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A KKM TYPE THEOREM AND ITS APPLICATIONS

LAI-JIU LIN

In this paper we establish a generalised KKM theorem from which many well-known
KKM theorems and a fixed point theorem of Tarafdar are extended.

1. INTRODUCTION

In [6], Knaster, Kuratoaski and Mazurkiewicz established the well known KKM
theorem on the closed cover of a simplex. In [4], Ky Fan generalised the KKM theorem
to a subset of any topological vector space. There are many generalisations and many
applications of this theorem.

In this paper, we establish a generalised KKM theorem on a generalised convex
space as follows:

THEOREM 1 . Let (X, D; T) be a G-convex space, Y a Hausdorff space and T e
G-KKM{X, Y) be compact, and G : D -> 2Y. Suppose that

(1.1) for each x € D, Gx is compactly closed in Y; and

(1.2) for any N € (D), T(TN) C G(N).

ThenT(X)nr\{Gx : z € £>} ^ 0.

Applying Theorem 1, we extend many well-known generalised KKM theorem, and
we give a unified treatment of these theorems (see [5, 7, 9, 10, 12, 14, 15, 16]). We
also obtain some equivalent forms of Theorem 1 and extend a fixed point theorem of
Tarafdar [15].

2. PRELIMINARIES

Let X, Y and Z be nonempty sets; 2Y will denote the power set of Y. Let F : X -» 2 y

be a set-valued map, AC X, B CY and y € Y. We define

F~(B) = {x e X : F(x) n B # 0}, F~{y) = {x e X : y £ F(x)},

F(A) = \j{F(x) :X€A], Gr(F) = {(x,y) : y € F(x),x G x).
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For topological spaces X and Y, a map F : X -* 2Y is said to be upper semicontin-
uous if the set F~(A) is closed in X for each closed subset A of Y. F is said to be closed
if GT(F) is a closed subset of X x Y, and F is said to be compact if F(X) is a compact
subset of Y. A subset B of Y is said to be compactly closed (compactly open) if for each
compact subset K of Y, the set B n K is closed (open) in K.

Given two set-valued maps F : X ->• 2y, G : Y -»• 2Z the composite G F : X ->• 2Z is
denned by GF(x) = G(F(X)J for a; G X. Let X be a class of set-valued maps. We write
X(X, Y) = {T : X -> 2 y | T e X } , J t ( J f , n = { U « - i - T , : 7} G X, i = l , 2 , . . . , n
for some n}, that is, the set of finite composites of maps in X.

The following notion of an abstract class of set-valued maps was introduced by Park
[10]. A class U of set-valued maps is one satisfying the following:

(i) U contains the class C of single-valued continuous functions;

(ii) each T € Uc is upper semicontinuous with compact values; and

(iii) for each polytope P, each T e UC(P, P) has a fixed point.

We write U?{X,Y) = {T : X -> 2Y\ for any compact subset K of X, there is
F e UC(K,Y) such that F(x) C T(x) for each x € K}. Each F 6 U£ is said to be
admissible.

Let X be a convex set in a vector space and D a nonempty subset of X. Then (X, D)
is called a convex space if the convex hull of any nonempty finite subset of D is contained
in X and X has the topology that induces the Euclidean topology on the convex hull of its
finite subsets. For a nonempty subset D of X, let (D) denote the set of all nonempty finite
subsets of D. Let A n denote the standard n-simplex with vertices ei, e 2 , . . . , en+i, where

n+l
e, is the ith unit vector in ft""1"1, that is An = | u G ft"+1 : u = ^ Ai(u)ej, Aj(u) ^ 0,

71+1

(«) = l}.

A generalised convex space [12] or a G-convex space (X, D; F) consists of a topolog-
ical space X, a nonempty subset D of X and a function F : (D) -> 2* with nonempty
values such that

1. for each A,B € (D), A<zB implies F(A) C F(S) and

2. for each A e (D), with |;4| = n + 1, there exists a continuous function
4>A : A n ->• F(J4) such that J e (A) implies ^ ( A j ) C F(J), where Aj
denotes the face of A n corresponding to J € (A).

We see from [12] that a convex subset of a topological vector space, Lassonde's
convex space, 5-contractible space, H-spa.ce, a metric space with Michael's convex struc-
ture, Komiya's convex space, Bielawski's simplicial convexity, Joo's pseudoconex space
are examples of G-convex spaces.

For a G-convex space (X,D;T), a subset C of X is said to be G-convex if for each
A e (D), ACC implies T(A) C C. We sometimes write T(A) - YA for each A € (D).

1=1
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DEFINTION 1: Let (X, D; T) be a G-convex space, T : X -* 2 y and S : D -> 2 y

be two set-valued maps such that T(TA) C S(A) for each A 6 (D). Then we call 5 a
generalised G-KKM map with respect to T. Let T : X —> 2 y be a set-valued map. T is
said to have the G-KKM property if whenever S : D -¥ 2Y is any generalised G-KKM
map with respect to T, then the family {Sx : x € D} has the finite intersection property.
We let G-KKM (X,Y) = {T : X -> 2 y | T has the G-KKM property}. If (X, D) is a
convex space, and TA = Co ,4 is the convex hull of 4 , then G-KKM(X, Y) = KKM (X, Y)
as defined in [3].

LEMMA 1 . Let (X,D;T) be a G-convex space, and Y a Hausdorff space. Then
U?{X,Y)CG-KKM(X,Y)

PROOF: Lemma 1 follows immediately from the corollary of [13, Theorem 2] and
Definition 1. D

LEMMA 2 . [1] Let Y be a compact space and F : X -> 2y be closed. Then F is
upper semicontinuous.

LEMMA 3 . [1] Let F : X —> 2y be upper semicontinuous with compact values
from a compact space X to Y. Then F(X) is compact.

LEMMA 4 . [1] Let X -»• 2 y be upper semicontinuous with closed values. Then
F is closed.

LEMMA 5 . [3] Let X be a convex subset of a linear space, and Y be a topological
space. Then T € KKM(X,Y) if and only ifT\P € KKM{P,Y) for each polytope P in
X.

LEMMA 6 . Let X be a convex subset of a linear space, Y a topological space, A
a convex subset ofX, and T € KKM{X,Y). Then T\A € KKM{A,Y).

PROOF: Let P be any polytope in A. Since T € KKM(X, Y), it follows from
Lemma 5 that T\P € KKM{P, Y). But [T\A)\P = T\P e KKM(P, Y). Again by applying
Lemma 5, T\A € KKM{A, Y). D

A nonempty topological space is acyclic if all its reduced Cech homology groups
over rationals vanish. In particular, any contractible space is acyclic, any convex or star-
shaped space is acyclic. For a convex space Y, k(Y) denotes the set of all nonempty
compact convex subsets of Y, ka(Y) denotes the set of all compact acyclic subsets of Y
and V(X, Y) = <T | T : X -» ka(Y) is upper semicontinuous}. Throughout this paper,
all topological spaces are assumed to be Hausdorff.

3. MAIN RESULTS

We prove a generalised G-KKM theorem which gives a unified approach to KKM-
type theorems.
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THEOREM 1 . Let (X, D; T) be a G-convex space, Y a Hausdorff space and T G
G-KKM(X, Y) be compact, G : D -> 2Y. Suppose that

(1.1) for each x € D, Gx is compactly closed in Y; and

(1.2) for any TV G (D), T{rN) C G(TV).

Then T(X) n n{Gx : i 6 D } / f ! .

PROOF: Since T is compact, there exists a compact set if of Y such that T(X) C K.
From this, we see that T(X) is compact. For each x € D, let Sx = T(X) n Gx, then it
follows from (1.1) that Sx is closed in T(X) for each x e D. By (1.2), we see that for any
TV G (£>), T{TN) = T(rN) n Tpf) C G(N) n T(X) - S(N). Hence 5 is G-.O-M with
respect to T. It follows that {Sx : x G D} = {Sx : x G Z)} has the finite intersection
property. Since T(X) is compact and {Sx : i 6 D } i s a family of closed subsets in T(X),
we have f]{Sx : i e D } / 9 . Therefore T(X) D fl{Gx : x G £>} ̂  0. D

REMARK 1. In Theorem 1, if the condition T € G-KKM (X, Y) is compact is replaced
by the condition that T e U£(X,Y) and X is compact, then we obtain the following
corollary.

COROLLARY 1. Let (X, D; T) be a compact G-convex space, Y a Hausdorff
space, and T G U?(X,Y). Suppose that

(Cl.l) for each x G D, Gx is compactly closed in Y; and

(C1.2) for each TV G (D), T(TN) C G{N).

Then T{X) n D{Gx : x G D} ^ 0.

PROOF: Since X is compact and T € t/c"(X,r), there exists 7" G C/c(X,y) such
that T'x C Tx for all x G X. Since T" is upper semicontinuous with compact-values on
X, it follows from Lemma 3 that T'(X) is compact. Hence V G UC(X, Y) c KKM{X, Y)
is compact. By (Cl.2), for each N G (D), T'(TN) C G(N). Then all the conditions for
Theorem 1 are satisfied and it follows from Theorem 1 that T'(X)nf){Gx : x G D) ± 0.
Therefore T(X) n D{Gx : x G £>} ̂  0. D

THEOREM 2. Let (X, D) be a convex space, Y a Hausdorff space and G : D —¥ 2Y,

T G U£(X, Y) be set-valued maps satisfying the following

(2.1) for each N G (D), T(CoN) C G(N); and

(2.2) for each TV G (D), and each x G TV, Gx n T(CoTV) is relatively closed in
T(CoTV).

Then, for each TV G <D), T(Co TV) D fl{Gx : x G TV} ^ 0.

PROOF: Let TV G (D), and Z = Co TV. Since T G ^"(A", K) and Z is compact, there
exists F G UC{Z,Y) such that Fx C Tx for each x € Z. As F is upper semicontinuous
with compact values, it follows from Lemma 4 that F(Z) is compact and F is compact.
Let d : TV -> 2Y be given by d x = Gx nF(Z) for x G TV. Then for each TV G (TV),
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F(CoN) = F(£oN) n F(Z) C T(CoiV) n F(Z) C G{N) n F(Z) = Gi(JV). By (2.2),
for each x G N, Gx n T(Z) = Ax D T(Z), where ,4 : TV -> 2 y , Ac is closed for each
xeN. Hence for each xeN, Gxx = GxH F{Z) = G{x) n T(Z) n F(Z) = Ax D T(Z) D
F(Z) = i4i n F(Z) is closed in V. This shows that for each x € N, G\X is compactly
closed in Y. We see F G UC(Z,F{Z)) C ff*W(Z,F(Z)). Replacing (D ,X ,y ,T ,G) by

),Z,F(Z),F,d) in Theorem 1, shows that F{Z)nf){G1x : x G N} ± 0. This implies

n P\{Gx :xeN}^<D. Since TV G (D) is arbitary, this completes the proof. D

COROLLARY 2 . Let X be a nonempty subset of a vector space, and G : X —> 2Y,

T : Co X —> ka(Y) set-valued maps satisfying the following

(C2.1) for each N € {X), T(CoN) C G(N);

(C2.2) for each N g X, T | C O N is upper semicontinuous, where CoN is endowed

with the Euclidean simplex topology; and

(C2.3) for each N € (X), and each x € N, Gxd T(CoN) is relatively closed in
T(CoAT).

Then for each N G (X), T(Co N) n C\{Gx : x G N} # 0.

P R O O F : Let X G (X). By (C2.2), (CoiV,]v) is a convex space and T | C o ^ G

v(CoN, y ) C [/C
K (Co JV, y ) . Then all conditions of Theorem 2 are satisfied and Corol-

lary 2 follows immediately from Theorem 2. D

Applying Theorem 1, we generalise Fan [5, Theorem 6] and we improve [3, Theorem

8].

THEOREM 3 . Let X be a convex space, Y a Hausdorff space and S : X -» 2Y,
T € KKM(X, Y) maps satisfying the following conditions:

(3.1) for each compact subset C of X, T(C) is a compact subset ofY;

(3.2) for each x € X, Sx is compactly closed in Y;

(3.3) for each N G (X), T(Co N) C S{N); and

(3.4) there exists a compact convex subset Xo of X and

f]{Sx :x£X0}CK.

Then T(X) n f\{Sx : x G X) ± 0.

P R O O F : Suppose that T(X) n n{-?x : i € X ) = 8. Since if is compact, there

exists a finite subset {xi,x2,...,xn} oi X such that AT C (T(X)y U ( U 5 c i i Y where

S c i = Y\Sx. By (3.4), ^ C (J Scxt C ( (J 5cx) U (T(X))C. If we let Xj = Co(X0U
xeXo V i6X 0 / V / V

{xi, x 2 , . . . , xn}) , then Xi is a compact convex subset of X and Y = ( \J SCX)\J(T(X)) ,
^_

that is, T(X) D fl Sx = 0. We define F : X, -> 2 r by Fx = Sx n T{XX), x & Xx.
EX
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Then (a) for each x € Xu Fx is a closed subset of T[X^), (b) for each TV £ (Xi),
T(CoN) C F(N). Since T € KKM(X,Y), it follows from Lemma 6 and (3.1) that
T\Xl € KKM(XU Y) is compact. By Theorem 1, we have T\x,{Xx)r\C\{Sx : x € X^ / 0.
But T|X l (X!) C T(X), so we have T(X) n f]{Sx : x € Xx} ± 0. This contradicts that

n n{5x : x e Xt} = 0. Therefore T{X) D f){Sx : x € X} ^ 0. D

REMARK 2. Theorem 3 improves [3, Theorem 8]. We prove Theorem 3 by applying
Theorem 1, while [3, Theorem 8] is proved by applying the KKM property. From [3,
Theorem 8] we only obtain the conclusion [~l Sx ^ 0.

xex
COROLLARY 3 . [5] In a topological vector space, let Y be a convex set and 0 ^

X C Y. For each x € X, let F(x) be a reiativejy closed subset ofY such that the convex
hull of every finite subset {xi,:r2,.. . ,xn} of X is contained in the corresponding union
n
(J F(xi). If there is a nonempty subset Xo of X such that the interection (~| F(x) is
compact, and Xo is contained in a compact convex subset ofY, then f] F(x) ^ 0.

xex

P R O O F : Take T(x) = {x} and K = fl F(x); then Corollary 3 follows immedi-

ately. D

COROLLARY 4 . Let X be a convex space, Y a Hausdorf space, and S : X —> 2Y,
T 6 KKM(X, Y) maps satisfying the following

(C4.1) for each compact subset C ofX, T(C) is compact;

(C4.2) for each x € X, Sx is compactly closed in Y;

(C4.3) for each N & (X), T{Co N) C S{N); and

(C4.4) there is a nonempty subset Xo ofX such that Xo is contained in a compact
convex subset Xi of X and Q Sx is a nonempty compact subset ofY.

x
Then T(X) n 0{Sx : x G X} ^ 0.

P R O O F : If we take K = f) Sx in Theorem 3, then Corollary 4 follows immedi-

ately. D

THEOREM 4 . Let X be a convex space, Y a Hausdorff space, S : X -> 2Y,
T e U?(X,Y) satisfying

(4.1) for each x € X, Sx is compactly closed in Y;

(4.2) for each N € {X), T(Co N) C S(N); and

(4.3) there exists a nonempty subset K of Y and a nonempty subset Xo of
X such that Xo is contained in a compact convex subset X\ of X and
n{Sx : x 6 .Yo} C K.

Then K D T(X) n H{Sx : i 6 l } / 0 .
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PROOF: Let N = {xi,X2,..-,xn} be any finite subset of X, then it follows from
(4.3) that X2 = Co (Xi U N) is a compact convex subset of X. By the assumption
T e U?(X,Y), there exists V € UC(X2,Y) such that T'x C Tx for all x £ X2 and
T'{X2) is a compact subset of Y. Thus V € UC{X2,Y) C ArA'M(X2,r) is compact.
Then all the conditions of Theorem 1 are satisfied. It follows from Theorem 1 that
T'{X2) n f){Sx : i e X 2 } / l ) . Hence T'(X2) n C\{Sx f~l D{5x : i e l i } : i e i v } / f l .
But Xo C Xi, hence fl{5x : x € X J C n{Sz : x £ Xo} C if. This shows that
f|{Sx n T'(X2) D if : x € iV} / 0. Since for each x € X, Sx is compactly closed in
Y and T'(AT2) is compact, it follows that {Sx D T'(X2) fl # : x e ^ } is a family of

closed sets with the finite intersection property in the compact set T'{X2)C\K. Therefore

0{Sx n T'{X2) n K : x e X) ^ %. Since T'(X2) C T{X2) C T(X), it follows that

:xeX}j:%. D

The following theorem generalises a fixed point theorem of Tarafdar [15].

THEOREM 5 . Let X be a convex space, Y a Hausdorff topological space, T €

KKM(X, Y), F : Y ->• 2X be set-valued maps satisfying

(5.1) for each compact set C of X, T(C) is compact;

(5.2) for each y 6 T{X), Fy is a nonempty convex subset of X;

(5.3) for each x € X, F~(x) contains a compactly open subset Ox ofY;

(5.4) U Ox = Y; and
xex

(5.5) there is a nonempty subset XQ C X such that XQ is contained in a compact

convex subset Xi of X and the set M = fl O% is compact (M may be
x€X0

empty) and Ox denotes the complement ofOx in Y.

Then there exist x 6 X, and y € T(x) such that x 6 F(y).

P R O O F : For each x e X, we let Sx = Oc
x, then 5 : X -4 2Y and for each x € X.

Sx is compactly closed in Y. There are two cases:

C A S E (1) M = 0. In this case, if we take X = Xo in Theorem 1, we have a finite subset
n

A — {xi ,X2,. . . ,xn} of Xo such that T(CoA) £ U Sx*. This means that there exist XQ =

E XiXi, Xi ^ 0, i = 1 ,2 , . . . ,n , E Xi = 1 and y0 e Tx0 such that y0 & \J Sx{ = U O£..
i=l i=l t=l i=l '
Thus I/O 6 OXj C F - ( X J ) for all i = 1,2,.. . , n . Hence x{ € F(y0) for all = 1,2, . . . , n .
But by (3.1), Fj/o is convex, so we have x0 = E -^z. € Fj/0 and Theorem 5 is proved for

i=l
the case M = fl Oc

x = %.
xex<>

C A S E (2) M / 0. We want to show that there exists a finite subset A = {x i , x 2 , . . . ,x n }
n

of X such that T(Co A) 2 U SXJ. Suppose that for each finite subset B = {ui, u 2 , . . . , um}

olX, T(Co B) C U 5UJ. Then it follows from Corollary 4 that T(X) n D{5x :
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0. Hence fl O% — f] Sx ^ 0, therefore U Ox ^ Y, which contradicts to the assump-
xex x&x xex

tion (5.4) of this theorem. This shows that there exists a finite subset A = {xi, x2, • • •, xn}
n n

of X such that T(CoA) g U Sx{. As in case (1), there exist x0 = £ AjXj, Ai ^ 0,
n n

i = 1, 2 , . . . , n, £ Aj = 1 and yo G Tz0 such that y0 & U S ^ . From this relation, we get
t=i i=i

that x0 £ Fy0 and y0 € Tx0.

D
Theorem 5 also gives a sufficient conditions for the existence of fixed points for the

composition of two set-valued maps.
COROLLARY 5 . Under the assumption of Theorem 5, there exists x0 € X such

that x0 € FTx0.

P R O O F : It follows from Theorem 5, that there exist xo 6 X, y0 € Tx0 such that
x0 e Fy0. Hence x0 G FTx0- U

COROLLARY 6 . Let X be a nonempty compact convex subset of a topological

vector space, T 6 KKM(X, X) and F : X -> 2X be set-valued maps satisfying

(C6.1) for each y € X, F~(y) contains a relatively open subset Oy of X (Oy could

be empty);

(C6.2) for each x G X, Fx is a nonempty subset of X; and
(C6.3) U Oy = X.

vex
Then there exists point x0 G X, y0 G Tx0 such that x0 G Fy0.

P R O O F : Since X is compact and (J Oy = X, it follows that condition (5.5) holds
yex

automatically and Corollary 6 follows immediately from Theorem 5. D

COROLLARY 7 . [15] Let X be a nonempty compact convex subset of a topological
vector space. Let F : X —> 2X be set-valued maps such that

(C7.1) for each x € X, Fx is a nonempty convex subset of X;

(C7.2) for each y G X, F~(y) contains a relatively open subset Oy of X (Oy may

be empty for some y);

(C7.3) U Ox = X; and
yex

(C7.4) there exists a nonempty subset Xo C X such that Xo is contained in a
compact convex subset X\ of X and M = |~| 0% is compact (M may be

xex0
empty).

Then there exists a point XQ G X such that x0 G FXQ.

P R O O F : If we define T : X -> 2X by Tx = {x} and take X = Y in Theorem 5, we
prove Corollary 7. D



[9] A KKM type theorem 489

COROLLARY 8 . [2] Let X be a nonempty compact convex subset of a topological

vector space. Let F : X -* 2X be set-valued maps such that

(C8.1) for each y eX, F~(y) is open; and

(C8.2) for each x € X, Fx is a nonempty convex subset of X.

Then there is x0 £ X such that x0 € Fx0.

P R O O F : Since for each x G X, Fx is a nonempty subset of X, there exists y € X
such that y € Fx. Hence x € F~y. This shows that X = [J F~y. If we define

T : X -» 2 y by Tx = {x} for x G X, then all the conditions of Corollary 7 are satisfied
and Corollary 8 follows immediately from Corollary 7. D

REMARK 3. Corollary 4 can be proved by using Theorem 5. Suppose that all the
conditions of Corollary 4 are satisfied; we want to show that T(X) Hf\{Sx : x € X} ^ 0.
Suppose on the contrary that T(X)nf\{Sx :xeX} = <t). We define H : T(X) ->• 2X by
Hy = {x € X : y & Sx}. For each xeX,v/e let Scx = Y\Sx and Ox = Scx. Clearly for
each y € T(X), y € U Scx, hence y ^ Sx0 for some x0 € X and if (?/) is a nonempty

i€X

subset of X. For each x€X, H~(x) = [y 6 T(X) : y £ Sz} = ScxnT(X) = OxnT(X)

is compactly open in T{X). Now we denote <% = Ox n T(X). Let F : T(X) -> 2X

be defined by Fy = Co [Hy] for each y G T(X). Then for each y G T(X), Fy is
a nonempty convex subset of X and for each x G X, F~(x) D H~(x) = Ox. Since

n n{5x : a: € X} = 0, it follows that f ( X ) C U Scx and T(X) = U \Scx n
i6X z€XL

= U [Ox n T{X)] = U Oi- We denote by 0% the complement of Ox in T(X).
zex1 J i6X

By (C4.2) and (C4.4), fl OJ= PI fT(X)\oJ = r(X) n fl Ox = T p 0 n D 5x is

compact in T(A"). Then it follows from Theorem 5 that there exists x G X, y € T(z) such
that x e Fy = Co [Hy]. This implies there exists A — {xi,x2, • • •, xn} C if (y), Aj ^ 0,

n n
i = 1,2..., n, Y, Xi = I such that x = £ AjZj. Since i j € if (j/) for ali i = 1,2,..., n, it

i=l i=l

follows that y g Sx{ for all i = 1,2, . . . , n. Therefore T(Co A) <£ \J Sx{. This contradicts

the assumption (C4.3) of Corollary 4. Hence T(X) n f){Sx : x € X} ^ 0 and Corollary
4 is proved.

THEOREM 6 . Let X be a convex space, Y a Hausdorff topological space, T €
U?{X, Y), F : Y -> 2* be set-vaiued maps satisfying

(6.1) for each y € T(X), Fy is a nonempty convex subset of X;

(6.2) for each x € X, F~(x) contains an compactly open subset Ox ofY;

(6.3) U Ox = Y;and
y£X

(6.4) there exists a nonempty subset Xo C X such that Xo is contained in a
compact convex subset Xi of X and the set M = f\ Oc

x is compact (M
xex0

may be empty) and Oc
x denotes the complement ofOx in Y.
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Then there exist x 6 X and y G Tx such that x € Fy.

PROOF: For each x e X, we let Sx = 0%. Then S : X ->• 2Y and for each x e X.
Sx is compactly closed in Y. There are two cases.

CASE (1) M = 0. In this case, we use Corollary 1 and follow the same argument as in
Theorem 5.

CASE (2) M / B . In this case, we use Theorem 4 and follow the same argument as in
Theorem 5.

D

REMARK 4. In Theorem 5, we assume that T e KKM(X, Y) and T(C) is compact for
each compact set C of X, but in Theorem 6, we assume only that T e U£(X, Y).

THEOREM 7 . Let (X,D;T) be a G-convex space, Y a Hausdorff space, and T :
X —> 2Y be compact and closed and G : D -> 2Y. Suppose that

(7.1) for each x € D, Gx is compactly closed;
(7.2) for any N € (D), T(TN) C G{N); and
(7.3) there exist a nonempty compact subset KofY and for each N € (D), a

compact, G-convex subset LN ofX containing N such that T(LN)nC\{Gx :
x € LN n D} C if, and T € G-KKM {LN, Y).

ThenT(X)nKnr\{Gx:x€ D} ^ 0.

PROOF: Suppose that T(X) n if n C\{Gx : x € D} = 0. Let Sx = Y\Gx, then
C S(D). Since T{X)C\K is compact and for each x € D, Sx is compactly open,

it follows that there exists N € (£>) such that T(X) n if C S(7V). By (7.3), there exists
a compact G-convex subset L^ of X containing N such that T(LN)\K C S(L# nD).
Hence T(LN) C S(LAT n D). Since T is compact and closed, it follows from Lemma 2
that T is upper semicontinuous We want to show that for each x £ X, Tx is compact.
Let y 6 T(x), then there exists a net {ya} in Tx such that yQ —» j / . Since T is closed,
it follows that y € Tx and Tx is closed. By assumption T is compact, hence T(X)
is a compact set. But Tx C T(X) and Tx is closed for each x e X. This shows
that Tx is compact for each x £ X. Since T is upper semicontinuous with compact
values and L^ is compact, it follows from Lemma 3 that T(L^) is compact. Therefore
T(LN) = T(LN) C S{LN n D). Thus T(LN)nn{Gx : x € LN n £>} = 0. It follows from
Theorem 1 with {T\Lfl,G\LflnD,LN,LNnD) replacing (T,G,X,D), that there exists
M € (LN n D) C (D) such that T(VM) g G(M). This contradicts (7.2). Therefore
Tpf) n if n n{Gx : x G D} ± 0. D

COROLLARY 9 . [12] Let (X, D;T) be a G-convex space, Y a Hausdorff space,
and T e U?{X, Y). Let G : D -»• 2Y be a map such that

(C9.1) for each x e D, Gx is compactly closed in Y;
(C9.2) for any N € (D), T{rN) C G{N); and
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(C9.3) there exist a nonempty compact subset KofY and for each N 6 (D), a

compact G-convex subset LN ofX containing N such that T(LN)nf){Gx :

x € LN n £>} C K.

Then TpCJnK n f]{Gx : x £ D) J= 0.

PROOF: Since T £ U?{X,Y) C G-KKM(X,Y), it follows from Lemma 6 that
T\LN £ G-KKM(LN, Y) and the conclusion of Corollary 9 follows from Theorem 7. D

4. GENERALISED G-KKM THEOREMS

As a consequence of the generalised G-KKM theorem, we prove a generalisation of
the Ky Fan matching theorem.

THEOREM 8 . Let (X, D\ T) be a G-convex space, Y a Hausdorff space, S : D ->
2Y and T e G-KKM{X, Y) be compact. Suppose that

(8.1) for each x £ D, Sx is compactly open in Y; and

(8.2) T{X)c S(D).

Then there exists M £ (D) such that T(FM) n C\{Sx-. x £ M) ^ 0.

PROOF: Suppose that the conclusion of Theorem 8 is false. Then for any N s {D),
T(TN) n D{5x : x £ N} = 0. Therefore T(TN) C \J{Gs : s £ N} = G(N), where Gx =
Y\Sx. By (8.1), for each x £ D, Gx is compactly closed in Y. Then all the conditions
of Theorem 1 are satisfied. It follows from Theorem 1 that T(X) n f]{Gx :x£D}^%.
Hence T(X) g S(D), but this contradicts (8.2). Thus there exists M £ (D) such that

: i e M } ^ . D

COROLLARY 1 0 . [8] Let D be a nonempty subset in a compact convex space
X, Y a topological space, and A : D —» 2Y a set-valued map satisfying

(C10.1) for each x £ D, Ax is compactly open in Y; and

(C10.2) A(D) = Y.

Then for any x 6 C{X, Y), there exist a finite subset {xi,x2,..., £„} of X and x0 £
n

Co {xi,..., xn} such that sx0 £ f\ Axt.

PROOF: Since X is compact and s £ C(X,Y), it follows that s{X) is compact.
H e n c e s £ C { X , Y ) C K K M { X , Y ) i s c o m p a c t . B y ( C 1 0 . 2 ) , s j x ) = s(X) C Y C A { D ) .
It follows from Theorem 8, that there exist a finite subset {xi,x2,...,xn} of X and

n _
XQ £ Co {xi,..., Xn) such that sx0 £ D Axi- U

COROLLARY 1 1 . [5] In a topological vector space, let Y be a convex set and let
X be a nonempty subset of Y. For each x £ X, let Ax be relative open in Y such

that U Ax = Y. If X is contained in a compact convex subset C of Y, then there
xex

exist a nonempty, finite subset {xi,x2, •. • ,xn} of X and x0 £ {x\,...,xn} such that
n

x0 £ D Axt.
i
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PROOF: Let Tx = {x}, then T(C) = C is compact, and T is compact. T(C) =

C C Y C A(X). Then it follows from Theorem 8 that there exist a finite subset
n _

{xi,x2, ••• ,xn} of X and x0 G {xi,... ,xn} such that x0 G f l - ^ i - •

REMARK 5. Theorems 1 and 8 are equivalent.

We saw that Theorem 8 can be proved by using Theorem 1. Now we prove Theorem 1
from Theorem 8. Suppose that T(X) D C\{Gx : x G £>} = 0. Let Sx = Y\Gx. Then
Sx is compactly open and T(X) C S(D). It follows from Theorem 8, that there exists
M G (D) such that T{TM) n n{Sz : x G M} ^ 0. Hence T( r M ) g G(M). This
contradicts (1.2). Thus the conclusion of Theorem 1 holds.

THEOREM 9 . Let (X, D\ T) be a G-convex space, Y a Hausdorff space and T :
X —> 2Y be compact and closed. Suppose that

(9.1) for each x G D, Sx is compactly open;

(9.2) there exists a nonempty compact subset KofY such that T{X) C S{D);
and

(9.3) for each N G (D), there exists a compact G-convex subset L^ of X con-

taining N such that T(LN)\K C S{LN n D), and T G G-KKM(LN, Y).

Then there exists M G {D) such that T(FM) n f]{Sx : i £ J K } / | .

P R O O F : Suppose that for any N G (D). T(FN) C\ f\{Sx : x G N} = 0. Let
Gx = Y\Sx. Then by applying Corollary 9 and following an argument as in Theorem 8,
we prove Theorem 9. D
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