in K$ such that $\phi(x, y, u) < 0$.

Then there exist a $\overline{x} \in K$, and a $\overline{y} \in V(\overline{x})$ such that

$$\phi(\overline{x},\overline{y},u) \ge 0$$
 for all $u \in E$.

PROOF: Let M be a compact and convex subset of C. For each $u \in E$, let $K(u) = \{x \in K \mid \text{ there exists } y \in V(x) \cap M \text{ such that } \phi(x, y, u) \ge 0\}$. It is easy to see that K(u) is a closed subset of K. Let $u_1, \dots, u_m \in E$ and $W(x) = V(x) \cap M$ and $A = conv(K \cup \{u_1, \dots, u_m\})$. Then A is a compact and convex subset of E. By Theorem 3, there exist $x_0 \in A$, $y_0 \in W(x_0) = V(x_0) \cap M$ such that $\phi(x_0, y_0, u) \ge 0$ for all $u \in A$. By the assumption (c), we see that $x_0 \in K$ and $x_0 \in \bigcap_{i=1}^m K(u_i)$. Thus the collection $\{K(u) : u \in E\}$ of closed sets in K has the finite intersection property.

We have $\bigcap_{u \in E} K(u) \neq \phi$. Hence there exists $\overline{x} \in K(u)$ for all $u \in E$. This shows that there exist $\overline{x} \in K$ and $\overline{y} \in V(\overline{x}) \cap M \subset V(\overline{x})$ such that $\phi(\overline{x}, \overline{y}, u) \ge 0$ for all $u \in E$.

THEOREM 5. Let E be a nonempty compact convex set in X and C be a closed convex set in Z. Let $V : E \to 2^C$ be an upper semicontinuous closed convex valued map, $H : E \times C \to L(X,Y)$ be continuous and $\eta : E \times E \to E$ be continuous functions. Suppose that

- (a) $\eta(x,x)=0$.
 - (b) There exists 0 ≠ y* ∈ D* such that for each (x, y) ∈ E × C, the function (y* ∘ H(x, y), η(u, x)) is quasiconvex with respect to u ∈ E.
 - (c) $G: E \to 2^E$ is continuous with compact values.

Then there exist $\overline{x} \in G(\overline{x})$ and $\overline{y} \in V(\overline{x})$ such that

 $\langle H(\overline{x},\overline{y}),\eta(u,\overline{x})\rangle \not\leq 0$ for all $u \in G(\overline{x})$.

PROOF: Let $\phi(x, y, u) = \langle y^* \circ H(x, y), \eta(u, x) \rangle$. Then the theorem follows from Theorem 3 and the assumption $0 \neq y^* \in D^*$.

COROLLARY 1. Let E be a nonempty compact convex set in \mathbb{R}^n , and C be a nonempty convex set in \mathbb{R}^m . Let $V: E \to 2^C$ be an upper semicontinuous, convex and closed valued map, let $H: E \times C \to \mathbb{R}^n$ and $\eta: E \times E \to E$ be continuous functions. Suppose that

- (a) $\eta(x,x) = 0$.
- (b) For each $(x,y) \in E \times C$, the function $\langle H(x,y), \eta(u,x) \rangle$ is quasiconvex in u.
- (c) $G: E \to 2^E$ is continuous with compact values.

Then there exist $\overline{x} \in G(\overline{x})$, $\overline{y} \in V(\overline{x})$ such that

$$\langle H(\overline{x},\overline{y}),\eta(u,\overline{x})\rangle \ge 0$$
 for all $u \in G(\overline{x})$.

PROOF: If we let $X = R^n$, Y = R, $Z = R^m$, then $H : E \times C \to L(X, Y) = L(R^n, R) = R^n$ and the Corollary follows immediately from Theorem 5.

REMARK. If G(x) = E for all $x \in E$, then Corollary 1 reduces to Theorem 2 [11].

THEOREM 6. Let E be a nonempty, convex set in X, $intD = \phi$ and $intD^* \neq \phi$. Let $\eta : E \times E \to E$ be a function, $\eta(x, x) = 0$, $\eta(x, y) = -\eta(y, x)$ for all $x, y \in E$ and for each fixed $y \in E$, let $\eta(y, x)$ be continuous with respect to $x \in E$. Suppose that $f : E \to Y$ is η -invex on E with T(x) be the Frèchet derivative of f at x. Suppose that T is pre-v-hemicontinuous on E and $\langle T(x), \eta(u, y) \rangle$ is convex with respect to $u \in E$. Then there exists a $\overline{x} \in E$ such that \overline{x} is a weak minimum of problem (P).

L.J. Lin

PROOF: Let $x, y \in E$. Since f is η -invex in E it is easy to see that T is η -monotone. Then by Theorem 1 and the η -invexity of f, there exists $\overline{x} \in E$ such that \overline{x} is a weak minimum of (P).

References

- G.P. Aubin and A. Cellina, Differential Inclusion (Springer-Verlag, Berlin, Heidelberg, New York, 1984), pp. 51-53.
- [2] G.Y. Chen, 'Existence of solutions for a vector variational inequality: An extension of the Hartmann-Stampacchia theorem', J. Optim. Theory Appl. 74 (1992), 445-456.
- [3] G.Y. Chen and G.M. Chang, 'Vector variational inequality, and vector optimization problem', in *Lecture Notes in Economics and Mathematical Systems* 285 (Springer-Verlag, Berlin, Heidelberg, New York, 1987), pp. 408-416.
- [4] G.Y. Chen and X.Q. Yang, 'The vector complementary problem and its equivalence with the weak minimal element in ordered spaces', J. Math. Anal. Appl. 153 (1990), 136-158.
- [5] K. Fan, 'A generalization of Tychonoff's fixed point theorem', Math. Ann. 142 (1961), 305-310.
- [6] K. Fan, 'Fixed-pointed and minimax theorems in locally convex topological linear spaces', Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126.
- [7] F. Giannessi, 'Theorems of alternative, quadratic problems and complementary problems', in Variational Inequalities and Complementary problems, (R. W. Cottle, F. Giannessi and L. J. Lions, Editors) (Wiley, New York), pp. 151-186.
- [8] M.A. Hanson, 'On the sufficiency of the Kuhn-Tucker conditions', J. Math. Anal. Appl. 80 (1981), 545-550.
- [9] G.J. Hartman and G. Stampacchia, 'On some nonlinear differential functional equations', Acta Math. 115 (1966), 271-310.
- [10] J. Parida and A. Sen, 'A variational-like inequality for multifunctions with applications', J. Math. Anal. Appl. 124 (1987), 73-81.
- [11] J. Parida, M. Sahoo and A. Kumar, 'A variational-like inequality problem', Bull. Austral. Math. Soc. 39 (1989), 225-231.
- [12] K.K. Tan, 'Comparison theorems on minimax inequalities, variational inequalities and fixed point theorems', J. London Math. Soc. 28 (1983), 555-562.
- [13] X.Q. Yang, 'Vector complementary and minimal element problems', J. Optim. Theory Appl. 77 (1993), 483-495.

Department of Mathematics National Changua University of Education Changhua 50058 Taiwan Republic of China