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We apply some continuous selection theorems to establish coincidence theorems
for a family of multimaps under various conditions. Then we apply these coin-
cidence theorems to study the equilibrium problem with m families of players
and 2m families of constraints on strategy sets. We establish the existence theo-
rems of equilibria of this problem and existence theorem of equilibria of abstract
economics with two families of players.

1. Introduction

For multimaps F : X � Y and S : Y � X , a point (x, y)∈ X ×Y is called a coin-
cidence point of F and S if y ∈ F(x) and x ∈ S(y). In 1937, Neumann [19] and in
1966 Fan [8] established the well-known coincidence theorems. In 1984, Brow-
der [4] combined Kakutani-Fan fixed-point theorem and Fan-Browder fixed-
point theorem to obtain a coincidence theorem. So many authors gave some
coincidence theorems and applied them in various fields as equilibrium prob-
lem, minimax theorem, quasi-variational inequalities, game theory, mathemat-
ical economics, and so on, see [1, 5, 6, 9, 11, 18] and references therein. In 1991,
Horvath [10, Theorem 3.2] obtained a continuous selection theorem. In [21,
Theorem 1], Wu and Shen established another continuous selection theorem.

Let I and J be any index sets. For each i ∈ I and j ∈ J , let Xi and Yj be
nonempty sets and Hj : X =∏i∈I Xi � Yj ; Ti : Y =∏ j∈J Yj � Xi be multimaps.
A point (x̄, ȳ)∈ X ×Y , where x̄ = (x̄i)i∈I and ȳ = ( ȳ j) j∈J is called a coincidence

point of two families of multimaps, if ȳ j ∈Hj(x̄) and x̄i ∈ Ti( ȳ) for each i ∈ I
and j ∈ J . In this paper, we apply the continuous selection theorem of Horvath
[10] and the fixed-point theorem of Park [17] to derive the coincidence theo-
rems for two families of multimaps. Our coincidence theorems for two families
of multimaps include Fan-Browder fixed-point theorem [3] and Browder coin-
cidence theorem [4] as special cases.
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We will employ our results on coincidence theorems for two families of mul-
timaps to consider the equilibrium problem with m families of players and 2m
families of constraints on the strategy sets introduced by Lin et al. [14]. We con-
sider the following problem: let I be any index set and for each k ∈ I , let Jk be
a finite index set, Xkj denote the strategy set of jth player in kth family, Yk =∏

j∈Jk Xkj , Y =
∏

k∈I Yk, Yk =∏l∈I,l �=k Yl, and Y = Yk ×Yk. Let Fkj : Xkj ×Yk �
R

lk j be the payoff of the jth player in the kth family, letAkj : Yk � Xkj be the con-
straint which restricts the strategy of the jth player in the kth family to the subset
Akj (Y

k) of Xkj when all players in other families have chosen their strategies xi j ,
i∈ I , i �= k, and j ∈ Ji, and let Bk : Yk � Yk be the constraint which restricts the
strategies of all the families except kth family to the subset Bk(Yk) of Yk when
all the players in the k family have chosen their strategies yk = (xkj ) j∈Jk , k ∈ I .
Our problem is to find a strategies combination ȳ = ( ȳk)k∈I ∈

∏
k∈I Yk = Y ,

ū = (ūk)k∈I ∈ Y , ȳk = (x̄kj ) j∈Jk , ȳk ∈ Ak( ȳk), ūk ∈ Bk( ȳk), and z̄kj ∈ Fkj (x̄kj , ū
k)

such that

zkj − z̄kj �∈ − intR
lk j
+ , (1.1)

for all zkj ∈ Fkj (xkj , ū
k), xkj ∈ Akj ( ȳ

k), and for all k ∈ I and j ∈ Jk. In the Nash
equilibrium problem, the strategy of each player is subject to no constraint. In
the Debreu equilibrium problem, the strategy of each player is subject to a con-
straint which is a function of the strategies of the other players. For the special
case of our problem, if each of the families contain one player, we find that the
strategy of each player is subject a constraint which is a function of strategies
of the other players, and for each k ∈ I , where I is the index set of players, the
strategies combination of the players other than the kth player is a function of
strategy of kth player. Therefore, our problem is different from the Nash equilib-
rium problem and their generalizations. As we note from Remark 4.8, for each
k ∈ I , if Jk = {k} be a singleton set, then the above problem reduces to the prob-
lem which is different from the Debreu social equilibrium problem [6] and the
Nash equilibrium problem [19]. Lin et al. [14] demonstrate the following ex-
ample of this kind of equilibrium problem in our real life. Let I = {1,2, . . . ,m}
denote the index set of the companies. For each k ∈ I , let Jk = {1,2, . . . ,nk} de-
note the index set of factories in the kth company, Fkj denote the payoff function
of the jth factory in the kth company. We assume that the products between the
factories in the same company are different, and the financial systems and man-
agement systems are independent between the factories in the same company,
while some collections of products are the same and some collections of prod-
ucts are different between different factories in different companies. Therefore,
the strategy of the jth factory in the kth company depends on the strategies of
all factories in different companies. The payoff function Fkj of the jth factory in
the kth company depends on its strategy and the strategies of factories in other



L.-J. Lin and H. I Chen 297

companies. We also assume that for each k ∈ I , the strategies of the k company
influence the strategies of all other companies. With this strategies combination,
each factory can choose a collection of products, and from these collection of
products, there exists a product that minimizes the loss of each factory. In this
type of abstract economic problem with two families of players, the strategy and
the preference correspondence of each player in family A depend on the strate-
gies combination of all players in family B, but does not depend on the strategies
combination of the players in family A. The same situation occurs to each player
of family B. The abstract economic problem studied in the literature, the strategy
and preference correspondence of each player depend on the strategies combi-
nation of all the players. Therefore, the abstract economic problem, we studied
in this paper, is different from the abstract economic studied in the literature.
In some economic model with two companies (say A and B), the strategy of
each factory of company A depend on the strategies combination of factories in
company B. The same case occurs in company B. We can use this example to
explain the abstract economic problem we study in this paper. We also apply the
coincidence theorems for a family of multimaps to consider the abstract eco-
nomic problem with two families of players. In this paper, we want to establish
the existence theorems of equilibria of constrained equilibrium problems with
m families of players and 2m families of constraints and existence theorem of
equilibria of abstract economic with two families of players.

2. Preliminaries

In order to establish our main results, we first give some concepts and notations.
Throughout this paper, all topological spaces are assumed to be Hausdorff.

Let A be a nonempty subset of topological vector space (t.v.s.) X , we denote by
intA the interior of A, by Ā the closure of A in X , by coA the convex hull of
A, and by c̄oA the closed convex hull of A. Let X , Y , and Z be nonempty sets.
A multimap (or map) T : X � Y is a function from X into the power set of Y
and T− : Y � X is defined by x ∈ T−(y) if and only if y ∈ T(x). Let B ⊂ Y , we
define T−(B) = {x ∈ X : T(x)∩B �= ∅}. Given two multimaps F : X � Y and
G : Y � Z, the composite GF : X � Z is defined by GF(x) = G(F(x)) for all
x ∈ X .

Let X and Y be two topological spaces, a multimap T : X � Y is said to be
compact if there exists a compact subset K ⊂ Y such that T(X)⊂ K ; to be closed
if its graph Gr(T) = {(x, y) | x ∈ X, y ∈ T(x)} is closed in X × Y ; to have lo-
cal intersection property if, for each x ∈ X with T(x) �= ∅, there exists an open
neighborhood N(x) of x such that

⋂
z∈N(x)T(z) �= ∅; to be upper semicontin-

uous (u.s.c.) if T−(A) is closed in X for each closed subset A of Y ; to be lower
semicontinuous (l.s.c.) if T−(G) is open in X for each open subset G of Y , and
to be continuous if it is both u.s.c. and l.s.c.

A topological space is said to be acyclic if all of its reduced Ĉech homology
groups vanish. In particular, any convex set is acyclic.
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Definition 2.1 (see [15]). Let X be a nonempty convex subset of a t.v.s. E. A
multimap G : X � R is said to be R+-quasiconvex if, for any α∈R, the set

{
x ∈ X : there is a y ∈G(x) such that α− y ≥ 0

}
(2.1)

is convex.

Definition 2.2 (see [15]). Let Z be a real t.v.s. with a convex solid cone C and A
be a nonempty subset of Z. A point ȳ ∈A is called a weak vector minimal point
of A if, for any y ∈ A, y− ȳ �∈ − intC. Moreover, the set of weak vector minimal
points of A is denoted by wMinC A.

Lemma 2.3. Let I be any index set and {Ei}i∈I be a family of locally convex t.v.s.
For each i ∈ I , let Xi be a nonempty convex subset of Ei, Fi, Hi such that X :=∏

i∈I Xi � Xi be multimaps satisfying the following conditions:

(i) for each x ∈ X , coFi(x)⊂Hi(x);
(ii) X =⋃{intF−i (xi) : xi ∈ Xi};

(iii) Hi is compact.

Then there exists a point x̄ = (x̄i)i∈I ∈ X such that x̄ ∈H(x̄) :=∏i∈I Hi(x̄); that is,
x̄i ∈Hi(x̄) for each i∈ I .

Proof. Lemma 2.3 follows immediately from [12, Proposition 1] and [21, Theo-
rem 2]. �

3. Coincidence theorems for families of multivalued maps

Theorem 3.1. Let I and J be any index sets, and let {Ui}i∈I and {Vj} j∈J be families
of locally convex t.v.s. For each i∈ I and j ∈ J , let Xi and Yj be nonempty convex
subsets, each in Ui and Vj , respectively. Let Fj , Hj : X :=∏i∈I Xi � Yj ; Si, Ti :
Y :=∏ j∈J Yj � Xi be multimaps satisfying the following conditions:

(i) for each x ∈ X , coFj(x)⊂Hj(x);
(ii) X =⋃{intFj

−(yj) : yj ∈ Yj};
(iii) for each y ∈ Y , coSi(y)⊂ Ti(y);
(iv) Y =⋃{intSi

−(xi) : xi ∈ Xi};
(v) Ti is compact.

Then there exist x̄ = (x̄i)i∈I ∈ X and ȳ = ( ȳ j) j∈J ∈ Y such that ȳ j ∈ Hj(x̄) and
x̄i ∈ Ti( ȳ) for each i∈ I and j ∈ J .

Proof. Since for each i∈ I , Ti is compact, there exists a compact subset Di ⊂ Xi

such that Ti(Y) ⊂ Di for each i ∈ I . Let D =∏i∈I Di and K = coD, it follows
from [7, Lemma 1] that K is a nonempty paracompact convex subset in X . For
each i∈ I , let Ki be the ith projection of K . By assumption (iii), Si, Ti : Y � Ki

and coSi(y)⊂ Ti(y) for each y ∈ Y . By (i), for each x ∈ K , coFj |K (x)⊂Hj |K
(x). By (ii), K =⋃{intK Fj

−(yj) : yj ∈ Yj}.
By [12, Proposition 1] and [21, Theorem 1], Hj |K (x) has a continuous selec-

tion, that is, for each j ∈ J , there exists a continuous function f j : K → Yj such
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that f j(x)∈Hj(x) for all x ∈ K . Let f : K → Y be defined by f (x)=∏ j∈J f j(x)
and Pi, Wi : K � Ki be defined by Wi(x) = Si( f (x)) and Pi(x) = Ti( f (x)) for
all x ∈ K . It is easy to see that Wi

−(xi) = f −1(Si
−(xi)) for all xi ∈ Ki and for all

i∈ I . By assumption (iii), for all i∈ I and for all x ∈ X , coWi(x)= coSi( f (x))⊂
Ti( f (x))= Pi(x). Since Si(Y)⊂ Ti(Y)⊂ Ki, it follows from assumption (iv) and
the continuity of f that

K = f −1(Y)= f −1
[⋃{

intSi
−(xi) : xi ∈ Xi

}]
= f −1

[⋃{
intSi

−(xi) : xi ∈ Ki
}]

⊂
⋃{

int f −1(Si−(xi)) : xi ∈ Ki
}

=
⋃{

intWi
−(xi) : xi ∈ Ki

}⊂ K.

(3.1)

Hence,

K =
⋃{

intWi
−(xi) : xi ∈ Ki

}
. (3.2)

Then by Lemma 2.3, there exists a point x̄ = (x̄i)i∈I ∈ K ⊂ X such that x̄i ∈
Pi(x̄) = Ti( f (x̄)) for each i ∈ I . Let ȳ = ( ȳ j) j∈J ∈ Y such that ȳ = f (x̄), then,
for each i ∈ I and j ∈ J , ȳ j = f j(x̄) ∈ Hj(x̄) and x̄i ∈ Ti( ȳ). The proof is com-
plete. �

Corollary 3.2 [22, Theorem 8]. In Theorem 3.1, if the condition (v) is replaced
by (v′), then the conclusion is still true, where (v′) Xi is compact.

Proof. Since Xi is compact, Ti is compact and the conclusion of Corollary 3.2
follows from Theorem 3.1. �

Remark 3.3. Theorem 3.1 improves [15, Theorem 8].

Theorem 3.4. Let I and J be any index sets, let {Ui}i∈I and {Vj} j∈J be families
of locally convex t.v.s. For each i∈ I and j ∈ J , let Xi and Yj be nonempty convex
subsets of Ui and Vj , respectively, and let Dj be a nonempty compact metrizable
subset of Yj . For each i∈ I and j ∈ J , let Sj ,Tj : X :=∏i∈I Xi � Dj ; Fi,Hi : Y :=∏

j∈J Yj � Xi be multimaps satisfying the following conditions:

(i) for each x ∈ X , c̄oSj(x)⊂ Tj(x) and Sj(x) �= ∅;
(ii) Sj is l.s.c.;

(iii) for each y ∈ Y , coFi(y)⊂Hi(y);
(iv) Y =⋃{intFi

−(xi) : xi ∈ Xi};
(v) Hi is compact.

Then there exist x̄ = (x̄i)i∈I ∈ X and ȳ = ( ȳ j) j∈J ∈ D :=∏ j∈J Dj such that ȳ j ∈
Tj(x̄) and x̄i ∈Hi( ȳ) for each i∈ I and j ∈ J .

Proof. Since for each i∈ I , Hi is compact, there exists a compact subset Ci ⊂ Xi

such that Hi(Y) ⊂ Ci for each i ∈ I . Let C =∏i∈I Ci and D :=∏ j∈J Dj , then
coC and K = coD are nonempty paracompact convex subsets each in X and Y ,
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respectively by [7, Lemma 1]. By assumptions (i), (ii), and following the same
argument as in the proof of [20, Theorem 1], there exists an u.s.c. multimap Pj :
coC � Dj with nonempty compact convex values such that Pj(x) ⊂ Tj(x) for
all x ∈ coC. Define P : coC � D by P(x) =∏ j∈J Pj(x) for all x ∈ coC. Then it
follows from [8, Lemma 3] that P is an u.s.c. multimap with nonempty compact
convex values.

By [12, Proposition 1] and [21, Theorem 1], for each i ∈ I , Hi |K (y) has a
continuous selection fi : K → Ci such that fi(y) ∈ Hi(y) for all y ∈ K . Let f :
K → C be defined by f (y) =∏i∈I fi(y) for all y ∈ K , and let W : K � D be
defined by W(y)= P |C ( f (y)) for all y ∈ K . It is easy to see that W is an u.s.c.
multimap with nonempty closed convex values. Then, by [17, Theorem 7], there
exists ȳ ∈D such that ȳ ∈W( ȳ)= P |C ( f ( ȳ)). Let x̄ ∈ C such that x̄ = f ( ȳ) and
ȳ ∈ P |C (x̄), then for each i ∈ I and j ∈ J , ȳ j ∈ Pj(x̄) ⊂ Tj(x̄) and x̄i = fi( ȳ) ∈
Hi( ȳ). �

Theorem 3.5. Let I and J be any index sets. For each i ∈ I and j ∈ J , let Xi and
Yj be nonempty convex subsets in locally convex t.v.s. Ui and Vj , respectively, let Dj

be a nonempty compact metrizable subset of Yj , and let Ci be a nonempty compact
metrizable subset of Xi. For each i∈ I and j ∈ J , let Sj , Tj : X :=∏i∈I Xi �Dj ; Fi,
Hi : Y :=∏ j∈J Yj � Ci be multimaps satisfying the following conditions:

(i) for each x ∈ X , c̄oSj(x)⊂ Tj(x) and Sj(x) �= ∅;
(ii) Sj is l.s.c.;

(iii) for each y ∈ Y , c̄oFi(y)⊂Hi(y) and Fi(y) �= ∅;
(iv) Fi is l.s.c.

Then there exist x̄ = (x̄i)i∈I ∈ coC := co
∏

i∈I Ci and ȳ = ( ȳ j) j∈J ∈ coD :=
co
∏

j∈J Dj such that ȳ j ∈ Tj(x̄) and x̄i ∈Hi( ȳ) for each i∈ I and j ∈ J .

Proof. Following the same argument as in the proof of [20, Theorem 1], for
each i ∈ I and j ∈ J , there are two u.s.c. multimaps Pj : coC � Dj and Qi :
coD � Ci with nonempty closed convex values such that Pj(x) ⊂ Tj(x) for all
x ∈ coC, and Qi(y)⊂Hi(y) for all y ∈ coD. Define P : coC �D, Q : coD � C
by P(x)=∏ j∈J Pj(x) for all x ∈ coC, and Q(y)=∏i∈I Qi(y) for all y ∈ coD. By
[8, Lemma 3], P and Q both are u.s.c. multimaps with nonempty closed con-
vex values. Let W : coC× coD � C×D be defined by W(x, y) = (Q(y),P(x))
for (x, y) ∈ (coC)× (coD). It is easy to see that W is an u.s.c. multimap with
nonempty closed convex values. Therefore, by [17, Theorem 7], there exist x̄ =
(x̄i)i∈I ∈ coC and ȳ = ( ȳ j) j∈J ∈ coD such that (x̄, ȳ) ∈W(x̄, ȳ). Then for each
i∈ I and j ∈ J , ȳ j ∈ Pj(x̄)⊂ Tj(x̄) and x̄i ∈Qi( ȳ)⊂Hi( ȳ). �

Remark 3.6. In Theorem 3.1, we do not assume that {Xi} and {Yj} are metriz-
able for each i∈ I and j ∈ J .

Theorem 3.7. Let I and J be finite index sets, let {Ui}i∈I be a family of t.v.s., and
let {Vj} j∈J be a family of locally convex t.v.s. For each i ∈ I and j ∈ J , let Xi be a
nonempty convex subset of Ui, let Yj be a nonempty compact convex subset of Vj ,
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and let Fj : X :=∏i∈I Xi � Yj and let Gi : Y :=∏ j∈J Yj � Xi be two multimaps
satisfying the following conditions:

(i) Fj is an u.s.c. multimap with nonempty closed acyclic values;
(ii) Y =⋃{intGi

−(xi) : xi ∈ Xi} and Gi(y) is convex for all y ∈ Y .

Then there exist x̄ = (x̄i)i∈I ∈ X and ȳ = ( ȳ j) j∈J ∈ Y such that ȳ j ∈ Fj(x̄) and
x̄i ∈Gi( ȳ) for each i∈ I and j ∈ J .

Proof. By [12, Proposition 1] and [21, Theorem 1], Gi has a continuous selection
gi : Y → Xi such that gi(y) ∈ Gi(y) for all y ∈ Y . Let g : Y → X be defined by
g(y)=∏i∈I gi(y) for all y ∈ Y , then g is also continuous. Define Pj : Y � Yj and
P : Y � Y by Pj(y) = Fj(g(y)), and P(y) =∏ j∈J Pj(y) for all y ∈ Y , then Pj :
Y � Yj is an u.s.c. multimap with nonempty closed acyclic values. By Kunneth
formula (see [16] and [8, Lemma 3]), P : Y � Y is also an u.s.c. multimap with
nonempty closed acyclic values. Therefore, by [17, Theorem 7], there exists ȳ ∈
Y such that ȳ ∈ P( ȳ)=∏ j∈J Pj( ȳ)=∏ j∈J Fj(g( ȳ)). Let x̄ = g( ȳ) such that ȳi ∈
Fi(x̄), then x̄i = gi( ȳ)∈Gi( ȳ) and ȳ j ∈ Fj(x̄) for all i∈ I and j ∈ J . �

Remark 3.8. (i) In particular, if I = J is a singleton, X = Y , E = V , and F = IX ,
the identity mapping onX in the above theorem, then we can obtain well-known
Browder fixed-point theorem [3].

(ii) If I = J is a singleton, F is an u.s.c. multimap with nonempty closed con-
vex values, G(y) is nonempty for all y ∈ Y , and G−(x) is open for all x ∈ X , then
Theorem 3.7 reduces to Browder coincidence theorem [4].

Theorem 3.9. Let I and J be finite index sets, {Ui}i∈I and {Vj} j∈J be families of
locally convex t.v.s. For each i∈ I and j ∈ J , let Xi be a nonempty convex metrizable
compact subsets of Ui and let Yj be a nonempty compact convex subsets of Vj . For
each i∈ I and j ∈ J , let Fj : X :=∏i∈I Xi � Yj and Gi : Y :=∏ j∈J Yj � Xi be two
multimaps satisfying the following conditions:

(i) Fj is an u.s.c. multimap with nonempty closed acyclic values;
(ii) Gi is a l.s.c. multimap with nonempty closed convex values.

Then there exist x̄ = (x̄i)i∈I ∈ X and ȳ = ( ȳ j) j∈J ∈ Y such that ȳ j ∈ Fj(x̄) and
x̄i ∈Gi( ȳ) for each i∈ I and j ∈ J .

Proof. Since Yj is compact for each j ∈ J , Y =∏ j∈J Yj is compact. By assump-
tion (ii) and following the same argument as in the proof of [20, Theorem 1],
for each i∈ I , there exists an u.s.c. multimap ϕi : Y � Xi with nonempty closed
convex values such that ϕi(y) ⊂ Gi(y) for all y ∈ Y . Let ϕ : Y � X defined by
ϕ(y)=∏i∈I ϕi(y) for all y ∈ Y , then ϕ is u.s.c. with nonempty convex compact
values. Define a multimap F : X � Y by F(x) =∏ j∈J Fj(x) for all x ∈ X , then
F : X � Y is also an u.s.c. multimap with nonempty closed acyclic values.

Define a multimap W : X ×Y � X ×Y by W(x, y)= (ϕ(y),F(x)) for all x ∈
X and for all y ∈ Y . It is easy to see that W is a compact u.s.c. multimap with
nonempty closed acyclic values. It follows from [17, Theorem 7] that there exists
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(x̄, ȳ)∈ X ×Y such that x ∈ ϕ( ȳ) and ȳ ∈ F(x̄). Therefore, x̄i ∈ Gi( ȳ) and ȳ j ∈
Fj(x̄) for each i∈ I and j ∈ J . �

Remark 3.10. In Theorem 3.5, if Fj is an u.s.c. multimap with nonempty closed
convex values for each j ∈ J , then J may be any index set.

Let I be any index set and, for each i ∈ I , let {Ui}i∈I be a family of locally
convex t.v.s. For each i ∈ I , let Xi be a nonempty convex subset in t.v.s. Ei for
each i∈ I . Let X =∏i∈I Xi, Xi =∏ j∈I, j �=i Xj and we write X = Xi×Xi. For each
x ∈ X , xi ∈ Xi denotes the ith coordinate and xi ∈ Xi the projection of x onto Xi,
and we also write x = (xi,xi).

Theorem 3.11. Let I be a finite index set and let {Ui}i∈I be a family of locally
convex t.v.s. For each i∈ I , let Xi be a nonempty compact convex subset of Ui and
let Fi : Xi � Xi and Gi : Xi � Xi be multimaps satisfying the following conditions:

(i) Fi is an u.s.c. multimap with nonempty closed acyclic values;
(ii) Xi =

⋃{intXi G
−
i (xi) : xi ∈ Xi} and Gi(xi) is convex for all xi ∈ Xi.

Then there exist x̄ = (x̄i)i∈I ∈ X and ū = (ūi)i∈I ∈ X such that x̄i ∈ Fi(ūi) and
ūi ∈Gi(x̄i) for all i∈ I .

Proof. Since Xi =
⋃{intXi G

−
i (xi) : xi ∈ Xi}, by [12, Proposition 1] and [21, The-

orem 1], Gi has a continuous selection gi : Xi→ Xi.
Define multimaps Pi : X � Xi and P : X � X by Pi(x)= Fi(gi(xi)) and P(x)=∏
i∈I Pi(x) for all x = (xi)i∈I ∈ X , then Pi is an u.s.c. multimap with nonempty

closed acyclic values for all i∈ I . Therefore, P : X � X is also an u.s.c. multimap
with nonempty closed acyclic values. Since X is a nonempty compact convex
subset in a locally convex t.v.s. E =∏i∈I Ei, it follows from [17, Theorem 7] that
there exists x̄ = (x̄i)i∈I ∈ X such that x̄ ∈ P(x̄) =∏i∈I Pi(x̄) =∏i∈I Fi(gi(x̄i)),
that is, for all i ∈ I , x̄i ∈ Fi(gi(x̄i)). For all i ∈ I , let ūi = gi(x̄i), then ūi ∈ Xi.
Hence, ūi = gi(x̄i)∈Gi(x̄i) and x̄i ∈ Fi(ūi) for all i∈ I . �

Remarks 3.12. (i) In Theorem 3.11, if Fi is an u.s.c. multimap with nonempty
closed convex values for each i∈ I , then I may be any index set.

(ii) The proofs and conditions between Theorem 3.7 and Theorem 3.11 are
somewhat different.

4. Applications of coincidence theorem for families of multimaps
to equilibrium problems

In this section, we establish the existence theorem of equilibrium problem with
m families of players and 2m families of constraints on strategy sets which has
been introduced by Lin et al. [14].

Let I be a finite index set and for each k ∈ I and j ∈ Jk, let Xkj , Yk, Yk, Y ,
Fkj , and Akj be the same as in introduction. For each k ∈ I and j ∈ Jk, let Wkj ∈
R

lk j
+ \{0} and Wk =

∏
j∈Jk Wkj . For each k ∈ I , let Ak : Yk � Yk be defined by
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Ak(yk) =∏ j∈Jk Akj (y
k) where yk = (xkj ) j∈Jk ∈ Yk and yk = (yl)l∈I,l �=k ∈ Yk. Let

SWk : Yk ×Yk � R be defined by

SWk
(
yk, y

k
)= ∑

j∈Jk
Wkj ·Fkj

(
xkj , y

k
)

=
{
u : u=

∑
j∈Jk

Wkj · zkj , for zkj ∈ Fkj
(
xkj , y

k
)}

.
(4.1)

For each k ∈ I , let MWk : Yk � Yk be defined by

MWk
(
yk
)= {yk ∈Ak

(
yk
)

: inf SWk
(
yk, y

k
)= inf SWk

(
Ak
(
yk
)
, yk
)}
,

M(y)=
∏
k∈I

MWk
(
yk
)
. (4.2)

Throughout the paper, we will use the above mentioned notations, unless
otherwise specified.

Theorem 4.1. For each k ∈ I and j ∈ Jk, let Xkj be a nonempty compact convex
subset of a locally convex t.v.s. Ekj satisfying the following conditions:

(i) the multimap SWk is continuous with compact values;
(ii) Akj : Yk � Xkj is a continuous multimap with nonempty closed convex val-

ues;
(iii) for all yk ∈ Yk, MWk (yk) is an acyclic set; and
(iv) for each k ∈ I , let Bk : Yk � Yk be a multimap with convex values and

Yk =
⋃{intYk B

−1
k (yk) : yk ∈ Yk}.

Then there exist ȳ = ( ȳk)k∈I ∈ Y , ȳk = (x̄kj ) j∈Jk , ū = (ūk)k∈I ∈ Y , ȳk ∈ Ak(ūk),
ūk ∈ Bk( ȳk), and z̄kj ∈ Fkj (x̄kj , ū

k) such that

zkj − z̄kj �∈ − intR
lk j
+ , (4.3)

for all zkj ∈ Fkj (xkj , ū
k), xkj ∈Akj (ū

k) and for all k ∈ I , j ∈ Jk.

Proof. By assumptions (i), (ii), (iii), and following the same argument as in the
proof of [13, Theorem 3.2], we show that MWk : Yk � Yk is an u.s.c. multimap
with nonempty compact acyclic values. Since Bk(yk) is convex for each k ∈ I ,
yk ∈ Yk, and Yk =

⋃{intYk B
−1
k (yk) : yk ∈ Yk}, it follows from Theorem 3.11

that there exist (ūk)k∈I ∈ Y and ( ȳk)k∈I ∈ Y such that ȳk ∈MWk (ūk) and ūk ∈
Bk( ȳk) for all k ∈ I . Therefore, for each k ∈ I , ȳk ∈Ak(ūk), and minSWk ( ȳk, ūk)=
minSWk (Ak(ūk), ūk) ≤minSWk (pk, ūk) for all pk ∈ Ak(ūk). Let ȳk = (x̄kj ) j∈Jk ∈
Ak(ūk). Following the same argument as in the proof of [13, Theorem 3.1], then
we show Theorem 4.1. �

Remark 4.2. It is easy to see that the conclusion of Theorem 4.1 remains true if
condition (iii) is replaced by
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(iii′) for each k ∈ I and for each fixed yk ∈ Yk, the multimap uk � SWk (uk, yk)
is R+-quasiconvex.

As a simple consequence of Theorem 4.1, we give a simple proof of the fol-
lowing corollaries.

Corollary 4.3 ([14]). For each k ∈ I and j ∈ Jk, let Xkj be a nonempty compact
convex subset of a locally convex t.v.s. Ekj , let Akj : Yk � Xkj be a multimap with
nonempty convex values such that for each xkj ∈ Xkj , A

−1
kj

(xkj ) is open in Yk and

Ākj is an u.s.c. multimap. For each k ∈ I , let Bk : Yk � Yk be a multimap with
convex values satisfying the following conditions:

(i) Yk =
⋃{intYk B

−1
k (yk) : yk ∈ Yk};

(ii) SWk : Yk ×Yk � R is a continuous multimap with compact values;
(iii) for any yk ∈ Yk, uk � SWk (uk, yk) is R+-quasiconvex.

Then there exist ȳ = ( ȳk)k∈I ∈ Y , ū = (ūk)k∈I ∈ Y , ȳk ∈ Āk(ūk), ȳk = (x̄kj ) j∈Jk ,
ūk ∈ Bk( ȳk), and z̄kj ∈ Fkj (x̄kj , ū

k) such that

zkj − z̄kj �∈ − intR
lk j
+ , (4.4)

for all zkj ∈ Fkj (xkj , ū
k), xkj ∈ Ākj (ū

k) and for all k ∈ I , j ∈ Jk.

Proof. Since A−1
kj

(xkj ) is open in Yk for each xkj ∈ Xkj , Akj is a l.s.c. multimap. It

is easy to see that Ākj is also a l.s.c. multimap. By assumption, Ākj is an u.s.c. mul-
timap. Therefore, Ākj is a continuous multimap with nonempty convex closed
values. Let Āk =

∏
j∈Jk Ākj . Applying assumption (iii) and following the same ar-

gument as in [13, Theorem 3.3], it is easy to see that HWk (yk) is an convex set
for all yk ∈ Yk, where

HWk
(
yk
)= {yk ∈ Āk

(
yk
)

: inf SWk
(
yk, y

k
)= inf SWk

(
Āk
(
yk
)
, yk
)}
. (4.5)

By Theorem 4.1, there exist ȳ=( ȳk)k∈I∈Y , ū=(ūk)k∈I ∈ Y with ȳk = (x̄kj ) j∈Jk
∈ Āk(ūk), and ūk ∈ Bk( ȳk), z̄kj ∈ Fkj (x̄kj , ū

k) such that

zkj − z̄kj �∈ − intR
lk j
+ (4.6)

for all zkj ∈ Fkj (xkj , ū
k), xkj ∈ Ākj (ū

k) and for all k ∈ I , j ∈ Jk. �

Corollary 4.4. For each k ∈ I and j ∈ Jk, let Xkj be a nonempty compact convex
subset of a locally convex t.v.s. Ekj satisfying the following conditions:

(i) SWk is a continuous multimap with compact values;
(ii) for each j ∈ Jk, Akj : Yk � Xkj is a continuous multimap with nonempty

closed convex values;
(iii) for all yk ∈ Yk, MWk (yk) is an acyclic set.
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Then there exist ȳ = ( ȳk)k∈I ∈ Y , ū = (ūk)k∈I ∈ Y , ȳk = (x̄kj ) j∈Jk ∈ Ak(ūk), and
z̄kj ∈ Fkj (x̄kj , ū

k) such that

zkj − z̄kj �∈ − intR
lk j
+ , (4.7)

for all zkj ∈ Fkj (xkj , ū
k), xkj ∈ Ākj (ū

k) and for all k ∈ I , j ∈ Jk.

Proof. For each k ∈ I , let Bk : Yk � Yk be defined by Bk(yk) = Yk, then all the
conditions of Theorem 4.1 are satisfied. Therefore, there exist ȳ = ( ȳk)k∈I ∈ Y ,
ū= (ūk)k∈I ∈ Y , ȳk = (x̄kj ) j∈Jk ∈ Āk(ūk), ūk ∈ Bk( ȳk), and z̄kj ∈ Fkj (x̄kj , ū

k) such
that

zkj − z̄kj �∈ − intR
lk j
+ , (4.8)

for all zkj ∈ Fkj (xkj , ū
k), xkj ∈ Ākj (ū

k) and for all k ∈ I , j ∈ Jk. �

Theorem 4.5. For each k ∈ I and j ∈ Jk, let Xkj be a nonempty compact convex
subset of a locally convex t.v.s. Ekj satisfying the following conditions:

(i) Fkj is a continuous multimap with nonempty closed values;
(ii) Akj : Yk � Xkj is a continuous multimap with nonempty closed values;

(iii) for all yk ∈ Yk, {xkj ∈Akj (y
k) : Fkj (xkj , y

k)∩wMinFkj (Akj (y
k), yk) �= ∅}

is an acyclic set;
(iv) for each k ∈ I , Bk : Yk � Yk is a multimap with convex values and Yk =⋃{intYk B

−1
k (yk) : yk ∈ Yk}.

Then there exist ȳ = ( ȳk)k∈I ∈ Y , ū= (ūk)k∈I ∈ Y , ȳk = (x̄kj ) j∈Jk ∈ Āk(ūk), ūk ∈
Bk( ȳk), and z̄kj ∈ Fkj (x̄kj , ū

k) such that

zkj − z̄kj �∈ − intR
lk j
+ , (4.9)

for all zkj ∈ Fkj (xkj , ū
k), xkj ∈Akj (ū

k) and for all k ∈ I , j ∈ Jk.

Proof. Define a multimap Mkj : Yk � Xkj by Mkj (y
k)= {xkj ∈ Akj (y

k) : Fkj (xkj ,
yk)∩wMinFkj (Akj (y

k), yk) �= ∅} for all yk ∈ Yk and for each k ∈ I and j ∈ Jk.
Since Fkj is a continuous multimap and Xkj is compact for each k ∈ I and j ∈
Jk, it follows from [2, Proposition 3, page 42] that Fkj is a compact continuous
multimap with closed values. By [2, Proposition 2, page 41], Mkj is a closed
compact u.s.c. multimap for each k ∈ I and j ∈ Jk. Moreover, for each k ∈ I and
j ∈ Jk, Mkj is an u.s.c. multimap with compact acyclic values. Define a multimap
Mk : Yk � Yk by Mk(yk) =∏ j∈Jk Mkj (y

k) for all yk ∈ Yk and for each k ∈ I .
Then Mk is also an u.s.c. multimap with compact acyclic values for each k ∈ I .
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By Theorem 3.11, there exist (ūk)k∈I ∈ Y and ( ȳk)k∈I ∈ Y such that ȳk ∈
Mk(ūk) and ūk ∈ Bk( ȳk) for all k ∈ I . Let ȳk=(x̄kj ) j∈Jk∈Mk(ūk)=∏ j∈Jk Mkj (ū

k),
then x̄kj ∈Mkj (ū

k) for each k ∈ I and j ∈ Jk. This implies, there exists z̄kj ∈
Fkj (x̄kj , ū

k) such that

zkj − z̄kj �∈ − intR
lk j
+ , (4.10)

for all zkj ∈ Fkj (xkj , ū
k), xkj ∈Akj (ū

k) and for all k ∈ I , j ∈ Jk. �

Applying Theorem 4.5 and following the same argument as in the proof of
Corollary 4.3, we have the following corollary.

Corollary 4.6. For each k ∈ I and j ∈ Jk, let Xkj be a nonempty compact convex
subset of a locally convex t.v.s. Ekj satisfying the following conditions:

(i) Fkj is a continuous multimap with nonempty closed values;
(ii) Akj : Yk � Xkj is a multimap with nonempty convex values such that for

each xkj ∈ Xkj , A
−1
kj

(xkj ) is open in Yk and Ākj is an u.s.c. multimap;

(iii) for all yk ∈ Yk, {xkj ∈Akj (y
k) : Fkj (xkj , y

k)∩wMinFkj (Akj (y
k), yk) �= ∅}

is an acyclic set; and
(iv) for each k ∈ I , let Bk : Yk � Yk be a multimap with convex values and

Yk =
⋃{intYk B

−1
k (yk) : yk ∈ Yk}.

Then there exist ȳ = ( ȳk)k∈I ∈ Y , ū= (ūk)k∈I ∈ Y , ȳk = (x̄kj ) j∈Jk ∈ Āk(ūk), ūk ∈
Bk( ȳk), and z̄kj ∈ Fkj (x̄kj , ū

k) such that

zkj − z̄kj �∈ − intR
lk j
+ , (4.11)

for all zkj ∈ Fkj (xkj , ū
k), xkj ∈ Ākj (ū

k) and for all k ∈ I , j ∈ Jk.

Corollary 4.7. Let I be a finite index set. For each k ∈ I , let Xk be a nonempty
compact convex subset of a locally convex t.v.s. and let fk : X →R be a continuous
function, and for each xk ∈ Xk, the function xk → fk(xk,xk) is quasiconvex. Then
there exist x̄ = (x̄k)k∈I ∈ X and ȳ = ( ȳk)k∈I ∈ X ,

fk
(
xk, ȳ

k
)≥ fk

(
x̄k, ȳ

k
)
, (4.12)

for all xk ∈ Xk and for all k ∈ I .

Proof. For each k ∈ I , Jk is a singleton. By assumption, {xk ∈ Xk : fk(xk, yk) =
Min fk(Xk, yk)} is a convex set. The conclusion of Corollary 4.7 follows from
Corollary 4.6 by taking Ak(xk)= Xk and Bk(xk)= Xk for all k ∈ I . �

Remark 4.8. (i) The index I in Corollary 4.7 can be any index set.
(ii) The conclusion between Corollary 4.7 and Nash equilibrium theorem

[16] is somewhat different.
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5. Abstract economics with two families of players

In this section, we consider the following abstract economics with two families
of players.

Let I and J be any index sets and let {Ui}i∈I and {Vj} j∈J be families of lo-
cally convex t.v.s. For each i ∈ I and j ∈ J , let Xi and Yj be nonempty con-
vex subsets each in Ui and Vj , respectively. Two families of abstract economy
Γ = (Xi,Ai,Bi,Pi,Yj ,Cj ,Dj ,Qj), where Ai,Bi : Y :=∏ j∈J Yj � Xi, and Cj,Dj :
X :=∏i∈I Xi � Yj are constraint correspondences, Pi : Y � Xi and Qj : X � Yj

are preference correspondences. An equilibrium for Γ is to find x̄ = (x̄i)i∈I ∈ X
and ȳ = ( ȳ j) j∈J ∈ Y such that for each i ∈ I and j ∈ J , x̄i ∈ Bi( ȳ), ȳ j ∈ Dj(x̄),
Ai( ȳ)∩Pi( ȳ)=∅, and Cj(x̄)∩Qj(x̄)=∅.

With the above notation, we have the following theorem.

Theorem 5.1. Let Γ= (Xi,Ai,Bi,Pi,Yj ,Cj ,Dj ,Qj)i∈I, j∈J be two families of abstract
economics satisfying the following conditions:

(i) for each i∈ I and y ∈ Y , co(Ai(y))⊂ Bi(y) and Ai(y) is nonempty;
(ii) for each j ∈ J and x ∈ X , co(Cj(x))⊂Dj(x) and Cj(x) is nonempty;

(iii) for each i ∈ I , Y =⋃xi∈Xi
intY [{(coPi)−(xi)∪ (Y \Hi)}∩A−i (xi)], where

Hi = {y ∈ Y : Ai(y)∩Pi(y) �= ∅};
(iv) for each j∈ J ,X=⋃yj∈Yj

intX[{(coQj)−(yj)∪(X \Mj)}∩C−j (yj)], where
Mj = {x ∈ X : Cj(x)∩Qj(x) �= ∅};

(v) for each i∈I , j∈ J and each x = (xi)i∈I∈X , y=(yj) j∈J ∈ Y , xi �∈co(Pi(y)),
and yi �∈ coQj(x);

(vi) Dj is compact.

Then there exist x̄ = (x̄i)i∈I ∈ X and ȳ = ( ȳ j) j∈J ∈ Y such that x̄i ∈ Bi( ȳ), ȳ j ∈
Dj(x̄), Ai( ȳ)∩Pi( ȳ)=∅, and Cj(x̄)∩Qj(x̄)=∅ for all i∈ I and j ∈ J .

Proof. For each i∈ I and j ∈ J , we define multivalued maps Si, Ti : Y � Xi by

Si(y)=

coPi(y)∩Ai(y), for y ∈Hi,

Ai(y), for y ∈ Y \Hi,

Ti(y)=

coPi(y)∩Bi(y), for y ∈Hi,

Bi(y), for y ∈ Y \Hi,

(5.1)

and Fj ,Gj : X � Yi by

Fj(x)=

coQj(x)∩Cj(x), for x ∈Mj,

Cj(x), for x ∈ X \Mj,

Gj(x)=

coQj(x)∩Dj(x), for x ∈Mj,

Dj(x), for x ∈ X \Mj.

(5.2)
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Then for each i∈ I , j ∈ J , x ∈ X , y ∈ Y , coSi(y)⊆ Ti(y), Si(y) is nonempty, and
coFj(x)⊆Gj(x), Fj(x) is nonempty.

For each i∈ I , j ∈ J , x ∈ X , and y ∈ Y , it is easy to see that

S−i
(
xi
)= [{(coPi

)−(
xi
)∪ (Y \Hi

)}]∩A−i
(
xi
)

(5.3)

and F−j (yj)= [{(coQj)−(yj)∪ (X \Mj)}]∩C−j (yj). From (iii),

Y =
⋃
xi∈Xi

intY
[{(

coPi
)−(

xi
)∪ (Y \Hi

)}∩A−i
(
xi
)]= ⋃

xi∈Xi

intY S−i
(
xi
)
. (5.4)

From (iv),

X =
⋃

yj∈Yj

intX
[{(

coQj
)−(

yj
)∪ (X \Xj

)}∩C−j
(
yj
)]= ⋃

yj∈Yj

intX F−j
(
yj
)
.

(5.5)

Then all conditions of Theorem 3.1 are satisfied. It follows from Theorem 3.1,
there exist x̄ = (x̄i)i∈I ∈ X and ȳ = ( ȳ j) j∈J ∈ Y such that x̄i ∈ Ti( ȳ) and ȳ j ∈
Gj(x̄) for all i ∈ I and j ∈ J . By (v), we have x̄i ∈ Bi( ȳ), ȳ j ∈ Dj(x̄), Ai( ȳ)∩
Pi( ȳ)=∅, and Cj(x̄)∩Qj(x̄)=∅. �
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