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1. INTRODUCTION
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In this paper, using a new fixed point theorem for acyclic maps due to
w xPark 13 , we obtain collectively fixed point theorems for noncompact maps

defined on a noncompact convex subset of a topological vector space in a
larger class than locally convex ones. Our new results are applied to
existence theorems of maximal elements of F-condensing maps and equi-
libria for one-person or generalized games. We deal with multimaps
defined on an admissible convex and non-compact subset of a topological
vector space, not-necessarily locally convex topological vector space. Con-
sequently our results generalize and improve the corresponding results

w x w xgiven by Yannelis et al. 21 , Mehta et al. 12 , and many other results.
This paper is organized as follows:
In Sect. 2, we give some necessary terminology and facts. Our main tool

wis a particular form of the fixed point theorem due to Park 13, Theorem
x1 .
Section 3 deals with collectively fixed point theorems for later use. In

Sect. 4, some of the fixed point results in the previous sections are restated
in the form of existence theorems for maximal elements.

Section 5 deals with various existence theorems for equilibria of general-
ized games. Those results are given in the forms of full generality.

2. PRELIMINARIES

Through this paper, tvs means Hausdorff topological vector spaces. A
multimap or a map T : X ](Y is a function from X into the power set 2Y

Ž . yŽ .of Y with values T x ; Y for x g X and fibers T y for y g Y. Note
yŽ . Ž .that x g T y if and only if y g T x . A nonempty topological space is

˘acyclic if all of its reduced Cech homology groups over rationals vanish.
For topological spaces X and Y, a map T : X ](Y is said to be upper

Ž . yŽ . �semicontinuous usc if for each closed set B ; Y, The set T B s x g X :
Ž . 4T x l B / B is a closed subset of X ; and acyclic if it is usc with acyclic

compact values. A maximal element of T : X ](Y is a point xU g X such
Ž U . Ž . �Ž .that T x s B. The graph Gr T of T is the set x, y g X = Y:

Ž .4y g T x . The interior and closure are denoted by int and cl, respectively.
Ž . � Ž . Ž .4The map T : X ](Y is defined by T x s y g Y: x, y g cl Gr T .X=Y

Ž . Ž Ž ..The map cl T : X ](Y is defined by cl T x s cl T x for each x g X. For
Ž .Ž .two maps T , G: X ](Y, the map T l G: X ](Y is defined by T l G x

Ž . Ž .s T x l G x for each x g X. If X is a set, Y is a subset of a vector
Ž .space E and T : X ](Y is a map such that co T x ; Y for each x g X,

Ž .Ž . Ž .then the map co T : X ](Y is defined by co T x s co T x for each
x g X.
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Let X be a topological space, Y a nonempty subset of a vector space E
Ž .and u : X ª E a function. A map f : X ](Y is said to be of class L if au , C

Ž . Ž . Ž . Ž .for each x g X, co f x ; Y and u x f co f x ; b there exists a map
Ž . Ž . yŽ .T : X ](Y such that for each x g X, T x ; f x and T y is compactly

Ž . � Ž . 4 � Ž .open in X for each y g Y; and c x g X : f x / B s x g X : T x /
4 w x w xB ; see Tan and Yuan 15 and Mehta et al. 12 .
We now introduce a different class as follows:

Ž .A map f : X ](Y is said to be of class M if a for each x g X,u

Ž . Ž . Ž . Ž .co f x ; Y and u x f co f x ; b there exists a map T : X ](Y such
Ž . Ž . � Ž . 4 � yŽ .that for each x g X, T x ; f x and x g X : T x / B s D int T y :

4 Ž . � Ž . 4 � Ž . 4y g Y ; and c x g X : f x / B s x g X : T x / B .
If X s Y and u s 1 , the identity map on X, we shall denote L and MX C

in place of L and M , respectively. Note that if X is compact, then weu , C u

have L ; M .u , C u

Ž .Let I be a possibly infinite set of players. Suppose that for each i g I,
the ith player’s strategy set X is a nonempty subset of a tvs E andi i

� 4X s Ł X denote the product space of X . If P : X ](X is aig I i i ig I i i
Ž .preference map for each i g I, the collection G s X , P is called ai i ig I

qualitatï e game. An equilibrium point x g X of the game G is a pointˆ
Ž .satisfying P x s B for all i g I. A generalized game is a family ofˆi

Ž .quadruples G s X ; A ; B ; P such that for each i g I, X is ai i i i ig I i
nonempty subset of a tvs E and A , B : X s Ł X ](X are maps. Ani i i ig I i i
equilibrium of a generalized game G is a point x g X such that, for eachˆ

Ž . Ž . Ž .i g I, x g B x and A x l P x s B.ˆ ˆ ˆ ˆi i i i
Let E be a tvs and C a lattice with a least element 0. A function F:

E w x2 ª C is called a measure of noncompactness 7 if the following condi-
tions hold for any A, B g 2 E:

Ž . Ž .1 F A s 0 if and only if A is relative compact;
Ž . Ž . Ž .2 F co A s F A , where co A denotes the closed convex hull of

A; and
Ž . Ž . � Ž . Ž .43 F A j B s max F A , F B .

Ž . Ž .It follows that A ; B implies F A F F B . The above notion is a
generalization of the set-measure g and the ball-measure x of noncom-
pactness defined in terms of a family of seminorms or a norm.

Let D be a subset of E. A map T : D ](E is said to be F-condensing if
Ž Ž .. Ž . Dwhenever F T V G F V for V g 2 , then V is relatively compact.

From now on, we assume that F is a measure of noncompactness on the
given tvs E if necessary.

Note that each map defined on a compact set is F-condensing. If E is
locally convex, then a compact map T : X ](E is g- or x-condensing
whenever X ; E is complete or E is quasi-complete.
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w xLEMMA 1 12 . Let X be a nonempty closed con¨ex subset of a tvs E and
T : X ](X a F-condensing map. Then there exists a nonempty compact con¨ex

Ž .subset K of X such that T K ; K.

w xIn 12 , E is assumed to be a locally convex tvs, but Lemma 1 is true for
any tvs as we can see in its proof.

The following is well-known:

w xLEMMA 2 9 . Let X be a paracompact space Y, a con¨ex subset of a tvs
� yŽ . 4E, and S: X ](Y is a map such that X s D int S y : y g Y . Then co S

has a continuous selection; that is, there is a continuous map f : X ª Y such
Ž . Ž .that f x g co S x for each x g X.

Moreo¨er, if X itself is compact, then f ; co A for some finite subset A of
Y.

w x ŽLEMMA 3 12 . Let X and Y be topological spaces and A a closed resp.
. Ž .open subset of X. Suppose F : X ](Y and F : A ](Y are lower resp. upper1 2

Ž . Ž .semicontinuous such that F x ; F x for all x g A. Then the map F:2 1
X ](Y defined by

F x if x f A;Ž .1F x sŽ . ½ F x if x g AŽ .2

Ž .is also lower resp. upper semicontinuous.

ŽA nonempty subset X of a tvs E is said to be admissible in the sense of
w x.Klee 11 provided that, for every compact subset K of X and every

neighborhood V of the origin 0 of E, there exists a continuous map h:
Ž . Ž .K ª X such that x y h x g V for all x g K and h K is contained in a

finite dimensional subspace L of E.
It is well known that every nonempty convex subset of a locally convex

p pŽ .tvs is admissible. Other examples of admissible tvs are l , L 0, 1 for
Ž .0 - p - 1, the space S 0, 1 of equivalence classes of measurable functions

w x pon 0, 1 , the Hardy space H for 0 - p - 1 every compact convex locally
w xconvex subset of tvs, and many others. For details, see Park 13 and

references therein.
w xWe need the following particular form of Park 13, Theorem 1 :

THEOREM 0. Let X be an admissible con¨ex subset of a tvs E and T :
X ](X a compact acyclic map. Then T has a fixed point x g X ; that is,

Ž .x g T x .

3. COLLECTIVELY FIXED POINTS

We begin with the following collectively fixed point theorem which is
essential in this paper.
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THEOREM 1. Let I be an index set. For each i g I, let X be a con¨exi
subset of a ẗ s E . Suppose that X s Ł X is a closed con¨ex locally con¨exi ig I i
subset of the ẗ s E s Ł E and S , T : X ](X are maps satisfying theig I i i i i
following conditions:

Ž . Ž . Ž .1 for each x g X and i g I, co S x ; T x ;i i

Ž . � yŽ . 42 X s D int S y : y g X for each i g I; andi i

Ž .3 the map T : X ](X defined by

T x s T x for x g XŽ . Ž .Ł i
igI

is F-condensing.

Ž . Ž .Then there exists an x s x g X such that x g T x for each i g I.i ig I i i

Proof. Since T is F-condensing, it follows from Lemma 1 that there is
Ž .a nonempty compact convex subset K of X such that T K ; K. Since K

<is compact, it follows from Lemma 2 that co S has a continuousKi
<selection for each i g I. Hence T has a continuous selection f : K ª K ,Ki i i

where K s p K and p is the projection of E s Ł E onto E . Let f :i i i ig I i i
K ª K be defined by

f x s f x for x g K .Ž . Ž .Ł i
igI

Then f is continuous. Since K is a compact convex locally convex subset of
X, K is an admissible subset of X. Then by Theorem 0, there is an

Ž . Ž . Ž .x s x g K such that x s f x g T x . Hence for each i g I, x si ig I i
Ž . Ž .f x g T x .i i

Ž .COROLLARY 1. In Theorem 1, if the condition 2 is replaced by

Ž .X yŽ .2 for each i g I, S y is compactly open in X for all y g X andi i
Ž .S x / B for all x g X.i

Ž . Ž .Then there exists an x s x g X such that x g T x for each i g I.i ig I i i

Ž . Ž .Proof. Let S: X ](X be defined by S x s Ł S x for x g X. Sinceig I i
Ž . Ž .T is F-condensing and S x ; T x for all x g X, it follows that S is also

F-condensing. By Lemma 1, there exists a compact convex subset K of X
Ž .such that S K ; K. Let K be the projection of K into E . Theni i

Ž . X < yŽ .S K ; K . Let S s S : K ](K . Since for each y g X and i g I, S yKi i i i i i i
is compactly open in X, it follows that for each y g K ,i

y1X X yS y s x g K : y g S x s x g K : y g S x s K l S y� 4 � 4Ž . Ž . Ž . Ž . Ž .i i i i
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XŽ .is open in K. By assumption, we see that for each x g K with S x / B,i
XŽ . Ž X.yŽ .if y g S x , then y g K and x g S y . Consequently, K si i i

�Ž X.yŽ . 4 � Ž X .yŽ . 4 X <D S y : y g K s D int S y : y g K . Let T s T . Then forKi i i i
XŽ . XŽ .each x g K and each i g I, co S x ; T x . Since K is a compact convexi i

locally convex subset of X, K is an admissible closed set. Then the
conclusion follows immediately from Theorem 1.

When I is a singleton, we do not need the admissibility.

THEOREM 2. Let X be a nonempty closed con¨ex set of a ẗ s E and S, T :
X ](X maps such that

Ž . Ž . Ž .1 for each x g X, co S x ; T x ; and
Ž . � yŽ . 42 X s D int S y : y g X .

If T is F-condensing, then T has a fixed point.

Proof. Since T is F-condensing, by Lemma 1, there exists a nonempty
Ž .compact convex subset K of X such that T K ; K. For any x g K, there

Ž . yŽ . � yŽ .exists a y g S x such that x g S y ; that is, K is covered by S y :
4 � yŽ . 4y g K . Moreover, we have K s K l X s j K l int S y : y g X s

� yŽ . 4D int S y : y g X . For any x g K, there exists y g X such thatK
yŽ . yŽ . Ž .x g int S y ; S y , or y g S x ; K. Therefore, we have K sK

� yŽ . 4D int S y : y g K . By applying Lemma 2, there exists a continuousK
< Ž .selection f : K ª K of T such that f K ; co A ; K for some finiteK

<subset A of K. Then f has a fixed point by the Brouwer fixed pointco A

theorem, which is a particular form of Theorem 0. Therefore T has a fixed
point in K. This completes our proof.

Remark. If X itself is compact, T is not-necessarily F-condensing in
Theorem 2. This is known as the Fan]Browder fixed point theorem.

COROLLARY 2. Let X be a nonempty closed con¨ex subset of a ẗ s E.
Suppose that T : X ](X is a F-condensing map such that

Ž . Ž .1 T x is nonempty con¨ex for each x g X ;
Ž . yŽ .2 for each y g X, T y is compactly open in X.

Then T has a fixed point.

wRemark. For a locally convex tvs E, Corollary 2 reduces to 12, Theo-
xrem 2.2 . Note also that Theorem 2 properly generalized Corollary 2.

Ž x Ž . Ž xEXAMPLE. Let E s R, X s y`, 0 and T x s y`, x . Then for
yŽ . w x � yŽ .each y g X, T y s y, 0 . It is easy to see that X s D int T y :X

4 yŽ .y g X . But for each y g X, T y is not compactly open.
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We have one more collectively fixed point theorem:

THEOREM 3. Let I be an index set and for each i g I, X a con¨ex subseti
of a ẗ s E . Suppose that the set X s Ł X is a con¨ex locally con¨exi ig I i
closed subset of E s Ł E and for each i g I, T : X ](X is usc and forig I i i i

Ž . Ž .each x g X, T x is con¨ex except for a finite number of i’s for which T x isi i
Ž . Ž .acyclic. Suppose that T : X ](X defined by T x s Ł T x for each x g Xig I i
Ž . Ž .is F-condensing. Then there exists an x s x g X such that x g T xi ig I i i

for each i g I.

Proof. Since T is F-condensing, it follows from Lemma 1 that there is
Ž .a compact convex subset K of X such that T K ; K. By assumption, for

X < X <each i g I, T : X ](X is usc. Let T s T for each i, and T s T sK Ki i i i
Ł T X. Since the product of a finite number of acyclic sets is acyclic, T X isig I i
usc with compact acyclic values. Thus T X: K ](K is a compact acyclic map.
Since K is a compact convex locally convex subset of a tvs X, K is
admissible, it follows from Theorem 0 that T X has a fixed point; that is,

XŽ . Ž . Ž .there exists an x s x g K ; X such that x g T x s T x for alli ig I i i i
i g I.

For the case I is a singleton, we have the following particular form of
w x13, Theorem 2 :

THEOREM 4. Let X be a closed con¨ex locally con¨ex subset of a ẗ s E
and T : X ](X an acyclic map. If T is F-condensing, then T has a fixed point.

Remarks. 1. Theorem 4 can be deduced from Theorem 0 and Lemma 1.

2. If T is convex-valued and E is locally convex, then Theorem 4
w xreduces to 12, Theorem 2.3 . Note that Theorem 0 and 4 include most of

Ž .well-known fixed point theorems in locally convex topological vector
w xspaces; see 13 .

4. MAXIMAL ELEMENTS

Some of the fixed point results in the previous sections can be restated
to existence theorems for maximal elements.

THEOREM 5. Let X be a closed con¨ex locally con¨ex subset of a ẗ s E.
Suppose that T : X ](X is an usc F-condensing map with closed con¨ex

Ž .¨alues. If x f T x for each x g X, then T has a maximal element; that is,
Ž .there exists an x g X such that T x s B.

Ž .Proof. Suppose that T x / B for all x g X. Since every nonempty
convex set is acyclic, T : X ](X becomes an acyclic map. Since T is
F-condensing, by Theorem 4, T has a fixed point. This contradicts the
hypothesis.
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wRemark. If E is locally convex, then Theorem 5 reduces to 12, Theo-
xrem 3.2 .

THEOREM 6. Let X be a nonempty closed con¨ex subset of a ẗ s E.
Suppose that T : X ](X is a map such that

Ž . Ž .1 T is F-condensing and T x is con¨ex for all x g X ;
Ž . yŽ .2 for each y g X, T y is compactly open; and
Ž . Ž .3 for each x g X, x f T x .

Then T has a maximal element.

Ž .Proof. Suppose that for all x g X, T x / B. Then by Corollary 2,
Ž . Ž .there exists an x g X such that x g T x . This contradicts 3 . Then the

conclusion follows.

Ž .Remarks. 1. In Theorem 5, if the condition 2 is replaced by X s
� yŽ . 4D int T y : y g X , then the conclusion is not true. In fact, for any

yŽ . yŽ .x g X, there exists a y g X such that x g int T y ; T y . Hence
Ž .y g T x / B.

w2. If E is locally convex, then Theorem 6 reduces to 12, Theorem
x3.1 .

THEOREM 7. Let X be a nonempty closed con¨ex subset of a ẗ s E and T :
X ](X be of class M. If T is F-condensing, then there exists a point x g X

Ž .such that T x s B.

Ž .Proof. Suppose that T x is nonempty for each x g X. Since T : X ](X
is of class M, we have

Ž . Ž . Ž .a for each x g X, co T x ; X and x f co T x ;
Ž . Ž .b there exists a map G: X ](X such that for each x g X, G x ;

Ž . � Ž . 4 yŽ .T x and x g X : G x / B s D int G y ; andy g X

Ž . � Ž . 4 � Ž . 4c x g X : G x / B s x g X : T x / B .

Ž . � Ž . 4Since T x / B for all x g X, we have X s x g X : T x / B . Thus
� yŽ . 4 Ž . Ž .X s D int G y : y g X by b and c . Since T is F-condensing, it

Ž . Ž . Ž .follows that co T is F-condensing. By b , we see that co G x ; co T x
for all x g X. Then by Theorem 2, there exists xU g X such that xU g

UŽ . Ž .co T x . This contradicts a . Hence there exists an x g X such that
Ž .T x s B.

COROLLARY 3. Let X be a nonempty closed con¨ex subset of a ẗ s E and
T : X ](X be of class L . If T is F-condensing, then there exists a point x g XC

Ž .such that T x s B.
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Ž .Proof. Suppose that T x is nonempty for each x g X. Since T : X ](X
is of class L , it follows thatC

Ž . Ž . Ž .a for each x g X, co T x ; X and x f co T x ;
Ž . Ž .b there exists a map G: X ](X such that for each x g X, G x ;

Ž . yŽ .T x and G y is compactly open for each y g X ;
Ž . � Ž . 4 � Ž . 4c x g X : T x / B s x g X : G x / B .

Since T is F-condensing, there exists a compact convex subset K of X
Ž . X < yŽ .such that T K ; K. Let G s G . Since for each y g K, G y isK

Ž X.yŽ .compactly open, it is easy to see G y is open in K and K s
� Ž X.yŽ . 4 <D int G y : y g K . It is easy to check that T : K ](K is of class M.KK

Since K is a nonempty compact convex subset of E, by Theorem 7, there
Ž . Ž .exists an x g K such that T x s B. This contradicts T x / B for all

x g X.

wRemark. If E is locally convex, then Corollary 3 reduces to 12,
x w xTheorem 3.4 . Similarly, 12, Theorem 3.5 can be improved without

assuming the local convexity as follows:

COROLLARY 4. Let X be a nonempty closed con¨ex subset of a ẗ s E and
P: X ](X an L -majorized F-condensing map. Then P has a maximalC
element.

w xRemarks. 1. For the definition of L -majorized map, see 12 ; and theC
w xproof of 12, Theorem 3.4 works for Corollary 4.

2. In all of the results in Sects. 3 and 4, the F-condensing maps can
be replaced by compact maps, for which the closedness of X is redundant,

w xsee Park 13 . For example, Corollary 4 can be stated for compact maps.
w xThen we obtain a generalization of Borglin and Keiding 2, Corollary 1 ,

w x w xToussaint 16, Theorem 2.2 , Tulcea 18, Theorem 2 , and Yannelis and
w xPrabhakas 21, Corollary 5.1 .

5. EQUILIBRIA OF GENERALIZED GAMES

wApplying Theorem 4 and following the argument in the proof of 12,
xTheorem 4.3 , we have the following theorem:

Ž .THEOREM 8. Let G s X , A , P be a generalized game, where I is ai i i ig I
Ž .countable or uncountable set of players. Suppose that the following condi-
tions are satisfied for each i g I:

Ž .1 X is a con¨ex subset of a ẗ s E such that X s Ł X is a closedi i ig I i
con¨ex locally con¨ex subset of the ẗ s E s Ł E ;ig I i
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Ž . Ž .2 A : X ](X is an acyclic map such that for each x g X, A x isi i i
con¨ex except a finite number of i’s;

Ž . Ž . Ž .3 the map A: X ](X defined by A x s Ł A x for each x g Xig I i
is F-condensing;

Ž . Ž . Ž . Ž .4 for each x g X, p x f A x l P x ;i i i

Ž . � Ž . Ž . 45 the set U s x g X : A x l P x / B is open in X ; andi i i

Ž . Ž .Ž .6 A l P is usc on U such that for each x g U , A l P x isi i i i i i
Ž .Ž .closed con¨ex except a finite number of i’s for which A l P x is acyclic.i i

U Ž U . Ž U .Then there exists an x g X such that, for each i g I, p x g A x andi i
Ž U . Ž U .A x l P x s B.i i

wRemark. For the case E is locally convex, Theorem 8 reduces to 12,1
xTheorem 4.3 . Note that in Theorem 8, the involving maps have acyclic

values on a finite number of points instead of convex values.
w xThe following is a variant of 12, Theorem 4.1 :

THEOREM 9. Let X be a nonempty closed con¨ex subset of ẗ s E. Suppose
A, B, P: X ](X are maps such that

Ž . Ž . Ž . Ž .1 for each x g X, A x is nonempty and co A x ; B x ;
Ž . yŽ .2 for each y g X, A y is compactly open in X ;
Ž .3 A l P is of class M; and
Ž .4 the map A is F-condensing.

U U U U UŽ . Ž . Ž .Then there exists a point x g X such that x g B x and P x l B x
s B.

Proof. Since A is F-condensing, by Lemma, 1 there exists a compact
Ž . � Ž .4convex subset K of X such that A K ; K. Let M s x g K : x / B x .

Then M is open in K. Define S: K ](K by

AX x l P x if x g K _ M ,Ž . Ž .
S x sŽ . X½ A x if x g M ,Ž .

X <where A s A .K
Ž Ž . Ž ..Since A l P is of class M, for each x g X, x f co A x l P x and

there exists a map b : X ](X such that

Ž . Ž . Ž . Ž .a for each x g X, b x ; A x l P x ;
Ž . � Ž . 4 � Ž . Ž . 4b x g X : b x / B s x g X : A x l P x / B ; and
Ž . � Ž . 4 � yŽ . 4c x g X : b x / B s D int b y : y g Y .
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Now we define T : X ](X by

b X x if x g K _ M ,Ž .
T x sŽ . X½ A x if x g M ,Ž .

X <where b s b .K
� XŽ . 4 Ž X .yŽ .We want to show that x g K : b x / B ; D int b y . Iny g K K

fact,

x g K : b X x / B s x g K : b x / B s K l x g X : b x / B� 4 � 4 � 4Ž . Ž . Ž .

s K l D int by yŽ .Ž .y g X

s D K l int by y : y g X� 4Ž .
yX; D int b y : y g X .Ž . Ž .� 4K

yŽ . w Ž X .yŽ .xIt is easy to see that for each y g K, T y s M j b y l
Ž X.yŽ . Ž X.yŽ . yŽ . �A y and A y s K l A y is open in K. Let x g u g K :
Ž . 4T u / B . Then either x g M or x g K _ M.

Ž . XŽ . XŽ .Case 1. If x g M, then T x s A x / B. Let y g A x ; K, then
Ž X.yŽ . w Ž X.yŽ .x Ž X.yŽ . yŽ .x g A y . Hence x g M j int b y l A y ; T y . But

w Ž X .yŽ .x Ž X .yŽ . wM j int b y l A y is open in K , hence x g M j
Ž X.yŽ .x Ž X.yŽ . yŽ . � yŽ . 4int b y l A y ; int T y ; D int T y : y g K .K K

Ž . XŽ . �Case 2. If x g K _ M, then T x s b x / B. Thus x g u g K :
XŽ . 4 � XyŽ . 4b x / B ; D int b y : y g X . There exists y g X such that x gK
Ž X.yŽ . XŽ . Ž . Ž . Ž . XŽ .int b y . This shows that y g b x : A x l P x ; A x s A x ;

Ž X.yŽ . w Ž X.yŽ .x Ž X.yŽ .K. Hence x g A y and x g M j int b y l A y ;
� yŽ . 4D int T y : y g K .K

� Ž . 4 � yŽ . 4In any case, we see that x g K : T x / B ; D int T y : y g K .K
� yŽ . 4 � Ž . 4 � Ž .But D int T y : y g K ; x g K : T x / B . Hence x g K : T x /K

. � yŽ . 4 Ž . Ž .B s D int T y : y g K . Then clearly for each x g X, T x ; S xK
� Ž . 4 � Ž . 4and x g X : S x / B s x g X : T x / B . Moreover, if x g M, then
Ž . Ž . Ž . Ž .x f B x , it follows from 1 that x f co A x s co S x , if x f M, then
Ž Ž . Ž .. Ž .x f co A x l P x s co S x . This shows that S is of class M . Since AIK

Ž . Ž .is F-condensing and S x ; A x for all x g X, S is F-condensing. Then
Ž . Ž .by Theorem 2, there exists x g K such that S x s B. As A x / B for

Ž . Ž . Ž .all x g X, we must have x f M and hence x g B x and A x l P x s
B. Now the proof is completed.
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COROLLARY 5. Let X be a nonempty closed con¨ex subset of a ẗ s E.
Suppose A, B, P: X ](X are maps such that

Ž . Ž . Ž . Ž .1 for each x g X, A x is nonempty and co A x ; B x ;
Ž . yŽ .2 for each y g Y, A y is compactly open in X ;
Ž .3 A l P is of class L ;C

Ž .4 the map A is F-condensing.

Ž . Ž . Ž .Then there exists a point x g X such that x g B x and A x l P x s B.

Proof. Since A is F-condensing, by Lemma 1 there exists a compact
Ž .convex subset K of X such that A K ; K. By assumption, A l P is of

Ž Ž . Ž ..class L . Hence for all x g X, x f co A x l P x and there exists aC
map b : X ](X such that

Ž . Ž . Ž . Ž .a for each x g X, b x ; A x l P x ,
Ž . yŽ .b for each y g X, b y is compactly open,
Ž . � Ž . 4 � Ž . Ž . 4 X <c x g X : b x / B s x g X : A x l P x / B . Let b s b .K

X Ž X.yŽ .Then b : K ](K and for all y g K, b y is open in K. Therefore
� XŽ . 4 � Ž X.yŽ . 4 X < X <x g K : b x / f s D int b y : y g K . Let A s A , B s BK KK

X < X Xand P s P . Then it is easy to see that A l P is of class M . Then theK IK

conclusion follows from Theorem 9.

Remark. In case E is locally convex, Corollary 5 reduces to Mehta
w xet al. 12, Theorem 4.1 .

From now on, we give various solutions of equilibria problems for
generalized games:

Ž .THEOREM 10. Let G s X , A , P be a generalized game, where I isi i i ig I
a set of players. Suppose that the following conditions are satisfied for each
i g I:

Ž .1 X is a con¨ex subset of a ẗ s E and X s Ł X is a closedi i ig I i
con¨ex locally con¨ex subset of E s Ł E ;ig I i

Ž .2 for each x g X, A: X ](X is usc with nonempty compact con¨exi
¨alues;

Ž .3 the mapping A: X ](X defined by A s Ł A for each x g X isig I i
F-condensing;

Ž . � Ž . Ž . 44 the set U s x g X : A x l P x / B is paracompact and openi i i
in X ;

Ž . � yŽ . 4 Ž .5 U s D int T y : y g X and for each x g U , T x is con¨ex,i i i i i
where T s A l P .i i i

U Ž U . Ž U .Then there exists an x g X such that for each i g I, either p x g A xi i
Ž U . Ž U . Ž U . Ž U . Ž U .l P x or p x g A x and A x l P x s B.i i i i i
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Ž . Ž .Proof. For each i g I, by 4 , 5 and Lemma 2, there exists a continu-
Ž . Ž . Ž .ous function f : U ª X such that f x g A x l P x for each x g U .i i i i i i i

Now we define F : X ](X byi i

f x if x g U� 4Ž .i iF x sŽ .i ½ A x if x f U .Ž .i i

Ž . Ž .Then 2 , 4 and Lemma 3 imply that F is usc with nonempty compacti
Ž . Ž .convex values. Let F: X ](X be a mapping defined by F x s Ł F x .ig I i

Ž .Then F: X ](X is usc and F-condensing and F x is closed and convex
for each x g X. Now, by applying Theorem 4, we have the conclusion.

Ž .THEOREM 11. Let G s X , A , B , P be a generalized economy,i i i i ig I
where I is the set of agents such that for each i g I,

Ž .1 X is a con¨ex subset of a ẗ s E ;i i

Ž .2 X s Ł X is a closed con¨ex locally con¨ex subset of E sig I i
Ł E ;ig I i

Ž . Ž . Ž . Ž .3 for each x g X, B x is nonempty con¨ex and A x ; B x ; X ;i i i i

Ž . Ž .Ž . Ž Ž ..4 the mapping cl B : X ](X defined by cl B x s cl B x fori i i i
each x g X is usc;

Ž . Ž .Ž . Ž .5 the map cl B: X ](X defined by cl B x s Ł cl B x forig I i
each x g X is F-condensing;

Ž . � Ž . Ž . 46 the set W s x g X : A x l P x / B is a paracompact openi i i
subset of X ;

Ž . Ž . w Ž . Ž .x7 for each x s x g X, x f co A x l P x andi ig I i i i

Ž .8 the map T : X ](X defined byi i

T x s A x l P x for x g XŽ . Ž . Ž .i i i

� yŽ . 4has the property W s D int T y : y g X .i i i

Ž .Then G has a equilibrium point x s x g X ; that is, for each i g I,i ig I
Ž . Ž . Ž .x g cl B x and A x l P x s B.i i i i

Ž . Ž .Proof. For each i g I, let S : X ](X be defined by S x s co T x .i i i i
<By Lemma 2, for each i g I, S has a continuous selection f : W ª X .Wi i i ii

Define

f x if x g W� 4Ž .i iG x sŽ .i ½ cl B x if x f W .Ž .i i

Then it follows from Lemma 3 that G is usc. Let G: X ](X be defined byi
Ž . Ž .G x s Ł G x for x g X. Then G is usc with nonempty closed convexig I i

Ž . Ž .values. Since B is F-condensing and G x ; B x for all x g X, it is easy



LIN, PARK, AND YU594

to see that G is F-condensing. By Theorem 4, there exists x g X such that
Ž . Ž . Ž . Ž .x s x g G x ; that is, x g G x for each i g I. Hence x g cl B xi ig I i i i i

Ž . Ž .and A x l P x s B.i i

Remark. A compact map version of Theorem 11 for locally convex tvs
w xwas due to Wu and Shen 20, Theorem 10 , which includes earlier works of
w x w xYannelis and Prabhakar 21, Theorem 6.1 , Chang 3, Theorem 3.1 , and

w xTian 19 .

� yŽ .COROLLARY 6. In Theorem 11, if the condition W s D int T y : y gi i
4 yŽ .X is replaced by the condition that for each y g X , T y is compactlyi i i

open. Then we ha¨e the same conclusion.

Proof. Since cl B: X ](X is F-condensing, it follows that there exists a
compact convex subset K of X such that cl B: K ](K. By assumption,
Ž . Ž . Ž . Ž . XT x s A x l P x ; B x for all x g K. Hence T : K ](K . Let T si i i i i i i
< yŽ . yŽ .T . Since for each y g X , T y is compactly open. It follows that T yKi i i i

is open for each y g K . Let W X s W l K. Then W X is paracompact. It isi i i i
X � yŽ . 4easy to see that W s D int T y : y g K . Then the conclusion followsi K i i

from Theorem 11.

THEOREM 12. Let I be any set of players. For each i g I, suppose that Xi
is a compact con¨ex subset of a ẗ s E , X s Ł X is an admissible subseti ig I i

� Ž . 4of E s Ł E and P : X ](X . Let U s x g X : P x / B be paracom-ig I i I i i i
Ž .pact and open for each i g I and P x is con¨ex for all x g U and i g I.i i

� yŽ . 4 USuppose further that U s D int P y : y g X , then there exists an x g Xi i i
Ž U . Ž U . Ž U .such that for each i g I, either p x g P x or P x s B.i i i

<Proof. It follows from Lemma 2 that P : U ](X has a continuousUi i ii

selection f : U ª X . Define F : X ](X byi i i i i

f x if x g U ;� 4Ž .i iF x sŽ .i ½ X if x f U ,i i

It follows from Lemma 3 that F is usc with nonempty compact convexi
values such that

F x s f x ; P x for all x g U .� 4Ž . Ž . Ž .i i i i

Ž . Ž .Now define F: X ](X by F x s Ł F x for each x g X. Then F isig I i
usc with nonempty compact convex values. Since X is an admissible
compact set and F: X ](X is a compact acyclic map, it follows from

U U Ž U .Theorem 0 that there exists x g X such that x g F x . It follows that
Ž U . Ž U . Ž U .for each i g I, either p x g P x or P x s B.i i i
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THEOREM 13. In Theorem 12, if we assume that X is a nonemptyi
compact con¨ex subset of a finite dimensional space E and U is closed, theni i
we ha¨e the same conclusion.

Proof. Note that X s Ł X is automatically admissible. It followsig I i
<from Lemma 2 that P has a continuous selection f : U ª X . DefineUi i i ii

f x if x g U ;� 4Ž .i iG x sŽ .i ½ X if x f U .i i

w xThen, by following the proof of 12, Theorem 5.3 , we have the conclusion.

wRemark. Some results related to this paper can be found in 1, 4]6, 8,
x10, 14, 17 .
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