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0. INTRODUCTION

w xBy an equilibrium problem, Blum and Oettli 2 understood the problem
of finding

Ž . Ž .EP x g X such that f x, y F 0 for all y g X,ˆ ˆ
where X is a given set and f : X = X ª R is a given function.

We can consider more general problems as follows:
A quasi-equilibrium problem is to find

Ž . Ž . Ž . Ž .QEP x g X such that x g S x and f x, z F 0 for all z g S x ,ˆ ˆ ˆ ˆ ˆ
owhere X and f are as above and S: X - X is a given multimap.

A generalized quasi-equilibrium problem is to find

Ž . Ž . Ž . Ž .GQEP x g X and y g T x such that x g S x and f x, y, z F 0ˆ ˆ ˆ ˆ ˆ ˆ ˆ
Ž .for all z g S x ,ˆ
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owhere X and S are the same as above, Y is another given set, T : X - Y is
another multimap, and f : X = Y = X ª R is a given function.

These problems contain as special cases, for instance, optimization
problems, problems of the Nash type equilibrium, complementarity prob-
lems, fixed point problems, and variational inequalities, as well as many
others. There are many variations or generalizations of these problems
Ž w x.see 3, 4, 8]13, 18 .

In this paper, we study some equilibrium problems, quasi-equilibrium
problems, and generalized quasi-equilibrium problems in G-convex spaces

w xusing a new method of fixed point approach. In fact, the second author 11
obtained an existence theorem of generalized quasi-equilibrium problems
in nonnecessarily locally convex spaces. On the other hand, the second

w xauthor 14, 15 extended the concept of H-spaces to G-convex spaces and
established the KKM theory on these spaces. By exploiting these new

w xapproaches, we obtain new theorems including the key results in 3 in
more exact formulations under much weaker restrictions.

1. PRELIMINARIES

oLet X and Y be nonempty sets. A multimap or map T : X - Y is a
function from X into the power set of Y with nonempty values. Let

yŽ . Ž .x g T y if and only y g T x .
oFor topological spaces X and Y, a map T : X - Y is said to be upper

Ž . yŽ . �semicontinuous u.s.c. if, for each closed set B ; Y, the set T B s x g
Ž . 4 Ž .X : T x l B / B is a closed subset of X ; lower semicontinuous l.s.c. if,

yŽ .for each open set B ; Y, the set T B is open; continuous if it is u.s.c.
Ž . �Ž . Ž .4and l.s.c.; closed if its graph Gr T s x, y : x g X, y g T x is closed in

Ž .X = Y; and compact if the closure T x of its range T X is compactŽ .
in Y.

² :For a set D, D denotes the set of all nonempty finite subsets of D;
and let D be the standard n-simplex with vertices e , e , . . . , e , wheren 1 2 nq1
e is the ith unit vector in R nq1.i

w xPark and Kim 14, 15 introduced the concept of a generalized con¨ex
Ž .space or a G-con¨ex space X, D; G consisting of a topological space X, a

² : ononempty subset D of X, and a map G: D - X such that for each
² : < <A g D with A s n q 1, there exists a continuous function f : D ªA n

Ž . ² : Ž . Ž .G A such that J g A implies f D ; G J , where D denotes theA J J
² :face of D corresponding to J g A .n

Ž .For a G-convex space X, D; G , a subset C of X is said to be G-con¨ex
² : Ž . Ž .if, for each A g D , A ; C implies G A ; C. We may write G A s GA

² : Ž . Ž .for each A g D . If D s X, then X, D; G will be denoted by X, G .
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An extended real-valued function g : X ª R on a topological space X is
Ž . Ž . Ž . � Ž . 4lower resp. upper semicontinuous l.s.c. resp. u.s.c. if x g X : g x ) r

Ž � Ž . 4.resp. x g X : g x - r is open for each r g R. If X is a G-convex space,
w x �then g : X ª R is G-quasi-con̈ ex resp. G-quasi-concä e if x g X :

Ž . 4 Ž � Ž . 4.g x - r resp. x g X : g x ) r is G-convex for each r g R.
w x Ž .It is easy to see from Park and Kim 14 that any H-space X, D ,

Lassonde’s convex space, and a convex subset of a topological vector space
Ž .are G-convex spaces. For example, any convex space X, D becomes a

Ž .G-convex space X, D by putting G s co A, where co A denotes theA
convex hull of A. Throughout this paper, we assume that every space is
Hausdorff, and t.v.s. means topological vector spaces.

ŽA nonempty subset X of a t.v.s. E is said to be admissible in the sense
w x.of Klee 7 provided that, for every compact subset K of X and every

neighborhood V of the origin 0 of E, there exists a continuous map h:
Ž . Ž .K ª X such that x y h x g V for all x g K and h K is contained in a

finite dimensional subspace L of E.
It is well known that every nonempty convex subset of a locally convex

p pŽ .t.v.s. is admissible. Other examples of admissible t.v.s. are l , L 0, 1 for
Ž .0 - p - 1, the space S 0, 1 of equivalence classes of measurable functions

w x pon 0, 1 , the Hardy space H for 0 - p - 1, certain Orlicz spaces, and
ultrabarrelled t.v.s. admitting Schauder basis. Moreover, a locally convex
subset of an F-normable t.v.s. and every compact convex locally convex

w x w xsubset of a t.v.s. are admissible. For details, see Hadzic 5 , Weber 17 , andˇ´
references therein.

ˇA nonempty topological space is acyclic if all of its reduced Cech
ohomology groups over rationals vanish. A map T : X - Y is said to be

acyclic if it is u.s.c. with acyclic compact values.
The following generalized quasi-equilibrium existence theorem is needed

in this paper:

w xTHEOREM 0 11 . Let X and Y be admissible con¨ex subset of t.¨ .s. E and
o oF, respectï ely, let S: X - X be a compact closed map, let T : X - Y be a

compact acyclic map, and let f : X = Y = X ª R be an u.s.c. function.
Suppose that

Ž .i the function m: X = Y ª R defined by

m x , y s max f x , y , u for x , y g X = YŽ . Ž . Ž .
Ž .ugS x

is l.s.c.; and
Ž . Ž .ii for each x, y g X = Y, the set

M x , y s u g S x : f x , y , u s m x , y� 4Ž . Ž . Ž . Ž .
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Ž .is acyclic. Then there exists an x, y g X = Y such that

x g S x , y g T x , f x , y , x G f x , y , u for all u g S x .Ž . Ž . Ž .Ž .Ž .

w xThe following is well known 1 :

BERGE’S THEOREM. Let X and Y be topological spaces, f : X = Y ª R a
oreal function, F: X - Y a multimap, and

ˆ ˆf x s sup f x , y , G x s y g F x : f x , y s f xŽ . Ž . Ž . Ž . Ž . Ž .� 4
Ž .ygF x

for xg X .

ˆŽ .a If f is u.s.c. and F is u.s.c. with compact ¨alues, then f is u.s.c.
ˆŽ .b If f is l.s.c. and F is l.s.c., then f is l.s.c.

ˆŽ .c If f is continuous and F is continuous with compact ¨alues, then f is
continuous and G is u.s.c.

2. A SELECTION THEOREM AND THE FAN]BROWDER
TYPE FIXED POINT THEOREM

We begin with the following selection theorem:

Ž .THEOREM 1. Let X be a compact space, Y, G a G-con¨ex space, and F:
oX - Y. Suppose that

Ž . Ž .i for each x g X, F x is G-con¨ex; and
Ž . yŽ . Ž yii X s D Int F y that is, F has transfer open ¨alues; seey g Y

w x.3 .

Ž . Ž .Then there is a continuous function f : X ª Y such that f x g F x for all
x g X ; that is, F has a continuous selection.

Proof. Since X is compact, there exists a finite subset B s
� 4 nq1 yŽ . Ž .y , y , . . . , y of Y such that X s D Int F y . Since Y, G is a1 2 nq1 is1 i
G-convex space, there exists a continuous map f : D ª Y such thatB n

Ž . Ž . ² : � 4nq1f D g G and f D ; G for each J g B . Let l be theB n B B J J i is1
� yŽ .4nq1partition of unity subordinated to the cover Int F y of X. Define ai is1

continuous map p: X ª D byn

nq1

p x s l x e s l x e for x g X ,Ž . Ž . Ž .Ý Ýi i i i
is1 igNx
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Ž . yŽ . Ž . Ž .where i g N m l x / 0 « x g F y m y g F x . By i , we havex i i i

f p x g f D ; G ; F x .Ž . Ž . Ž .Ž .B B N Nx x

Ž . Ž .Let f [ f p. Then f : X ª Y is continuous and f x g F x for allB
x g X.

w Ž .xNote that Theorem 1 reduces to 3, Lemma 2.1 4 whenever Y is an
H-space.

By the same argument, we have the following fixed point theorem:

Ž . oTHEOREM 2. Let X, G be a compact G-con¨ex space and let F: X - X
be a map such that

Ž . Ž .i for all x g X, F x is G-con¨ex; and
Ž . yŽ .ii X s D Int F y .y g X

Then F has a fixed point.

Proof. As in the proof of Theorem 1, we see that pf : D ª D isB n n
Ž .Ž .continuous, hence pf has a fixed point z g D ; that is, z s pf z .B n B

Ž .Let x s f z . ThenB

x s f z s f pf z s f p x s f x g F x ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .B B B B

where f s f p. Therefore F has a fixed point.B

As a consequence of Theorem 2, we obtain a Fan]Browder type fixed
point theorem.

Ž .COROLLARY 1. Let X, G be a compact G-con¨ex space and let F:
oX - X be a map such that

Ž . Ž .i for all x g X, F x is nonempty G-con¨ex; and
Ž . yŽ .ii for all y g X, F y is open.

Then F has a fixed point.

Ž . Ž .Proof. Since F x is nonempty for all x g X, there exists y g F x .
yŽ . yŽ . yŽ .This shows that x g F y and X s D F y s D Int F y .y g X y g X

Then all of the requirements of Theorem 2 are satisfied, and the
conclusion follows.

Remark. H-space versions of Theorems 1]2 and Corollary 1 were due
w xto Horvath in his earlier works; for the references, see 6 . Moreover,

generalized forms of Theorem 2 and Corollary 1 were given by Park and
w xKim 14 .
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From Corollary 1, we have the following equilibrium existence results:

Ž .COROLLARY 2. Let X, G be a compact G-con¨ex space, and let c :
X = X ª R be a function such that

Ž . � Ž . 4i for each x g X, y g X : c x, y - 0 is G-con¨ex;
Ž . � Ž . 4ii for each y g X, x g X : c x, y - 0 is open; and
Ž . Ž .iii c x, x G 0 for all x g X.

Then there exists an x g X such thatˆ

c x , y G 0 for all y g X .Ž .ˆ

oProof. Let F: X - X be defined by

F x s y g X : c x , y - 0 for x g X .� 4Ž . Ž .

Then

Fy y s x g X : c x , y - 0 for z g X .� 4Ž . Ž .

Ž .Suppose F x / B for all x g X. Then, by Corollary 1, there exists an
Ž . Ž .x g X such that x g F x , which violates condition iii . Therefore, there

Ž . Ž .exists an x g X such that F x s B; that is c x, y G 0 for all y g X.ˆ ˆ ˆ
Ž .COROLLARY 3. Let X, G be a compact G-con¨ex space, Y a topological

ospace, T : X - Y a map ha¨ing a continuous selection f , and f : X = Y =
X ª R a function such that

Ž . Ž .i f x, y, z is G-quasi-con̈ ex in z;
Ž . Ž . Ž .ii f x, y, z is u.s.c. in x, y ; and
Ž . Ž Ž . .iii f x, f x , x G 0 for all x g X.

Ž .Then there exist an x g X and a y g T x such thatˆ ˆ ˆ

f x , y , z G 0 for all z g X .Ž .ˆ ˆ

Ž . Ž Ž . . Ž .Proof. Put c x, z s f x, f x , z for x, z g X = X. Then c satis-
fies all of the requirements of Corollary 2. Therefore, we have the
conclusion.

w xRemark. Chang et al. 3, Corollary 3.2 obtained a particular form of
Ž .Corollary 3 under the assumption that f is continuous instead of ii .
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3. COLLECTIVELY FIXED POINT THEOREMS

We need the following version of the KKM theorem for G-KKM map:

Ž .LEMMA 1. Let X, G be a G-con¨ex space, let K be a nonempty compact
o Ž ² :subset of X, and F: X - X be a G-KKM map that is, for each N g X ,

Ž ..G g F N such thatN

Ž . Ž . Ži F F x s F F x that is, F is transfer closed-̈ alued;Ž .x g X x g X
w x.see 3 ; and
Ž . ² :ii for each N g X , there exists a compact G-con¨ex subset L ofN

� 4X containing N such that L l F F x : x g L ; K.Ž .N N

Ž .Then K l F F x / B.x g X

o Ž .Proof. Define F: X - X by F x s F x for each x g X. Then F is aŽ .
wG-KKM map with closed values. Therefore, by Park and Kim 14, Theorem

x Ž .3 , we have K l F F x / B. Hence, by i , we have the conclusion.Ž .x g X
w xNote that Lemma 1 is a G-convex version of Chang et al. 3, Lemma 2.2

Ž .and that the coercivity condition ii is more general than theirs.

Ž .LEMMA 2. Let X, G be a G-con¨ex space, let K be a nonempty compact
subset of X, let B / A ; B be any sets, and let f : X = X ª B be a function
such that

Ž . � Ž . 4i the map y ¬ x g X : f x, y g A is transfer closed-̈ alued;
Ž . � Ž . 4ii for each x g X, the set y g X : f x, y f A is G-con¨ex; and
Ž . ² :iii for each N g X , there exists a compact G-con¨ex subset L ofN

X such that

L l x g X : f x , y g A ; K .� 4Ž .FN
ygLN

Then one of the following holds:

Ž . Ž .1 there exists a y g X such that f y, y f A; or
Ž . Ž .2 there exists an x g X such that f x, y g A for all y g X.

o Ž . � Ž . 4Proof. Define F: X - X by F y s x g X : f x, y g A for y g X.
Ž . Ž . Ž . Ž . Ž .Then i and iii imply condition i and ii in Lemma 1. Suppose that 1

does not hold. Then

f y , y g A for all y g X .Ž .

² :We claim that F is a G-KKM map. Otherwise, there exists an N g X
Ž . Ž . Ž .such that G o F N ; that is, z f F N for some z g G . Hence f z, yN N
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f A for all y g N and so

N ; y g X : f z , y f A .� 4Ž .
Ž .By ii , we have

z g G ; y g X : f z , y f A� 4Ž .N

Ž .and hence f z, z f A, which is a contradiction. Therefore F is a G-KKM
map.

Now, by Lemma 1, we have

F y / B.Ž .F
ygX

Ž .Therefore, there exists an x g X such that x g F y for all y g X ; that is,
Ž .f x, y g A for all y g X. This completes our proof.

w xNote that Lemma 2 extends Chang et al. 3, Lemma 2.3 .
From Lemmas 1 and 2, we deduce the following collectively fixed point

theorem for later use:

Ž .THEOREM 3. Let X , G be a family of G-con¨ex spaces, let X si i ig I
oŁ X , let K be a nonempty compact subset of X, and let T : X - X beig I i i i

multimaps. Suppose that, for each i g I,

Ž . Ž .i T x is nonempty G-con¨ex for each x g X ;i

Ž . Ž . yŽ .ii a X s D Int T x for each i g I whene¨er I is finite; orx g X i ii i
Ž . yŽ .b X s D Int T y whene¨er I is infinite,y g X

yŽ . yŽ . Ž .where T y s F T y for y s y g X ; andig I i i i ig I

Ž . ² :iii for each N g X , there exists a compact G-con¨ex subset L ofN
X containing N such that

L l x g X : y f T x for some j g I ; K .Ž .� 4FN j j
ygLN

Then there exists an x g X such thatˆ

x g T x or x g T x for all i g I.Ž . Ž .ˆ ˆ ˆ ˆŁ i i i
igI

Proof. Suppose the contrary. Then, for any x g X, we have

x f T x . 1Ž . Ž .Ł i
igI

Ž .Hence, for any x g X, there exists a j g I such that x f T x . We definej j
�Ž . Ž .4 Ž . Ž .G s x, y g X = X : y f Ł T x . Then, by 1 , x, x g G for allig I i
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Ž .x g X and G is nonempty. Since X , G is a family of G-convex spaces,i i ig I
o Ž . Ž . ² :if we define G: X - X by G A s Ł G p A for each A g X , it isig I i i

Ž . oknown that X, G is a G-convex space, where p : X - X is the projectioni i
Ž w x. Ž .for each i g I see 16, Theorem 4.1 . By i , for any x g X, the set

y g X : x , y f G s y g X : y g T x s T x� 4Ž . Ž . Ž .Ł Ł½ 5i i
igI igI

is G-convex. Moreover, for any y g X, we have

x g X : x , y f G s x g X : y g T x� 4Ž . Ž .Ł½ 5i
igI

s x g X : y g T x for each i g I� 4Ž .i i

s x g X : x g Ty y s Ty y . 2� 4Ž . Ž . Ž .F Fi i i i
igI igI

Ž .Ž . Ž . � Ž . 4If I is infinite, by ii b and 2 , the multimap y ¬ x g X : x, y f G is
Ž .Ž . ytransfer open-valued. If I is finite, by ii a , T is transfer open-valuedi

for each i g I. Hence if

x g Ty y ,Ž .F i i
igI

yŽ . Xthen x g T y and there exists y g X such thati i i i

x g Int Ty yX for all i g I.Ž .i i

Since I is finite, we have

X Xy yx g Int T y s Int Int T yŽ . Ž .F Fi i i i
igI igI

; Int Ty yX sInt x g X : x , y9 f G .� 4Ž . Ž .F i iž /
igI

� Ž . 4This shows that the multimap y ¬ x g X : x, y f G is transfer open-
valued if I is finite.

Ž .By iii , we see that

L l x g X : x , y g G� 4Ž .FN
ygLN

s L l x g X : y f T xŽ .F Ł½ 5N i
igIygLN

s L l x g X : y f T x for some j g I ; K .Ž .� 4FN j j
ygLN
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Then it follows from Lemma 2 that there exists an x g X such that
Ž . Ž .x, y g G for all y g X ; that is, y f Ł T x for all y g X. Thisig I i

Ž . Ž .implies Ł T x is empty. Therefore there exists j g I such that T x isig I i j
Ž .empty; this contradicts condition 1 . Hence there exists an x g X suchˆ

Ž .that x g Ł T x .ˆ ˆig I i

Ž . Ž .If X , G is a family of compact G-convex spaces, then condition iiii i ig I
of Theorem 3 holds automatically. Therefore, we have the following
generalization of Theorem 2.

Ž .COROLLARY 4. Let X , G be a family of compact G-con¨ex spaces,i i ig I
olet X s Ł X , and let T : X - X be a multimap for all i g I. Suppose thatig I i i i

Ž . Ž .i for any x g X and i g I, T x is a nonempty G-con¨ex set;i

Ž .ii one of the following conditions holds:
Ž . y oa for any i g , T : X - X is transfer open-̈ alued if I is finite;i i

Ž . y o yŽ . yŽ .b the multimap T : X - X defined by T y s F T y forig I i i
Ž .each y s y g X is transfer open-̈ alued if I is infinite.i ig I

Then there exists an x g X such thatˆ

x g T x .Ž .ˆ ˆŁ i
igI

Remark. If I is a singleton, then Corollary 4 reduces to Theorem 2.
wNote that Theorem 3 and Corollary 4 are G-convex space versions of 3,

xTheorems 2.4 and 2.5 , respectively.

4. QUASI-EQUILIBRIUM PROBLEMS

In this section, we deal with existence of solutions of certain quasi-
equilibrium problems in G-convex spaces without any linear structure.

We begin with the following.

Ž . oTHEOREM 4. Let X, G be a compact G-con¨ex space, and let S: X - X
Ž yŽ .be a map with nonempty G-con¨ex ¨alues and open fibers that is, S z is

. oopen for each z g X such that S: X - X is u.s.c. Suppose that c : X = X ª
Ž .R is a continuous function such that c x, ? is G-quasi-con̈ ex and

c x , x G 0 for all x g X .Ž .

Then there exists an x g X such thatˆ

x g S x and c x , x G 0 for all x g S x .Ž . Ž . Ž .ˆ ˆ ˆ ˆ
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oProof. For each natural number n, define a map F : X - X byn

1
F x s z g S x : c x , z - min c x , u qŽ . Ž . Ž . Ž .n ½ 5nŽ .ugS x

Ž . Ž .for x g X. Since c x, ? is l.s.c. and S x is compact as closed subset of X,
Ž . Ž .it attains minimum. Moreover, c x, ? is G-quasi-convex and S x is

Ž .G-convex, and hence each F x is nonempty and G-convex. Furthermore,n
for any z g X, we have

1
y yF z s S z l x g X : c x , z q max yc x , u - .Ž . Ž . Ž . Ž .n ½ 5nŽ .ugS x

Since c is l.s.c. and S is u.s.c. with compact values, by Berge’s theorem,
w Ž .x Ž .x ¬ max yc x, u is u.s.c. Theorefore, x ¬ c x, z qu g S Ž x .

y yw Ž .x Ž . Ž .max yc x, u is u.s.c. Note that S z is open, and hence F z isug SŽ x . n
Ž .open. Therefore, by Corollary 1, F has a fixed point x g F x for eachn n n n

Ž .n. Since X is compact, we may assume x ª x g X. Since x g S x ;ˆn n n
Ž . Ž .S x and the graph of S is closed, we have x g S x .ˆ ˆn
On the other hand,

1
x g S x and c x , x - min c x , u q .Ž . Ž . Ž .n n n n n nŽ .ugS xn

Since S is l.s.c. and c is u.s.c., the function

1 1
x ¬ inf c x , u q s y sup yc x , u qŽ . Ž .

n nŽ .ugS x Ž .ugS x

is u.s.c. Therefore, we have

1
c x , x F lim inf c x , u q F inf c x , u ,Ž . Ž . Ž .ˆ ˆ ˆn nnª` Ž . Ž .ugS x ugS x̂n

and hence

c x , x G inf c x , u G c x , x G 0Ž . Ž . Ž .ˆ ˆ ˆ ˆ
Ž .ugS x̂

Ž . Ž .for all x g S x by ii . This completes our proof.ˆ
From Theorem 4, we obtain the following GQEP, which is a correct

w xversion of Chang et al. 3, Theorem 3.1 .

COROLLARY 5. Let X and S be the same as in Theorem 4, let Y be any
otopological space, let T : X - Y be a map ha¨ing continuous selection f :
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X ª Y, let and f : X = Y = X ª R be a continuous function such that

Ž . Ž . Ž .i f x, y, ? is G-quasi-con̈ ex for each x, y g X = Y;
Ž . Ž Ž . .ii f x, f x , x G 0 for all x g X.

Ž . Ž . Ž .Then there exist an x g S x and a y s f x g T x such thatˆ ˆ ˆ ˆ ˆ

f x , y , x G 0 for all x g S x .Ž .Ž .ˆ ˆ ˆ

Ž . Ž Ž . .Proof. Put c x, z s f x, f x , z in Theorem 4.

w xRemarks 1. Corollary 5 improves Chang et al. 3, Corollary 3.3 even for
convex spaces.

2. As we have seen in the above, certain GQEPs are simple conse-
quences of corresponding QEPs whenever the map T has a continuous
selection.

w x3. In 3, Theorem 3.1 , the authors assumed that
Ž . oii S: X - X is a continuous multimap with nonempty compact

yŽ .H-convex values and S x is open for any x g X.
yŽ .This assumption has several defects. First, since S z is open for any

z g X, S is already l.s.c. Second, since S is u.s.c. with closed values and X
yŽ .is compact, the graph of S is closed in X = X and hence each S z is

closed for any z g X. This implies that, for important examples of H-spaces
such as convex spaces or contractible spaces, S becomes a constant map;

Ž .that is S x s X for all x g X. Even in this case, Corollary 5 is much more
w xgeneral than 3, Corollary 3.2 .

w x4. Similarly, 3, Theorems 3.4 and 3.5, Corollaries 3.5 and 3.6 could
be obtained for a more simple and general situation. For example, condi-

Ž . w xtion iv of 3, Theorem 3.4 simply says that X can be covered by a finite
number of sets of the form

x g Sy z : c x , f x , z s min c x , f x , u .Ž . Ž . Ž .Ž . Ž .½ 5
Ž .ugS x zgX

5. GENERALIZED QUASI-EQUILIBRIUM PROBLEMS

In this section, we deduce the following GQE existence theorem from
Theorem 0:

THEOREM 5. Let X and Y be admissible con¨ex subsets of t.¨ .s. E and F,
orespectï ely, let S: X - X be a compact continuous map with closed con¨ex

o¨alues, let T : X - Y be a compact acyclic map, and let f : X = Y = X ª R
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be a continuous function such that

Ž . Ž . Ž .i f x, y, x G 0 for all x g X and y g T x ; and
Ž . Ž .ii u ¬ f x, y, u is quasi-con̈ ex.

Ž . Ž .Then there exist an x g S x and a y g T x such that

f x , y , x G 0 for all x g S xŽ .Ž .

Proof. Since f : X = Y = X ª R is u.s.c. and S is l.s.c., by Berge’s
theorem,

x , y ª max yf x , y , uŽ . Ž .
Ž .ugS x

Ž . Ž .is l.s.c. on x, y g X = Y. Moreover, since S x is convex and u ¬
Ž . Ž . Ž . �f x, y, u is quasi-convex for each x, y g X = Y, the set M x, y s u g
Ž . Ž . w Ž .x4S x : f x, Y, u s max yf x, y, z is convex. Therefore, by Theo-z g SŽ x .

Ž .rem 0, there exists an x, y g X = Y such that

x g S x , y g T x , yf x , y , x G yf x , y , uŽ . Ž . Ž .Ž .
for all ugS x .Ž .

Ž . Ž .Since f x, y, x G 0 for all x g X and y g T x , we have

f x , y , x G 0 for all x g S x .Ž .Ž .

This completes our proof.

wRemarks. 1. Note that Theorem 5 extends Chang et al. 3, Theorem
x3.8 in several aspects.

w x2. As in Chen and Park 4 , Theorem 5 can be applied to obtain
generalized-forms of variational inequalities due to Hartman and Stampac-
chia, Browder, Lions and Stampacchia, Saigal, Chan and Pang, Shih and
Tan, Kim, Chang, Parida and Sen, Yao, and others.

As applications of Theorem 5, we obtain the following general varia-
tional inequality:

THEOREM 6. Let e be a real reflexï e Banach space, let X ; E be a
nonempty closed con¨ex subset, let Y be an admissible con¨ex subset of a t.¨ .s.

oF, and let T : X - Y be an acyclic map. Let M: X = Y ª E* be a
continuous map with respect to the weak topology on X, the topology on Y,
and the norm topology of EU. Let h: X = X ª E be a weakly continuous

Žmapping that is, a continuous mapping with respect to the weak topology on
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.X and the weak topology on E . Suppose further that

Ž . Ž .i h x, x s 0 for all x g X ;
Ž . ² Ž . Ž .:ii the function u ¬ M x, y , h u, x is con¨ex; and
Ž . 5 5iii there exists a u g X with u - r such that

5 5² :max M x , y , h u , x F 0 for all x g X with x s r .Ž . Ž .
Ž .ygT x

Ž .Then there exist an x g X and a y g T x such that

² :M x , y , h x , x G 0 for all x g X .Ž .Ž .
Ž . ² Ž . Ž .: Ž .Proof. We let c x, y, u s M x, y , h u, x and X s X l B 0, r ,r

Ž . � 5 5 4where B 0, r s x g E: x F r . Since E is a reflexive Banach space, Xr
is a weakly compact convex subset of X. By assumption, we see that c :
X = Y = X ª R is continuous. Then it follows from Theorem 5 thatr r

Ž .there exist an x g X and a y g T x such thatr

² :M x , y , h x , x G 0 for all x g X .Ž .Ž . r

w xThen we follow the argument of Chang et al. 3, Theorem 3.9 and get the
conclusion.

w xRemark. Chang et al. 3, Theorem 3.9 assumed that F is a Frechet´
ospace, Y ; F is a nonempty closed convex set, and T : X - Y is an u.s.c.

multimap with compact convex values with respect to the weak topology on
X and the topology on Y.

Let E be a real t.v.s., let X ; E, and let h: X = X ª E be a function
Ž . owith h x, x s 0 for all x g X. A multimap G: X - E* is said to be

w x Ž . Ž .h-monotone 3 if for each x, u g X and any y g G x , ¨ g G u , we have

² : ² :y , h u , x q ¨ , h x , u F 0.Ž . Ž .
THEOREM 7. Let E, X, F, Y, T , and M be the same as in Theorem 6. Let

h: X = X ª E be a weakly continuous function such that

Ž . Ž .i h x, x s 0 for all x g X ;
Ž . ² Ž . Ž .:ii the function u ª M x, y , h u, x is con¨ex and the multimap

G: X ª 2 E* defined by

G x s M x , y : y g T x� 4Ž . Ž . Ž .
is h-monotone; and

Ž . Ž .iii there exist a u g X and a ¨ g T u such that

² :lim M u , ¨ , h x , u ) 0.Ž . Ž .
5 5x ª`

xgX
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Ž .Then there exist an x g X and a y g T x such that

² :M x , y , h x , x G 0 for all x g X .Ž .Ž .

Proof. Applying Theorem 6 and by following the argument of Chang et
w xal. 3, Theorem 3.10 , we can obtain the conclusion.

w xRemark. The results in Section 4 and 5 of 3 are consequences of our
w xresults. For example, it is easy to see that 3, Theorem 4.1 can be deduced

w xfrom Theorem 2 and 3, Theorem 5.4 from Theorem 7.
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