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0. INTRODUCTION

By an equilibrium problem, Blum and Oettli [2] understood the problem
of finding

(EP) X e X such that f(X,y) <0forall y e X,

where X is a given set and f: X X X — R is a given function.
We can consider more general problems as follows:
A quasi-equilibrium problem is to find

(QEP) X € X such that ¥ € S(¥) and f(X, z) < 0 for all z € S(%),

where X and f are as above and §: X-o0X is a given multimap.
A generalized quasi-equilibrium problem is to find

(GQEP) xXeXand y € T(¥) such that x € S(¥) and f(X,5,2z) <0
for all z € S(X),
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where X and S are the same as above, Y is another given set, 7: X-oY is
another multimap, and f: X X Y X X — R is a given function.

These problems contain as special cases, for instance, optimization
problems, problems of the Nash type equilibrium, complementarity prob-
lems, fixed point problems, and variational inequalities, as well as many
others. There are many variations or generalizations of these problems
(see [3, 4, 8-13, 18)).

In this paper, we study some equilibrium problems, quasi-equilibrium
problems, and generalized quasi-equilibrium problems in G-convex spaces
using a new method of fixed point approach. In fact, the second author [11]
obtained an existence theorem of generalized quasi-equilibrium problems
in nonnecessarily locally convex spaces. On the other hand, the second
author [14, 15] extended the concept of H-spaces to G-convex spaces and
established the KKM theory on these spaces. By exploiting these new
approaches, we obtain new theorems including the key results in [3] in
more exact formulations under much weaker restrictions.

1. PRELIMINARIES

Let X and Y be nonempty sets. A multimap or map T: X-oY is a
function from X into the power set of Y with nonempty values. Let
xe T (y)ifand only y € T(x).

For topological spaces X and Y, a map 7: X-oY is said to be upper
semicontinuous (u.s.c.) if, for each closed set B C Y, the set T"(B) = {x €
X: T(x) N B # O} is a closed subset of X; lower semicontinuous (l.s.c.) if,
for each open set B c Y, the set T~ (B) is open; continuous if it is u.s.c.
and l.s.c.; closed if its graph Gr(T) = {(x, y): x € X, y € T(x)} is closed in
X X Y; and compact if the closure T(x) of its range T(X) is compact
inY.

For a set D, (D) denotes the set of all nonempty finite subsets of D;
and let A, be the standard n-simplex with vertices ey, e,,...,e,,,, where
e; is the ith unit vector in R"*1.

Park and Kim [14, 15] introduced the concept of a generalized convex
space or a G-convex space (X, D; T') consisting of a topological space X, a
nonempty subset D of X, and a map I': {D)-oX such that for each
A € {D) with |A] = n + 1, there exists a continuous function ¢,: A, —
I'(A) such that J € (A4) implies ¢,(A;) cT'(J), where A, denotes the
face of A, corresponding to J € { A4).

For a G-convex space (X, D; T'), a subset C of X is said to be G-convex
if, foreach 4 € (D), A < C implies T'(4) c C. We may write T(4) =T,
for each A € (D). If D = X, then (X, D;T') will be denoted by (X, ).
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An extended real-valued function g: X — R on a topological space X is
lower (resp. upper) semicontinuous (1.s.c.) (resp. u.s.c.) if {x € X: g(x) > r}
(resp. {x € X: g(x) < r}) is open for each r € R. If X is a G-convex space,
then g: X — R is G-quasi-convex [resp. G-quasi-concave] if {x € X:
g(x) < r} (resp. {x € X: g(x) > r}) is G-convex for each r € R.

It is easy to see from Park and Kim [14] that any H-space (X, D),
Lassonde’s convex space, and a convex subset of a topological vector space
are G-convex spaces. For example, any convex space (X, D) becomes a
G-convex space (X, D) by putting T, = co 4, where co A denotes the
convex hull of A. Throughout this paper, we assume that every space is
Hausdorff, and t.v.s. means topological vector spaces.

A nonempty subset X of a tv.s. E is said to be admissible (in the sense
of Klee [7]) provided that, for every compact subset K of X and every
neighborhood V' of the origin 0 of E, there exists a continuous map #4:
K — X such that x — h(x) € V for all x € K and h(K) is contained in a
finite dimensional subspace L of E.

It is well known that every nonempty convex subset of a locally convex
t.v.s. is admissible. Other examples of admissible t.v.s. are /7, L*(0,1) for
0 < p < 1, the space S(0,1) of equivalence classes of measurable functions
on [0, 1], the Hardy space H? for 0 < p < 1, certain Orlicz spaces, and
ultrabarrelled t.v.s. admitting Schauder basis. Moreover, a locally convex
subset of an F-normable t.v.s. and every compact convex locally convex
subset of a t.v.s. are admissible. For details, see HadZic [5], Weber [17], and
references therein. -

A nonempty topological space is acyclic if all of its reduced Cech
homology groups over rationals vanish. A map 7: X-oY is said to be
acyclic if it is u.s.c. with acyclic compact values.

The following generalized quasi-equilibrium existence theorem is needed
in this paper:

THEOREM 0 [11]. Let X and Y be admissible convex subset of t.v.s. E and
F, respectively, let S:X-0X be a compact closed map, let T: X-0Y be a
compact acyclic map, and let ¢: X X Y X X = R be an u.s.c. function.
Suppose that

(i) the function m: X X Y — R defined by

m(x,y) = ma(x)cb(x,y,u) for (x,y) eX XY
ueS(x

is l.s.c.; and
(i) foreach (x,y) € X X Y, the set

M(x,y) ={ue€S(x): ¢(x,y,u) =m(x,y)}
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is acyclic. Then there exists an (X, y) € X X Y such that
xeS(X),yeT(X), &(X,5.%)2¢(%5,u) foraluc S(¥).

The following is well known [1]:

BERGE’s THEOREM. Let X and Y be topological spaces, f: X XY - R a
real function, F: X -0Y a multimap, and

f(x) = sup f(x,y), G(x)={yeF(x):f(x.y) =f(x)}

y€F(x)

forxe X.

(@ Iffisu.s.c. and F is u.s.c. with compact values, then fis u.s.c.
(b) IffislLs.c. and Fis L.s.c., then f is Ls.c.

(¢) Iffis continuous and F is continuous with compact values, then [ is
continuous and G is u.s.c.

2. A SELECTION THEOREM AND THE FAN-BROWDER
TYPE FIXED POINT THEOREM

We begin with the following selection theorem:

THEOREM 1. Let X be a compact space, (Y,T') a G-convex space, and F:
X-oY. Suppose that

(i) foreachx € X, F(x) is G-convex; and

(i) X=U,cyInt F(y) (that is, F~ has transfer open values; see
[3D.

Then there is a continuous function f: X — Y such that f(x) € F(x) for all
x € X; that is, F has a continuous selection.

Proof. Since X is compact, there exists a finite subset B =
{(y1, Y2, Va1t Of Y such that X = U tiInt F~(y,). Since (Y,T) is a
G-convex space, there exists a continuous map ¢5z: A, — Y such that
¢p(A) €Ty and ¢yz(A)) T, for each J € (B). Let {A}}' be the
partition of unity subordinated to the cover {Int F~(y,)};' of X. Define a
continuous map p: X — A, by

n+1

p(x) = Y M(x)e; = Y A(x)e, for x € X,
i=1 iEN,
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where i e N, & A(x) # 0 = x € F (y,) ey, € F(x). By (i), we have
(épp)(x) € d’B(AN) c Iy cF(x).

Let f:= ¢yp. Then f: X - Y is continuous and f(x) € F(x) for all
xeX.

Note that Theorem 1 reduces to [3, Lemma 2.1(4)] whenever Y is an
H-space.

By the same argument, we have the following fixed point theorem:

THEOREM 2. Let (X, T') be a compact G-convex space and let F: X -0 X
be a map such that
(i) forallx € X, F(x) is G-convex; and
(i) X=U,cyInt F(y).
Then F has a fixed point.
Proof.  As in the proof of Theorem 1, we see that p¢gz: A, — A, is

continuous, hence p¢, has a fixed point z € A ; that is, z = (pdz)(2).
Let X = ¢5(2). Then

X =¢p(z) = ¢B((P¢B)(Z)) = (¢sp)(X) =f(x) € F(X),

where f = ¢z p. Therefore F has a fixed point.

As a consequence of Theorem 2, we obtain a Fan—Browder type fixed
point theorem.

CoROLLARY 1. Let (X,T) be a compact G-convex space and let F:
X-0X be a map such that

(i) forallx € X, F(x) is nonempty G-convex; and
(i) forally € X, F~(y) is open.
Then F has a fixed point.

Proof. Since F(x) is nonempty for all x € X, there exists y € F(x).
This shows that x € F(y)and X = U, xF (y) = U ,c yInt F(y).

Then all of the requirements of Theorem 2 are satisfied, and the
conclusion follows.

Remark. H-space versions of Theorems 1-2 and Corollary 1 were due
to Horvath in his earlier works; for the references, see [6]. Moreover,
generalized forms of Theorem 2 and Corollary 1 were given by Park and
Kim [14].
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From Corollary 1, we have the following equilibrium existence results:

COROLLARY 2. Let (X,T) be a compact G-convex space, and let .
X X X — R be a function such that

(i) foreachx € X,{y € X: y(x,y) < 0} is G-convex;
(i) foreachy € X, {x € X: y(x,y) < 0} is open; and
(i) ¢(x,x) = 0 forallx € X.

Then there exists an X € X such that
Y(x,y)=0 forally € X.
Proof. Let F: X-o0X be defined by
F(x)={yeX:y(x,y) <0} forx € X.
Then
F (y)={xeX:y(x,y) <0} forzeX.

Suppose F(x) += & for all x € X. Then, by Corollary 1, there exists an
X € X such that x € F(x), which violates condition (iii). Therefore, there
exists an ¥ € X such that F(¥) = &; that is (X, y) > 0 forall y € X.

CoROLLARY 3. Let (X, T) be a compact G-convex space, Y a topological
space, T: X-oY a map having a continuous selection f, and ¢: X XY X
X — R a function such that

) ¢(x,y, 2) is G-quasi-convex in z;
(i) o(x,y,2)isus.c. in(x,y); and
(iii)  ¢(x, f(x),x) = 0 forallx € X.

Then there exist an X € X and a y € T(X) such that
¢(x,9,2z) =0 forallz € X.

Proof. Put ¥(x,z) = ¢(x, f(x), z) for (x,z) € X X X. Then ¢ satis-
fies all of the requirements of Corollary 2. Therefore, we have the
conclusion.

Remark. Chang et al. [3, Corollary 3.2] obtained a particular form of
Corollary 3 under the assumption that ¢ is continuous instead of (ii).
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3. COLLECTIVELY FIXED POINT THEOREMS

We need the following version of the KKM theorem for G-KKM map:

LEMMA 1. Let (X, T) be a G-convex space, let K be a nonempty compact
subset of X, and F: X-0X be a G-KKM map (that is, for each N € (X ),
I'y € F(N)) such that

D N,cxF(x) =N cxF(x) (that is, F is transfer closed-valued,
see [3]); and

(i) for each N € (X ), there exists a compact G-convex subset L, of
X containing N such that Ly N N{F(x): x € Ly} CK.

Then KN N, c xF(x) # &.

Proof. Define F: X-0X by F(x) = F(x) for each x € X. Then F is a
G-KKM map with closed values. Therefore, by Park and Kim [14, Theorem
3], we have KN N, xF(x)# . Hence, by (i), we have the conclusion.

Note that Lemma 1 is a G-convex version of Chang et al. [3, Lemma 2.2]
and that the coercivity condition (ii) is more general than theirs.

LEMMA 2. Let (X, T') be a G-convex space, let K be a nonempty compact
subset of X, let & # A C B be any sets, and let f- X X X — B be a function
such that

(i) themapy — {x € X: f(x,y) € A} is transfer closed-valued,
(i) foreachx € X, the set {y € X: f(x,y) & A} is G-convex; and

(i)  for each N € {(X), there exists a compact G-convex subset L, of
X such that

Lyn (N {x€X:f(x,y) €A} CK.
yE€Ly
Then one of the following holds:

(1) there exists a y € X such that f(y,y) & A; or
(2) there exists an x € X such that f(X,y) € A for ally € X.
Proof. Define F: X-0X by F(y)={x e X: f(x,y) € A} for y € X.

Then (i) and (iii) imply condition (i) and (ii) in Lemma 1. Suppose that (1)
does not hold. Then

f(y,y) eAd forall y € X.

We claim that F is a G-KKM map. Otherwise, there exists an N € (X )
such that Ty ¢ F(N); that is, z & F(N) for some z € T'y. Hence f(z,y)
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& A forall y € N and so
Nc{yeX:f(z,y) € A}.
By (ii), we have
zelyc{yeX: f(z,y) € A}

and hence f(z, z) & A, which is a contradiction. Therefore F is a G-KKM
map.
Now, by Lemma 1, we have

N F(y) # 3.

yeEX

Therefore, there exists an ¥ € X such that x € F(y) for all y € X; that is,
f(x,y) € A for all y € X. This completes our proof.

Note that Lemma 2 extends Chang et al. [3, Lemma 2.3].
From Lemmas 1 and 2, we deduce the following collectively fixed point
theorem for later use:

THEOREM 3. Let (X, T)),c; be a family of G-convex spaces, let X =

I1,c;X;, let K be a nonempty compact subset of X, and let T;: X-0X; be
multimaps. Suppose that, for each i € I,

() Ti(x) is nonempty G-convex for each x € X;
(i) @ X=U,cyIntT (x) foreachi € I whenever I is finite; or
(b) X = U, cxIntT (y) whenever I is infinite,
where T"(y) = N ;o T; (y) fory = (y);c; € X; and
(iii) for each N € {X), there exists a compact G-convex subset Ly of
X containing N such that

Lyn N {reX:y &T(x) forsomej €I} CK.
yELy

Then there exists an X € X such that

xe [[T(X) or X, €T(X) foraliel.

iel
Proof. Suppose the contrary. Then, for any x € X, we have

x & [17(x). (1)

iel

Hence, for any x € X, there exists a j € I such that x; & T;(x). We define
G={x,y) €eXXX: ye&ll,.,T(x)). Then, by (1), (x,x) € G for all
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x € X and G is nonempty. Since (X,, T}), ., is a family of G-convex spaces,

if we define I': X-0X by I'(A4) =TT, ,I(m;A4) for each 4 € (X ), itis
known that (X, T') is a G-convex space, where 7;: X -o0.X; is the projection
for each i € I (see [16, Theorem 4.1]). By (i), for any x € X, the set

{yeXx:(xy) €G} = {y €X:ye iel_[ITi(X)} = iel_IITi(x)
is G-convex. Moreover, for any y € X, we have
(xeX:(x,y) &G} = {x EX:ye l_[IT,-(x)>
ie
={xeX:y € T(x)foreachic I}
= QI{XEXI)CGTf(y,')}= N7 (2)

If I is infinite, by (ii)(b) and (2), the multimap y — {x € X: (x, y) & G} is
transfer open-valued. If I is finite, by (ii)(@), 7, is transfer open-valued
for each i € I. Hence if

xe NT (y),

iel
then x € T, (y,) and there exists y. € X, such that
x e IntT; (y) forall i € 1.

Since I is finite, we have

xe N IntT(y) = Int[ N Int T,»(yé)}

icl icl
c Int( N T,-‘(y;))=lnt{x eX:(x,y') &G}.
icl

This shows that the multimap y — {x € X: (x, y) &€ G} is transfer open-
valued if I is finite.
By (iii), we see that

Lyn N {xeX:(x,y) €G}
yE€Ly

—1yn N {rexiye [I7(0)

yELy iel

=Lyn () {xeX:y &T(x)forsome;ecl} k.
yELy
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Then it follows from Lemma 2 that there exists an X € X such that
(x,y) € G for all yeX; that is, y € I'l,.,7:(x) for all y € X. This
implies I'T, . , T(X) is empty. Therefore there exists j € I such that T,(x) is
empty; this contradicts condition (1). Hence there exists an ¥ € X such
that X € I'T, ., T(%).

If (X,,T),, is afamily of compact G-convex spaces, then condition (iii)
of Theorem 3 holds automatically. Therefore, we have the following
generalization of Theorem 2.

CoROLLARY 4. Let (X;, 1), o, be a family of compact G-convex spaces,

A L

let X =11,c,X;, and let T;: X -0X; be a multimap for all i € I. Suppose that

() foranyx € Xandi €1, T(x) is a nonempty G-convex set;
(i) one of the following conditions holds:
@ foranyie, T : X;-0X is transfer open-valued if I is finite;
(b) the multimap T™: X-o0X defined by T-(y) = N ;< ;T (y;) for
eachy = (), ; € X is transfer open-valued if I is infinite.

Then there exists an X € X such that
re [17.(%).

iel

Remark. If I is a singleton, then Corollary 4 reduces to Theorem 2.
Note that Theorem 3 and Corollary 4 are G-convex space versions of [3,
Theorems 2.4 and 2.5], respectively.

4. QUASI-EQUILIBRIUM PROBLEMS

In this section, we deal with existence of solutions of certain quasi-
equilibrium problems in G-convex spaces without any linear structure.
We begin with the following.

THEOREM 4. Let (X, T') be a compact G-convex space, and let S: X -0 X
be a map with nonempty G-convex values and open fibers (that is, S™(z) is
open for each z € X) such that S: X -0 X is u.s.c. Suppose that . X X X —
R is a continuous function such that ¥(x,-) is G-quasi-convex and

Y(x,x) >0  forallx € X.

Then there exists an X € X such that

e S(X) and ¢(X,x) =0  forallx € S(X).
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Proof.  For each natural number n, define a map F,: X-oX by

F,(x) = {z eS(x):¢(x,z) < min ¢(x,u) + i}
ueS(x) n

for x € X. Since (x, ) is l.s.c. and S(x) is compact as closed subset of X,
it attains minimum. Moreover, (x, ) is G-quasi-convex and S(x) is
G-convex, and hence each F (x) is nonempty and G-convex. Furthermore,
for any z € X, we have

1
F (z) =S (z)n {xEX: Y(x,z) + ur;ég()i)[—w(x,u)] < ;}

Since ¢ is l.s.c. and S is u.s.c. with compact values, by Berge’s theorem,
x = max,csol—¢(x, W] is us.c. Theorefore, x — ¢(x, z) +
max,, c 5ol — ¥ (x, wlis u.s.c. Note that S~(z) is open, and hence F, (z) is
open. Therefore, by Corollary 1, F, has a fixed point x, € F,(x,) for each
n. Since X is compact, we may assume x, — X € X. Since x, € S(x,) C
S(x,) and the graph of § is closed, we have ¥ € S(%).

On the other hand,

1
x, €S(x,) and ¢(x,,x,) < min ¥(x, u)+ —.
ueS(x,) n
Since S is l.s.c. and ¢ is u.s.c., the function

1 1
x— inf ¢g(x,u)+—=— sup [—o(x,u)] +—
ueS(x) n ueS(x) n

is u.s.c. Therefore, we have

1
(%, %) < lim | inf (//(x,,,u)+; < inf (X, u),

n—-w | yeS(x,) ueS(®)
and hence

$(Z,x) > inf $(Fu) = p(F5) =0

ueS(®)
for all x € S(X) by (ii). This completes our proof.

From Theorem 4, we obtain the following GQEP, which is a correct
version of Chang et al. [3, Theorem 3.1].

COROLLARY 5. Let X and S be the same as in Theorem 4, let Y be any
topological space, let T: X-oY be a map having continuous selection f:
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X—>Y letand p: X XY X X > R be a continuous function such that

() ¢(x,y, ) is G-quasi-convex for each (x,y) € X X Y;
(i) ¢(x, f(x),x) =0 forallx € X.

Then there exist an X € S(¥) and a 3 = f(%) € T(X) such that
¢(x,5,x) =0 forallxeg(ic‘).

Proof. Put ¢(x, z) = ¢(x, f(x), z) in Theorem 4.

Remarks 1. Corollary 5 improves Chang et al. [3, Corollary 3.3] even for
convex spaces.

2. As we have seen in the above, certain GQEPs are simple conse-
guences of corresponding QEPs whenever the map T has a continuous
selection.

3. In[3, Theorem 3.1], the authors assumed that

(i) S: X-oX is a continuous multimap with nonempty compact
H-convex values and S~ (x) is open for any x € X.

This assumption has several defects. First, since S™(z) is open for any
z € X, S is already l.s.c. Second, since § is u.s.c. with closed values and X
is compact, the graph of S is closed in X X X and hence each S7(z) is
closed for any z € X. This implies that, for important examples of H-spaces
such as convex spaces or contractible spaces, S becomes a constant map;
that is S(x) = X for all x € X. Even in this case, Corollary 5 is much more
general than [3, Corollary 3.2].

4. Similarly, [3, Theorems 3.4 and 3.5, Corollaries 3.5 and 3.6] could
be obtained for a more simple and general situation. For example, condi-
tion (iv) of [3, Theorem 3.4] simply says that X can be covered by a finite
number of sets of the form

{res @l s 2) = min y(x f(x),u)

zeX

5. GENERALIZED QUASI-EQUILIBRIUM PROBLEMS

In this section, we deduce the following GQE existence theorem from
Theorem 0:

THEOREM 5.  Let X and Y be admissible convex subsets of t.v.s. E and F,
respectively, let S X -0X be a compact continuous map with closed convex
values, let T: X -o0Y be a compact acyclic map, and let ¢: X X Y X X > R
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be a continuous function such that

(D) d(x,y,x) =0 forallx € Xandy € T(x); and
(i) u— ¢(x,y,u) is quasi-convex.

Then there exist an X € S(X) and a y € T(X) such that
¢(x,y,x) >0 forallx € S(Xx)

Proof. Since ¢: X XY XX > R is us.c. and S is ls.c., by Berge’s
theorem,

(x,y) = max [—¢(x,y u)]
ueS(x)

is ls.c. on (x,y) € X X Y. Moreover, since S(x) is convex and u —
¢(x, y,u) is quasi-convex for each (x, y) € X X Y, the set M(x,y) ={u €
S(x): ¢(x,Y,u) = max, ¢ 5[~ ¢(x, y, 2)]} is convex. Therefore, by Theo-
rem 0, there exists an (X, y) € X X Y such that

TeS(x), yeT(X), —¢(F7,%) = —¢(% 7,u)
forall ue S(x).

Since ¢(x,y,x) > 0forall x € X and y € T(x), we have
¢(x,y,x) >0 forall x € S(x).

This completes our proof.

Remarks. 1. Note that Theorem 5 extends Chang et al. [3, Theorem
3.8] in several aspects.

2. As in Chen and Park [4], Theorem 5 can be applied to obtain
generalized-forms of variational inequalities due to Hartman and Stampac-
chia, Browder, Lions and Stampacchia, Saigal, Chan and Pang, Shih and
Tan, Kim, Chang, Parida and Sen, Yao, and others.

As applications of Theorem 5, we obtain the following general varia-
tional inequality:

THEOREM 6. Let e be a real reflexive Banach space, let X CE be a
nonempty closed convex subset, let Y be an admissible convex subset of a t.v.s.
F, and let T: X-0oY be an acyclic map. Let M: X XY — E* be a
continuous map with respect to the weak topology on X, the topology on Y,
and the norm topology of E*. Let n: X X X = E be a weakly continuous
mapping (that is, a continuous mapping with respect to the weak topology on
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X and the weak topology on E). Suppose further that
@ m(x,x) =0 foralx € X;
(i)  the function u — {(M(x, y), n(u, x)) is convex; and
(iii)  there exists a u € X with ||ull < r such that

max (M(x,y),n(ﬁ,x)} <0 forallx € X with ||x|| = r.
yeT(x)

Then there exist an ¥ € X and a y € T(x) such that
(M(%,5),mn(x,%)) =0  forallx € X.

Proof. We let ¢(x,y,u) = {M(x,y),n(u,x)) and X, =X n B, r),
where B(0,r) = {x € E: ||x|| < r}. Since E is a reflexive Banach space, X,
is a weakly compact convex subset of X. By assumption, we see that :
X, XY XX, — R is continuous. Then it follows from Theorem 5 that
there exist an ¥ € X, and a y € T(x) such that

(M(x,7),m(x,x)) =0 forall x €X,.

Then we follow the argument of Chang e al. [3, Theorem 3.9] and get the
conclusion.

Remark. Chang et al. [3, Theorem 3.9] assumed that F is a Fréchet
space, Y C F is a nonempty closed convex set, and 7: X-oY is an u.s.c.
multimap with compact convex values with respect to the weak topology on
X and the topology on Y.

Let E be areal tvs., let X cE, and let n: X X X — E be a function
with n(x,x) =0 for all x € X. A multimap G: X-oE* is said to be
n-monotone [3] if for each x,u € X and any y € G(x), v € G(u), we have

(yim(u,x)) + (v, m(x,u)) <0.

THEOREM 7. LetE, X, F,Y, T, and M be the same as in Theorem 6. Let
n: X X X = E be a weakly continuous function such that

@ mn(x,x) =0 foralx € X;
(ii) the function u - {M(x,y), n(u, x)) is convex and the multimap
G: X — 25" defined by
G(x) = {M(x,y):y € T(x)}
is m-monotone; and

(iii) there existau € X and a v € T(u) such that
lim (M(u,0),n(x,u)) > 0.

llxl|— o

xeX
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Then there exist an ¥ € X and a 'y € T(X) such that

<M()'c,)7),n(x,)'c)> >0 forallx € X.

Proof.  Applying Theorem 6 and by following the argument of Chang et

al. [3, Theorem 3.10], we can obtain the conclusion.

re

Remark. The results in Section 4 and 5 of [3] are consequences of our
sults. For example, it is easy to see that [3, Theorem 4.1] can be deduced

from Theorem 2 and [3, Theorem 5.4] from Theorem 7.

N =
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11.

12.

13.

14.

15.

16.

17.

18.

REFERENCES

. C. Berge, “Espaces Topologiques,” Dunod, Paris, 1959.

. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium
problems, Math. Student 63 (1994), 123-145.

. S. S. Chang, B. S. Lee, X. Wu, Y. J. Cho, and G. M. Lee, On the generalized
quasi-variational inequality problems, J. Math. Anal. Appl. 203 (1990), 686—711.

. M. P. Chen and S. Park, A unified approach to generalized quasi-variational inequalities,
Comm. Appl. Nonlinear Anal. 4 (1997), 103-118.

. O. HadZit, Fixed point theory in topological vector spaces, University of Novi Sad, Novi
Sad, 1984.

. C. D. Horvath, Extensions and selection theorems in topological spaces with a general-
ized convexity structure, Ann. Fac. Sci. Toulouse 2 (1993), 253—-269.

. V. Klee, Leray—Schauder theory without local convexity, Math. Ann. 141 (1960), 286-297.

. S. Kum, A generalization of generalized quasi-variational inequalities, J. Math. Anal.
Appl. 182 (1994), 158-164.

. M. A. Noor and W. Oettli, On general nonlinear complementarity problems and quasi-

equilibria, Le Matematiche 49 (1994), 313-331.

S. Park, Some coincidence theorems on acyclic multifunction and application to KKM

theory, in “Fixed Point Theory and Applications” (K. K. Tan, ed.), pp. 248—-277, World

Scientific, River Edge, NJ, 1992.

S. Park, Fixed points and quasi-equilibrium problems, Math. Comp. Modelling, to appear.

S. Park, Remarks on a social equilibrium existence theorem of G. Debreu, Appl. Math.

Lett., to appear.

S. Park and M.-P. Chen, Generalized quasi-variational inequalities, Far EastJ. Math. Sci.

3(1995), 185-190.

S. Park and H. Kim, Coincidence theorems for admissible multifunctions on generalized

convex spaces, J. Math. Anal. Appl. 197 (1996), 173-187.

S. Park and H. Kim, Foundations of the KKM theory on generalized convex spaces, J.

Math. Anal. Appl. 209 (1997), 551-571.

K.-K. Tan and X.-L. Zhang, Fixed point theorems on G-convex spaces and applications,

Proc. Nonlinear Funct. Anal. Appl. 1 (1996), 1-19.

H. Weber, Compact convex sets in non-locally-convex spaces, Note die Math. 12 (1992),

271-289.

J. C. Yao, On generalized variational inequality, J. Math. Anal. Appl. 174 (1993),

550-555.



	0. INTRODUCTION
	1. PRELIMINARIES
	2. A SELECTION THEOREM AND THE FAN-BROWDER TYPE FIXED POINT THEOREM
	3. COLLECTIVELY FIXED POINT THEOREMS
	4. QUASI-EQUILIBRIUM PROBLEMS
	5. GENERALIZED QUASI-EQUILIBRIUM PROBLEMS
	REFERENCES

