Bull. Austral. Math. Soc. Vol. 59 (1999) [481-493]

A KKM TYPE THEOREM AND ITS APPLICATIONS

Lai-Jiu Lin

In this paper we establish a generalised KKM theorem from which many well-known KKM theorems and a fixed point theorem of Tarafdar are extended.

1. INTRODUCTION

In [6], Knaster, Kuratoaski and Mazurkiewicz established the well known KKM theorem on the closed cover of a simplex. In [4], Ky Fan generalised the KKM theorem to a subset of any topological vector space. There are many generalisations and many applications of this theorem.

In this paper, we establish a generalised KKM theorem on a generalised convex space as follows:

THEOREM 1. Let $(X, D; \Gamma)$ be a G-convex space, Y a Hausdorff space and $T \in G-KKM(X, Y)$ be compact, and $G: D \to 2^Y$. Suppose that

- (1.1) for each $x \in D$, Gx is compactly closed in Y; and
- (1.2) for any $N \in \langle D \rangle$, $T(\Gamma_N) \subseteq G(N)$.

Then $\overline{T(X)} \cap \bigcap \{Gx : x \in D\} \neq \emptyset$.

Applying Theorem 1, we extend many well-known generalised KKM theorem, and we give a unified treatment of these theorems (see [5, 7, 9, 10, 12, 14, 15, 16]). We also obtain some equivalent forms of Theorem 1 and extend a fixed point theorem of Tarafdar [15].

2. PRELIMINARIES

Let X, Y and Z be nonempty sets; 2^Y will denote the power set of Y. Let $F: X \to 2^Y$ be a set-valued map, $A \subseteq X$, $B \subseteq Y$ and $y \in Y$. We define

$$F^{-}(B) = \left\{ x \in X : F(x) \cap B \neq \emptyset \right\}, \qquad F^{-}(y) = \left\{ x \in X : y \in F(x) \right\},$$
$$F(A) = \bigcup \left\{ F(x) : x \in A \right\}, \qquad G_{r}(F) = \left\{ (x, y) : y \in F(x), x \in X \right\}.$$

Received 8th December, 1998

This research was supported by the National Science Council of the Republic of China.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.

For topological spaces X and Y, a map $F: X \to 2^Y$ is said to be upper semicontinuous if the set $F^-(A)$ is closed in X for each closed subset A of Y. F is said to be closed if $G_r(F)$ is a closed subset of $X \times Y$, and F is said to be compact if $\overline{F(X)}$ is a compact subset of Y. A subset B of Y is said to be compactly closed (compactly open) if for each compact subset K of Y, the set $B \cap K$ is closed (open) in K.

Given two set-valued maps $F: X \to 2^Y$, $G: Y \to 2^Z$ the composite $GF: X \to 2^Z$ is defined by GF(x) = G(F(x)) for $x \in X$. Let X be a class of set-valued maps. We write $\mathbb{X}(X,Y) = \{T: X \to 2^Y \mid T \in \mathbb{X}\}, \mathbb{X}_c(X,Y) = \{T_nT_{n-1}\cdots T_1: T_i \in \mathbb{X}, i = 1, 2, ..., n \text{ for some } n\}$, that is, the set of finite composites of maps in X.

The following notion of an abstract class of set-valued maps was introduced by Park [10]. A class U of set-valued maps is one satisfying the following:

- (i) U contains the class \mathbb{C} of single-valued continuous functions;
- (ii) each $T \in U_c$ is upper semicontinuous with compact values; and
- (iii) for each polytope P, each $T \in U_c(P, P)$ has a fixed point.

We write $U_c^{\kappa}(X,Y) = \{T : X \to 2^Y | \text{ for any compact subset } K \text{ of } X$, there is $F \in U_c(K,Y)$ such that $F(x) \subseteq T(x)$ for each $x \in K\}$. Each $F \in U_c^{\kappa}$ is said to be admissible.

Let X be a convex set in a vector space and D a nonempty subset of X. Then (X, D) is called a convex space if the convex hull of any nonempty finite subset of D is contained in X and X has the topology that induces the Euclidean topology on the convex hull of its finite subsets. For a nonempty subset D of X, let $\langle D \rangle$ denote the set of all nonempty finite subsets of D. Let Δ_n denote the standard n-simplex with vertices $e_1, e_2, \ldots, e_{n+1}$, where e_i is the *i*th unit vector in \mathcal{R}^{n+1} , that is $\Delta_n = \left\{ u \in \mathcal{R}^{n+1} : u = \sum_{i=1}^{n+1} \lambda_i(u)e_i, \lambda_i(u) \ge 0, \sum_{i=1}^{n+1} \lambda_i(u) = 1 \right\}$.

A generalised convex space [12] or a G-convex space $(X, D; \Gamma)$ consists of a topological space X, a nonempty subset D of X and a function $\Gamma : \langle D \rangle \to 2^X$ with nonempty values such that

- 1. for each $A, B \in \langle D \rangle$, $A \subset B$ implies $\Gamma(A) \subseteq \Gamma(B)$ and
- 2. for each $A \in \langle D \rangle$, with |A| = n + 1, there exists a continuous function $\phi_A : \Delta_n \to \Gamma(A)$ such that $J \in \langle A \rangle$ implies $\phi_A(\Delta_J) \subset \Gamma(J)$, where Δ_J denotes the face of Δ_n corresponding to $J \in \langle A \rangle$.

We see from [12] that a convex subset of a topological vector space, Lassonde's convex space, S-contractible space, H-space, a metric space with Michael's convex structure, Komiya's convex space, Bielawski's simplicial convexity, Joo's pseudoconex space are examples of G-convex spaces.

For a G-convex space $(X, D; \Gamma)$, a subset C of X is said to be G-convex if for each $A \in \langle D \rangle$, $A \subseteq C$ implies $\Gamma(A) \subset C$. We sometimes write $\Gamma(A) = \Gamma_A$ for each $A \in \langle D \rangle$.

DEFINITION 1: Let $(X, D; \Gamma)$ be a *G*-convex space, $T : X \to 2^Y$ and $S : D \to 2^Y$ be two set-valued maps such that $T(\Gamma_A) \subset S(A)$ for each $A \in \langle D \rangle$. Then we call *S* a generalised *G*-*KKM* map with respect to *T*. Let $T : X \to 2^Y$ be a set-valued map. *T* is said to have the *G*-*KKM* property if whenever $S : D \to 2^Y$ is any generalised *G*-*KKM* map with respect to *T*, then the family $\{\overline{Sx} : x \in D\}$ has the finite intersection property. We let *G*-*KKM* $(X, Y) = \{T : X \to 2^Y | T \text{ has the } G$ -*KKM* property $\}$. If (X, D) is a convex space, and $\Gamma_A = \text{Co } A$ is the convex hull of *A*, then *G*-*KKM*(X, Y) = KKM (X, Y)as defined in [3].

LEMMA 1. Let $(X, D; \Gamma)$ be a G-convex space, and Y a Hausdorff space. Then $U_c^{\kappa}(X,Y) \subseteq G\text{-}KKM(X,Y)$

PROOF: Lemma 1 follows immediately from the corollary of [13, Theorem 2] and Definition 1.

LEMMA 2. [1] Let Y be a compact space and $F: X \to 2^{Y}$ be closed. Then F is upper semicontinuous.

LEMMA 3. [1] Let $F : X \to 2^Y$ be upper semicontinuous with compact values from a compact space X to Y. Then F(X) is compact.

LEMMA 4. [1] Let $X \to 2^Y$ be upper semicontinuous with closed values. Then F is closed.

LEMMA 5. [3] Let X be a convex subset of a linear space, and Y be a topological space. Then $T \in KKM(X,Y)$ if and only if $T|_P \in KKM(P,Y)$ for each polytope P in X.

LEMMA 6. Let X be a convex subset of a linear space, Y a topological space, A a convex subset of X, and $T \in KKM(X, Y)$. Then $T|_A \in KKM(A, Y)$.

PROOF: Let P be any polytope in A. Since $T \in KKM(X,Y)$, it follows from Lemma 5 that $T|_P \in KKM(P,Y)$. But $(T|_A)|_P = T|_P \in KKM(P,Y)$. Again by applying Lemma 5, $T|_A \in KKM(A,Y)$.

A nonempty topological space is acyclic if all its reduced Cěch homology groups over rationals vanish. In particular, any contractible space is acyclic, any convex or starshaped space is acyclic. For a convex space Y, k(Y) denotes the set of all nonempty compact convex subsets of Y, ka(Y) denotes the set of all compact acyclic subsets of Yand $V(X, Y) = \{T \mid T : X \to ka(Y) \text{ is upper semicontinuous}\}$. Throughout this paper, all topological spaces are assumed to be Hausdorff.

3. MAIN RESULTS

We prove a generalised G-KKM theorem which gives a unified approach to KKMtype theorems.

L-J. Lin

THEOREM 1. Let $(X, D; \Gamma)$ be a G-convex space, Y a Hausdorff space and $T \in G$ -KKM(X, Y) be compact, $G: D \to 2^Y$. Suppose that

- (1.1) for each $x \in D$, Gx is compactly closed in Y; and
- (1.2) for any $N \in \langle D \rangle$, $T(\Gamma_N) \subseteq G(N)$.

Then $\overline{T(X)} \cap \bigcap \{Gx : x \in D\} \neq \emptyset$.

PROOF: Since T is compact, there exists a compact set K of Y such that $T(X) \subseteq K$. From this, we see that $\overline{T(X)}$ is compact. For each $x \in D$, let $Sx = \overline{T(X)} \cap Gx$, then it follows from (1.1) that Sx is closed in $\overline{T(X)}$ for each $x \in D$. By (1.2), we see that for any $N \in \langle D \rangle$, $T(\Gamma_N) = T(\Gamma_N) \cap \overline{T(X)} \subseteq G(N) \cap \overline{T(X)} = S(N)$. Hence S is G-KKM with respect to T. It follows that $\{Sx : x \in D\} = \{\overline{Sx} : x \in D\}$ has the finite intersection property. Since $\overline{T(X)}$ is compact and $\{Sx : x \in D\}$ is a family of closed subsets in $\overline{T(X)}$, we have $\bigcap\{Sx : x \in D\} \neq \emptyset$. Therefore $\overline{T(X)} \cap \bigcap\{Gx : x \in D\} \neq \emptyset$.

REMARK 1. In Theorem 1, if the condition $T \in G$ -KKM (X, Y) is compact is replaced by the condition that $T \in U_c^{\kappa}(X, Y)$ and X is compact, then we obtain the following corollary.

COROLLARY 1. Let $(X, D; \Gamma)$ be a compact G-convex space, Y a Hausdorff space, and $T \in U_c^{\kappa}(X, Y)$. Suppose that

- (C1.1) for each $x \in D$, Gx is compactly closed in Y; and
- (C1.2) for each $N \in \langle D \rangle$, $T(\Gamma_N) \subseteq G(N)$.

Then $\overline{T(X)} \cap \bigcap \{Gx : x \in D\} \neq \emptyset$.

PROOF: Since X is compact and $T \in U_c^{\kappa}(X,Y)$, there exists $T' \in U_c(X,Y)$ such that $T'x \subseteq Tx$ for all $x \in X$. Since T' is upper semicontinuous with compact-values on X, it follows from Lemma 3 that T'(X) is compact. Hence $T' \in U_c(X,Y) \subset KKM(X,Y)$ is compact. By (C1.2), for each $N \in \langle D \rangle$, $T'(\Gamma_N) \subseteq G(N)$. Then all the conditions for Theorem 1 are satisfied and it follows from Theorem 1 that $\overline{T'(X)} \cap \cap \{Gx : x \in D\} \neq \emptyset$.

THEOREM 2. Let (X, D) be a convex space, Y a Hausdorff space and $G : D \to 2^Y$, $T \in U_c^{\kappa}(X, Y)$ be set-valued maps satisfying the following

- (2.1) for each $N \in \langle D \rangle$, $T(\operatorname{Co} N) \subseteq G(N)$; and
- (2.2) for each $N \in \langle D \rangle$, and each $x \in N$, $Gx \cap T(\text{Co } N)$ is relatively closed in T(Co N).

Then, for each $N \in \langle D \rangle$, $T(\operatorname{Co} N) \cap \cap \{Gx : x \in N\} \neq \emptyset$.

PROOF: Let $\widetilde{N} \in \langle D \rangle$, and $Z = \operatorname{Co} \widetilde{N}$. Since $T \in U_c^{\kappa}(X, Y)$ and Z is compact, there exists $F \in U_c(Z, Y)$ such that $Fx \subseteq Tx$ for each $x \in Z$. As F is upper semicontinuous with compact values, it follows from Lemma 4 that F(Z) is compact and F is compact. Let $G_1 : \widetilde{N} \to 2^Y$ be given by $G_1x = Gx \cap F(Z)$ for $x \in \widetilde{N}$. Then for each $N \in \langle \widetilde{N} \rangle$,

[4]

 $\begin{array}{l} F(\operatorname{Co} N) = F(\operatorname{Co} N) \cap F(Z) \subseteq T(\operatorname{Co} N) \cap F(Z) \subseteq G(N) \cap F(Z) = G_1(N). \ \text{By (2.2),} \\ \text{for each } x \in \widetilde{N}, \ Gx \cap T(Z) = Ax \cap T(Z), \ \text{where } A : \widetilde{N} \to 2^Y, \ Ax \ \text{is closed for each } \\ x \in \widetilde{N}. \ \text{Hence for each } x \in \widetilde{N}, \ G_1x = Gx \cap F(Z) = G(x) \cap T(Z) \cap F(Z) = Ax \cap T(Z$

COROLLARY 2. Let X be a nonempty subset of a vector space, and $G: X \to 2^Y$, $T: \text{Co} X \to ka(Y)$ set-valued maps satisfying the following

- (C2.1) for each $N \in \langle X \rangle$, $T(\operatorname{Co} N) \subseteq G(N)$;
- (C2.2) for each $N \in X$, $T|_{CoN}$ is upper semicontinuous, where CoN is endowed with the Euclidean simplex topology; and
- (C2.3) for each $N \in \langle X \rangle$, and each $x \in N$, $Gx \cap T(\operatorname{Co} N)$ is relatively closed in $T(\operatorname{Co} N)$.

Then for each $N \in \langle X \rangle$, $T(\operatorname{Co} N) \cap \cap \{Gx : x \in N\} \neq \emptyset$.

PROOF: Let $\widetilde{X} \in \langle X \rangle$. By (C2.2), $(\operatorname{Co} \widetilde{N}, \widetilde{N})$ is a convex space and $T|_{\operatorname{Co} \widetilde{N}} \in V(\operatorname{Co} \widetilde{N}, Y) \subseteq U_c^{\kappa}(\operatorname{Co} \widetilde{N}, Y)$. Then all conditions of Theorem 2 are satisfied and Corollary 2 follows immediately from Theorem 2.

Applying Theorem 1, we generalise Fan [5, Theorem 6] and we improve [3, Theorem 8].

THEOREM 3. Let X be a convex space, Y a Hausdorff space and $S : X \to 2^{Y}$, $T \in KKM(X, Y)$ maps satisfying the following conditions:

- (3.1) for each compact subset C of X, $\overline{T(C)}$ is a compact subset of Y;
- (3.2) for each $x \in X$, Sx is compactly closed in Y;
- (3.3) for each $N \in \langle X \rangle$, $T(\operatorname{Co} N) \subseteq S(N)$; and
- (3.4) there exists a compact convex subset X_0 of X and

$$\bigcap \{Sx : x \in X_0\} \subseteq K.$$

Then $\overline{T(X)} \cap \cap \{Sx : x \in X\} \neq \emptyset$.

PROOF: Suppose that $\overline{T(X)} \cap \bigcap \{Sx : x \in X\} = \emptyset$. Since K is compact, there exists a finite subset $\{x_1, x_2, \ldots, x_n\}$ of X such that $K \subseteq (\overline{T(X)})^c \cup (\bigcup_{i=1}^n S^c x_i)$, where $S^c x = Y \setminus Sx$. By (3.4), $K^c \subseteq \bigcup_{x \in X_0} S^c x_i \subseteq (\bigcup_{x \in X_0} S^c x) \cup (\overline{T(X)})^c$. If we let $X_1 = \operatorname{Co}(X_0 \cup \{x_1, x_2, \ldots, x_n\})$, then X_1 is a compact convex subset of X and $Y = (\bigcup_{x \in X_1} S^c x) \cup (\overline{T(X)})^c$, that is, $\overline{T(X)} \cap \bigcap_{x \in X_1} Sx = \emptyset$. We define $F : X_1 \to 2^Y$ by $Fx = Sx \cap \overline{T(X_1)}, x \in X_1$.

485

Then (a) for each $x \in X_1$, Fx is a closed subset of $\overline{T(X_1)}$, (b) for each $N \in \langle X_1 \rangle$, $T(\text{Co } N) \subseteq F(N)$. Since $T \in KKM(X, Y)$, it follows from Lemma 6 and (3.1) that $T|_{X_1} \in KKM(X_1, Y)$ is compact. By Theorem 1, we have $\overline{T|_{X_1}(X_1)} \cap \{Sx : x \in X_1\} \neq \emptyset$. But $T|_{X_1}(X_1) \subseteq T(X)$, so we have $\overline{T(X)} \cap \cap \{Sx : x \in X_1\} \neq \emptyset$. This contradicts that $\overline{T(X)} \cap \bigcap \{Sx : x \in X_1\} = \emptyset. \text{ Therefore } \overline{T(X)} \cap \bigcap \{Sx : x \in X\} \neq \emptyset.$ Π

Theorem 3 improves [3, Theorem 8]. We prove Theorem 3 by applying Remark 2. Theorem 1, while [3, Theorem 8] is proved by applying the KKM property. From [3, Theorem 8] we only obtain the conclusion $\bigcap_{x \in X} Sx \neq \emptyset$.

COROLLARY 3. [5] In a topological vector space, let Y be a convex set and $\emptyset \neq$ $X \subset Y$. For each $x \in X$, let F(x) be a relatively closed subset of Y such that the convex hull of every finite subset $\{x_1, x_2, \ldots, x_n\}$ of X is contained in the corresponding union $\bigcup_{i=1}^{n} F(x_{i}).$ If there is a nonempty subset X_{0} of X such that the interaction $\bigcap_{x \in X_{0}} F(x)$ is compact, and X_0 is contained in a compact convex subset of Y, then $\bigcap_{x \in X} F(x) \neq \emptyset$.

PROOF: Take $T(x) = \{x\}$ and $K = \bigcap_{x \in X_0} F(x)$; then Corollary 3 follows immedi-Ο ately.

COROLLARY 4. Let X be a convex space, Y a Hausdorf space, and $S: X \to 2^Y$, $T \in KKM(X, Y)$ maps satisfying the following

- (C4.1) for each compact subset C of X, $\overline{T(C)}$ is compact;
- (C4.2) for each $x \in X$, Sx is compactly closed in Y;
- for each $N \in \langle X \rangle$, $T(\operatorname{Co} N) \subseteq S(N)$; and (C4.3)
- (C4.4)there is a nonempty subset X_0 of X such that X_0 is contained in a compact convex subset X_1 of X and $\bigcap_{x \in X_0} Sx$ is a nonempty compact subset of Y.

Then $\overline{T(X)} \cap \bigcap \{Sx : x \in X\} \neq \emptyset$.

PROOF: If we take $K = \bigcap_{x \in X_0} Sx$ in Theorem 3, then Corollary 4 follows immedi-0 ately.

Let X be a convex space, Y a Hausdorff space, $S: X \to 2^{Y}$, THEOREM 4. $T \in U_c^{\kappa}(X,Y)$ satisfying

- (4.1) for each $x \in X$, Sx is compactly closed in Y;
- for each $N \in \langle X \rangle$, $T(\operatorname{Co} N) \subseteq S(N)$; and (4.2)
- (4.3)there exists a nonempty subset K of Y and a nonempty subset X_0 of X such that X_0 is contained in a compact convex subset X_1 of X and $\bigcap \{Sx : x \in X_0\} \subseteq K.$

Then $K \cap \overline{T(X)} \cap \bigcap \{Sx : x \in X\} \neq \emptyset$.

A KKM type theorem

PROOF: Let $N = \{x_1, x_2, ..., x_n\}$ be any finite subset of X, then it follows from (4.3) that $X_2 = \operatorname{Co}(X_1 \cup N)$ is a compact convex subset of X. By the assumption $T \in U_c^{\kappa}(X, Y)$, there exists $T' \in U_c(X_2, Y)$ such that $T'x \subseteq Tx$ for all $x \in X_2$ and $T'(X_2)$ is a compact subset of Y. Thus $T' \in U_c(X_2, Y) \subseteq KKM(X_2, Y)$ is compact. Then all the conditions of Theorem 1 are satisfied. It follows from Theorem 1 that $\overline{T'(X_2)} \cap \cap \{Sx : x \in X_2\} \neq \emptyset$. Hence $\overline{T'(X_2)} \cap \cap \{Sx \cap \cap \{Sx : x \in X_1\} : x \in N\} \neq \emptyset$. But $X_0 \subset X_1$, hence $\cap \{Sx : x \in X_1\} \subseteq \cap \{Sx : x \in X_0\} \subseteq K$. This shows that $\cap \{Sx \cap \overline{T'(X_2)} \cap K : x \in N\} \neq \emptyset$. Since for each $x \in X$, Sx is compactly closed in Y and $\overline{T'(X_2)}$ is compact, it follows that $\{Sx \cap \overline{T'(X_2)} \cap K : x \in X\}$ is a family of

closed sets with the finite intersection property in the compact set $\overline{T'(X_2)} \cap K$. Therefore $\cap \{Sx \cap \overline{T'(X_2)} \cap K : x \in X\} \neq \emptyset$. Since $\overline{T'(X_2)} \subseteq T(X_2) \subseteq T(X)$, it follows that $K \cap \overline{T(X)} \cap \cap \{Sx : x \in X\} \neq \emptyset$.

The following theorem generalises a fixed point theorem of Tarafdar [15].

THEOREM 5. Let X be a convex space, Y a Hausdorff topological space, $T \in KKM(X,Y)$, $F: Y \to 2^X$ be set-valued maps satisfying

- (5.1) for each compact set C of X, $\overline{T(C)}$ is compact;
- (5.2) for each $y \in T(X)$, Fy is a nonempty convex subset of X;
- (5.3) for each $x \in X$, $F^{-}(x)$ contains a compactly open subset O_x of Y;
- (5.4) $\bigcup_{x \in X} O_x = Y$; and
- (5.5) there is a nonempty subset $X_0 \subset X$ such that X_0 is contained in a compact convex subset X_1 of X and the set $M = \bigcap_{x \in X_0} O_x^c$ is compact (M may be empty) and O_x^c denotes the complement of O_x in Y.

Then there exist $\overline{x} \in X$, and $\overline{y} \in T(\overline{x})$ such that $\overline{x} \in F(\overline{y})$.

PROOF: For each $x \in X$, we let $Sx = O_x^c$, then $S : X \to 2^Y$ and for each $x \in X$. Sx is compactly closed in Y. There are two cases:

CASE (1) $M = \emptyset$. In this case, if we take $X = X_0$ in Theorem 1, we have a finite subset $A = \{x_1, x_2, \ldots, x_n\}$ of X_0 such that $T(\operatorname{Co} A) \not\subseteq \bigcup_{i=1}^n Sx_i$. This means that there exist $x_0 = \sum_{i=1}^n \lambda_i x_i, \lambda_i \ge 0, i = 1, 2, \ldots, n, \sum_{i=1}^n \lambda_i = 1$ and $y_0 \in Tx_0$ such that $y_0 \notin \bigcup_{i=1}^n Sx_i = \bigcup_{i=1}^n O_{x_i}^c$. Thus $y_0 \in O_{x_i} \subseteq F^-(x_i)$ for all $i = 1, 2, \ldots, n$. Hence $x_i \in F(y_0)$ for all $= 1, 2, \ldots, n$. But by (3.1), Fy_0 is convex, so we have $x_0 = \sum_{i=1}^n \lambda_i x_i \in Fy_0$ and Theorem 5 is proved for the case $M = \bigcap_{x \in X_0} O_x^c = \emptyset$.

CASE (2) $M \neq \emptyset$. We want to show that there exists a finite subset $A = \{x_1, x_2, \dots, x_n\}$ of X such that $T(\text{Co } A) \not\subseteq \bigcup_{i=1}^n Sx_i$. Suppose that for each finite subset $B = \{u_1, u_2, \dots, u_m\}$ of X, $T(\text{Co } B) \subseteq \bigcup_{i=1}^m Su_i$. Then it follows from Corollary 4 that $\overline{T(X)} \cap \cap \{Sx : x \in X\} \neq \mathbb{C}$

[8]

Π

Ø. Hence $\bigcap_{x \in X} O_x^c = \bigcap_{x \in X} Sx \neq \emptyset$, therefore $\bigcup_{x \in X} O_x \neq Y$, which contradicts to the assumption (5.4) of this theorem. This shows that there exists a finite subset $A = \{x_1, x_2, \ldots, x_n\}$ of X such that $T(\operatorname{Co} A) \not\subseteq \bigcup_{i=1}^n Sx_i$. As in case (1), there exist $x_0 = \sum_{i=1}^n \lambda_i x_i, \ \lambda_1 \geq 0$, $i = 1, 2, \ldots, n$, $\sum_{i=1}^n \lambda_i = 1$ and $y_0 \in Tx_0$ such that $y_0 \notin \bigcup_{i=1}^n Sx_i$. From this relation, we get that $x_0 \in Fy_0$ and $y_0 \in Tx_0$.

Theorem 5 also gives a sufficient conditions for the existence of fixed points for the composition of two set-valued maps.

COROLLARY 5. Under the assumption of Theorem 5, there exists $x_0 \in X$ such that $x_0 \in FTx_0$.

PROOF: It follows from Theorem 5, that there exist $x_0 \in X$, $y_0 \in Tx_0$ such that $x_0 \in Fy_0$. Hence $x_0 \in FTx_0$.

COROLLARY 6. Let X be a nonempty compact convex subset of a topological vector space, $T \in KKM(X, X)$ and $F: X \to 2^X$ be set-valued maps satisfying

- (C6.1) for each $y \in X$, $F^{-}(y)$ contains a relatively open subset O_y of X (O_y could be empty);
- (C6.2) for each $x \in X$, Fx is a nonempty subset of X; and

$$(C6.3) \quad \bigcup_{y \in X} O_y = X$$

Then there exists point $x_0 \in X$, $y_0 \in Tx_0$ such that $x_0 \in Fy_0$.

PROOF: Since X is compact and $\bigcup_{y \in X} O_y = X$, it follows that condition (5.5) holds automatically and Corollary 6 follows immediately from Theorem 5.

COROLLARY 7. [15] Let X be a nonempty compact convex subset of a topological vector space. Let $F: X \to 2^X$ be set-valued maps such that

- (C7.1) for each $x \in X$, Fx is a nonempty convex subset of X;
- (C7.2) for each $y \in X$, $F^{-}(y)$ contains a relatively open subset O_y of X (O_y may be empty for some y);
- (C7.3) $\bigcup_{y \in X} O_x = X$; and
- (C7.4) there exists a nonempty subset $X_0 \subset X$ such that X_0 is contained in a compact convex subset X_1 of X and $M = \bigcap_{x \in X_0} O_x^c$ is compact (M may be empty).

Then there exists a point $x_0 \in X$ such that $x_0 \in Fx_0$.

PROOF: If we define $T: X \to 2^X$ by $Tx = \{x\}$ and take X = Y in Theorem 5, we prove Corollary 7.

COROLLARY 8.[2] Let X be a nonempty compact convex subset of a topological vector space. Let $F: X \to 2^X$ be set-valued maps such that

(C8.1) for each $y \in X$, $F^{-}(y)$ is open; and

(C8.2) for each $x \in X$, Fx is a nonempty convex subset of X.

Then there is $x_0 \in X$ such that $x_0 \in Fx_0$.

PROOF: Since for each $x \in X$, Fx is a nonempty subset of X, there exists $y \in X$ such that $y \in Fx$. Hence $x \in F^-y$. This shows that $X = \bigcup_{y \in X} F^-y$. If we define $T: X \to 2^Y$ by $Tx = \{x\}$ for $x \in X$, then all the conditions of Corollary 7 are satisfied and Corollary 8 follows immediately from Corollary 7.

REMARK 3. Corollary 4 can be proved by using Theorem 5. Suppose that all the conditions of Corollary 4 are satisfied; we want to show that $\overline{T(X)} \cap \bigcap \{Sx : x \in X\} \neq \emptyset$. Suppose on the contrary that $\overline{T(X)} \cap \bigcap \{Sx : x \in X\} = \emptyset$. We define $H : \overline{T(X)} \to 2^X$ by $Hy = \{x \in X : y \notin Sx\}$. For each $x \in X$, we let $S^c x = Y \setminus Sx$ and $O_x = S^c x$. Clearly for each $y \in \overline{T(X)}$, $y \in \bigcup_{x \in X} S^c x$, hence $y \notin Sx_0$ for some $x_0 \in X$ and H(y) is a nonempty subset of X. For each $x \in X$, $H^{-}(x) = \left\{ y \in \overline{T(X)} : y \notin Sx \right\} = S^{c}x \cap \overline{T(X)} = O_{x} \cap \overline{T(X)}$ is compactly open in $\overline{T(X)}$. Now we denote $\widehat{O}_x = O_x \cap \overline{T(X)}$. Let $F: \overline{T(X)} \to 2^X$ be defined by Fy = Co[Hy] for each $y \in \overline{T(X)}$. Then for each $y \in \overline{T(X)}$, Fy is a nonempty convex subset of X and for each $x \in X$, $F^{-}(x) \supseteq H^{-}(x) = \widehat{O}_{x}$. Since $\overline{T(X)} \cap \bigcap \{Sx : x \in X\} = \emptyset$, it follows that $\overline{T(X)} \subset \bigcup_{x \in X} S^{c}x$ and $\overline{T(X)} = \bigcup_{x \in X} [S^{c}x \cap X]$ $\overline{T(X)} = \bigcup_{x \in X} \left[O_x \cap \overline{T(X)} \right] = \bigcup_{x \in X} \widehat{O}_x.$ We denote by \widehat{O}_x^c the complement of \widehat{O}_x in $\overline{T(X)}$. By (C4.2) and (C4.4), $\bigcap_{x \in X_0} \hat{O}_x^c = \bigcap_{x \in X_0} \left[\overline{T(X)} \setminus \hat{O}_x \right] = \overline{T(X)} \cap \bigcap_{x \in X_0} O_x^c = \overline{T(X)} \cap \bigcap_{x \in X_0} Sx \text{ is }$ compact in $\overline{T(X)}$. Then it follows from Theorem 5 that there exists $\overline{x} \in X$, $\overline{y} \in T(\overline{x})$ such that $\overline{x} \in F\overline{y} = \text{Co}[H\overline{y}]$. This implies there exists $A = \{x_1, x_2, \dots, x_n\} \subseteq H(\overline{y}), \lambda_i \ge 0, i = 1, 2, \dots, n, \sum_{i=1}^n \lambda_i = 1$ such that $\overline{x} = \sum_{i=1}^n \lambda_i x_i$. Since $x_i \in H(\overline{y})$ for all $i = 1, 2, \dots, n$, it follows that $\overline{y} \notin Sx_i$ for all i = 1, 2, ..., n. Therefore $T(\operatorname{Co} A) \not\subseteq \bigcup_{i=1}^n Sx_i$. This contradicts the assumption (C4.3) of Corollary 4. Hence $\overline{T(X)} \cap \bigcap \{Sx : x \in X\} \neq \emptyset$ and Corollary 4 is proved.

THEOREM 6. Let X be a convex space, Y a Hausdorff topological space, $T \in U_c^{\kappa}(X,Y)$, $F: Y \to 2^X$ be set-valued maps satisfying

- (6.1) for each $y \in T(X)$, Fy is a nonempty convex subset of X;
- (6.2) for each $x \in X$, $F^{-}(x)$ contains an compactly open subset O_x of Y;
- (6.3) $\bigcup_{y \in X} O_x = Y; \text{ and }$
- (6.4) there exists a nonempty subset X₀ ⊆ X such that X₀ is contained in a compact convex subset X₁ of X and the set M = ∩ O^c_x is compact (M may be empty) and O^c_x denotes the complement of O_x in Y.

Then there exist $\overline{x} \in X$ and $\overline{y} \in T\overline{x}$ such that $\overline{x} \in F\overline{y}$.

PROOF: For each $x \in X$, we let $Sx = O_x^c$. Then $S : X \to 2^Y$ and for each $x \in X$. Sx is compactly closed in Y. There are two cases.

CASE (1) $M = \emptyset$. In this case, we use Corollary 1 and follow the same argument as in Theorem 5.

CASE (2) $M \neq \emptyset$. In this case, we use Theorem 4 and follow the same argument as in Theorem 5.

REMARK 4. In Theorem 5, we assume that $T \in KKM(X, Y)$ and $\overline{T(C)}$ is compact for each compact set C of X, but in Theorem 6, we assume only that $T \in U_c^{\kappa}(X, Y)$.

THEOREM 7. Let $(X, D; \Gamma)$ be a G-convex space, Y a Hausdorff space, and $T : X \to 2^Y$ be compact and closed and $G : D \to 2^Y$. Suppose that

- (7.1) for each $x \in D$, Gx is compactly closed;
- (7.2) for any $N \in \langle D \rangle$, $T(\Gamma_N) \subseteq G(N)$; and
- (7.3) there exist a nonempty compact subset K of Y and for each $N \in \langle D \rangle$, a compact, G-convex subset L_N of X containing N such that $T(L_N) \cap \bigcap \{Gx : x \in L_N \cap D\} \subset K$, and $T \in G$ -KKM (L_N, Y) .

Then $\overline{T(X)} \cap K \cap \bigcap \{Gx : x \in D\} \neq \emptyset$.

PROOF: Suppose that $\overline{T(X)} \cap K \cap \bigcap \{Gx : x \in D\} = \emptyset$. Let $Sx = Y \setminus Gx$, then $\overline{T(X)} \cap K \subset S(D)$. Since $\overline{T(X)} \cap K$ is compact and for each $x \in D$, Sx is compactly open, it follows that there exists $N \in \langle D \rangle$ such that $\overline{T(X)} \cap K \subseteq S(N)$. By (7.3), there exists a compact G-convex subset L_N of X containing N such that $T(L_N) \setminus K \subseteq S(L_N \cap D)$. Hence $T(L_N) \subseteq S(L_N \cap D)$. Since T is compact and closed, it follows from Lemma 2 that T is upper semicontinuous We want to show that for each $x \in X$, Tx is compact. Let $y \in \overline{T(x)}$, then there exists a net $\{y_{\alpha}\}$ in Tx such that $y_{\alpha} \to y$. Since T is closed, it follows that $y \in Tx$ and Tx is closed. By assumption T is compact, hence $\overline{T(X)}$ is a compact set. But $Tx \subseteq T(X)$ and Tx is closed for each $x \in X$. This shows that Tx is compact for each $x \in X$. Since T is upper semicontinuous with compact values and L_N is compact, it follows from Lemma 3 that $T(L_N)$ is compact. Therefore $\overline{T(L_N)} = T(L_N) \subseteq S(L_N \cap D)$. Thus $\overline{T(L_N)} \cap \bigcap \{Gx : x \in L_N \cap D\} = \emptyset$. It follows from Theorem 1 with $(T|_{L_N}, G|_{L_N \cap D}, L_N, L_N \cap D)$ replacing (T, G, X, D), that there exists $M \in \langle L_N \cap D \rangle \subseteq \langle D \rangle$ such that $T(\Gamma_M) \not\subseteq G(M)$. This contradicts (7.2). Therefore D $\overline{T(X)} \cap K \cap \bigcap \{Gx : x \in D\} \neq \emptyset.$

COROLLARY 9. [12] Let $(X, D; \Gamma)$ be a G-convex space, Y a Hausdorff space, and $T \in U_c^{\kappa}(X, Y)$. Let $G: D \to 2^Y$ be a map such that

- (C9.1) for each $x \in D$, Gx is compactly closed in Y;
- (C9.2) for any $N \in \langle D \rangle$, $T(\Gamma_N) \subseteq G(N)$; and

490

Ο

- (C9.3) there exist a nonempty compact subset K of Y and for each $N \in \langle D \rangle$, a compact G-convex subset L_N of X containing N such that $T(L_N) \cap \cap \{Gx : x \in L_N \cap D\} \subset K$.

Then $\overline{T(X)} \cap K \cap \bigcap \{Gx : x \in D\} \neq \emptyset$.

PROOF: Since $T \in U_c^{\kappa}(X,Y) \subset G-KKM(X,Y)$, it follows from Lemma 6 that $T|_{L_N} \in G-KKM(L_N,Y)$ and the conclusion of Corollary 9 follows from Theorem 7.

4. GENERALISED G-KKM THEOREMS

As a consequence of the generalised G-KKM theorem, we prove a generalisation of the Ky Fan matching theorem.

THEOREM 8. Let $(X, D; \Gamma)$ be a G-convex space, Y a Hausdorff space, $S : D \to 2^{Y}$ and $T \in G-KKM(X, Y)$ be compact. Suppose that

- (8.1) for each $x \in D$, Sx is compactly open in Y; and
- $(8.2) \quad \overline{T(X)} \subset S(D).$

Then there exists $M \in \langle D \rangle$ such that $T(\Gamma_M) \cap \bigcap \{Sx : x \in M\} \neq \emptyset$.

PROOF: Suppose that the conclusion of Theorem 8 is false. Then for any $N \in \langle D \rangle$, $T(\Gamma_N) \cap \bigcap \{Sx : x \in N\} = \emptyset$. Therefore $T(\Gamma_N) \subseteq \bigcup \{Gs : s \in N\} = G(N)$, where $Gx = Y \setminus Sx$. By (8.1), for each $x \in D$, Gx is compactly closed in Y. Then all the conditions of Theorem 1 are satisfied. It follows from Theorem 1 that $\overline{T(X)} \cap \bigcap \{Gx : x \in D\} \neq \emptyset$. Hence $\overline{T(X)} \not\subseteq S(D)$, but this contradicts (8.2). Thus there exists $M \in \langle D \rangle$ such that $T(\Gamma_M) \cap \bigcap \{Sx : x \in M\} \neq \emptyset$.

COROLLARY 10. [8] Let D be a nonempty subset in a compact convex space X, Y a topological space, and $A: D \to 2^{Y}$ a set-valued map satisfying

- (C10.1) for each $x \in D$, Ax is compactly open in Y; and
- (C10.2) A(D) = Y.

Then for any $x \in C(X, Y)$, there exist a finite subset $\{x_1, x_2, \ldots, x_n\}$ of X and $x_0 \in Co\{x_1, \ldots, x_n\}$ such that $sx_0 \in \bigcap_{i=1}^n Ax_i$.

PROOF: Since X is compact and $s \in C(X, Y)$, it follows that s(X) is compact. Hence $s \in C(X, Y) \subseteq KKM(X, Y)$ is compact. By (C10.2), $\overline{s(X)} = s(X) \subseteq Y \subseteq A(D)$. It follows from Theorem 8, that there exist a finite subset $\{x_1, x_2, \ldots, x_n\}$ of X and $x_0 \in Co\{x_1, \ldots, x_n\}$ such that $sx_0 \in \bigcap_{i=1}^n Ax_i$.

COROLLARY 11. [5] In a topological vector space, let Y be a convex set and let X be a nonempty subset of Y. For each $x \in X$, let Ax be relative open in Y such that $\bigcup_{x \in X} Ax = Y$. If X is contained in a compact convex subset C of Y, then there exist a nonempty, finite subset $\{x_1, x_2, \ldots, x_n\}$ of X and $x_0 \in \{x_1, \ldots, x_n\}$ such that $x_0 \in \bigcap_{i=1}^n Ax_i$.

[12]

PROOF: Let $Tx = \{x\}$, then T(C) = C is compact, and T is compact. $\overline{T(C)} = C \subseteq Y \subseteq A(X)$. Then it follows from Theorem 8 that there exist a finite subset $\{x_1, x_2, \ldots, x_n\}$ of X and $x_0 \in \{x_1, \ldots, x_n\}$ such that $x_0 \in \bigcap_{i=1}^n Ax_i$.

REMARK 5. Theorems 1 and 8 are equivalent.

We saw that Theorem 8 can be proved by using Theorem 1. Now we prove Theorem 1 from Theorem 8. Suppose that $\overline{T(X)} \cap \bigcap \{Gx : x \in D\} = \emptyset$. Let $Sx = Y \setminus Gx$. Then Sx is compactly open and $\overline{T(X)} \subset S(D)$. It follows from Theorem 8, that there exists $M \in \langle D \rangle$ such that $T(\Gamma_M) \cap \bigcap \{Sx : x \in M\} \neq \emptyset$. Hence $T(\Gamma_M) \not\subseteq G(M)$. This contradicts (1.2). Thus the conclusion of Theorem 1 holds.

THEOREM 9. Let $(X, D; \Gamma)$ be a G-convex space, Y a Hausdorff space and T : $X \to 2^Y$ be compact and closed. Suppose that

- (9.1) for each $x \in D$, Sx is compactly open;
- (9.2) there exists a nonempty compact subset K of Y such that $\overline{T(X)} \subset S(D)$; and
- (9.3) for each $N \in \langle D \rangle$, there exists a compact G-convex subset L_N of X containing N such that $T(L_N) \setminus K \subseteq S(L_N \cap D)$, and $T \in G$ -KKM (L_N, Y) .

Then there exists $M \in \langle D \rangle$ such that $T(\Gamma_M) \cap \cap \{Sx : x \in M\} \neq \emptyset$.

PROOF: Suppose that for any $N \in \langle D \rangle$. $T(\Gamma_N) \cap \bigcap \{Sx : x \in N\} = \emptyset$. Let $Gx = Y \setminus Sx$. Then by applying Corollary 9 and following an argument as in Theorem 8, we prove Theorem 9.

References

- J.P. Aubin, A. Cellina, *Differential inclusions* (Springer-Verlag, Berlin, Heidlberg, New York, 1984).
- [2] F.E. Browder, 'On nonlinear monotone operators and convex set in Banach space', Bull. Amer. Math. Soc. 71 (1965), 780-785.
- [3] T.H. Chang and C.L. Yen, 'KKM property and fixed point theorems', J. Math. Anal. Appl. 203 (1996), 224-235.
- [4] K. Fan, 'A generalization of Tychonoff's fixed point theorem', Math. Ann. 142 (1961), 306-310.
- [5] K. Fan, 'Some properties of convex sets related to fixed point theorem', Math. Ann. 266 (1985), 519-537.
- [6] B. Knaster, K. Kuratowski and S. Mazurkiewicz, 'Ein Beweis Fixpunktsatzes fur n-dimensionale Simplexe', Fund. Math. 1 (1929), 132–137.
- [7] M. Lassonde, 'On the use of KKM multifunctions in fixed point theory and related topics', J. Math. Anal. Appl. 97 (1983), 151-201.
- [8] S. Park, 'Generalizations of Ky Fan's matching theorems and their applications', J. Math. Anal. Appl. 141 (1989), 164-176.

[13]	A KKM type theorem 493
[9]	S. Park, 'A unfied approach to generalizations of the KKM-type theorems related to acyclic maps', Numer. Funct. Anal. Optim. 15 (1994), 105-119.
[10]	S. Park, 'Foundations of the KKM theory via coincidence of composites of upper semi- continuous maps', J. Korean Math. Soc. 31 (1994), 493-519.
[11]	S. Park, 'On minimax inequalities on spaces having certain contractible subsets', Bull. Austral. Math. Soc. 47 (1993), 25-40.
[12]	S. Park and H. Kim, 'Coincidence theorems for admissible multifunctions on generalized convex spaces', J. Math. Anal. Appl. 197 (1996), 173-187.
[13]	S. Park and H. Kim, 'Fundations of the KKM theory on generalized convex spaces', J. Math. Anal. Appl. 209 (1997), 551-571.
[14]	N. Shioji, 'A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem', Proc. Amer. Math. Soc. 111 (1991), 187-195.
[15]	E. Tarafdar, 'A fixed point theorem equivalent to the Fan-Knaster-Kuratwski-Mazurkiewicz theorem', J. Math. Anal. Appl. 128 (1987), 475-479.
[16]	E. Tarafdar, 'On nonlinear variational inequalities', Proc. Amer. Math. Soc. 67 (1977), 95–98.
Department of Mathematics National Changhua University of Education Changhua Taiwan Republic of China	