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Abstract

In this paper, we establish systems of coincidence theorems from which solution of sys
inequalities and system of minimax theorems was established in this paper.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In 1937 von Neumann [18] established the well-known coincidence theorem.
then, there have been a lot of generalization and applications, see [3,8,12], [12, pp.
and references therein. Recently Deguire and Lassonde [5] and Deguire et al. [6] s
some system of coincidence theorems of KF families [6] and give some of its applica
In [5,6], the authors only established the existence theorems of a pair of multimaps
families of multimaps. Recently, Ansari et al. [2], Yu and Lin [20], and Lin and Chen
studied the coincidence theorems for two families of multimaps. Ansari et al. [2] an
and Chen [14] also gave some applications to the study of the equilibrium proble
this paper, we establish some systems of coincidence theorems, from which the ex
theorem of system of inequalities and system of minimax theorems are establishe
system of minimax theorems we establish in this paper are quite different from the mi
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theorem in [5]. Our results on system of coincidence theorems are different from [2,5
20] and our results include some results of [3] and many well-known results in the lite
as special cases.

2. Preliminaries

Let X andY be nonempty sets. A multimapT :X� Y is a function fromX into the
power set ofY . Let A ⊂ X, x ∈ X, and y ∈ Y . We defineT (A) = ⋃{T (x) | x ∈ A};
x ∈ T −(y) if and only if y ∈ T (x).

For topological spacesX andY , A⊂X, we denote intX A to be the interior ofA in X;
A is said to be compactly closed (respectively, open) if for every nonempty compact
K of X, A ∩K is closed (respectively, open) inK. The compact closure ofA (see [7]) is
defined by

cclA=
⋂

{B ⊂X |A⊂ B andB is compactly closed inX}
and the compactly interior ofA is defined by

cintA=
⋃

{B ⊂X | B ⊂A andB is compactly open inX}.
It is easy to see that

ccl(X\A)=X\cintA.

Let T :X � Y , T is said to be transfer compactly closed valued (respectively, tra
closed valued) onX [7,17], if for everyx ∈ X, y ∈ T (x), there existsx ′ ∈ X such that
y /∈ cclT (x ′) (respectively,y /∈ clT (x ′)); T is said to be transfer compactly open valu
(respectively, transfer open valued) onX if for everyx ∈X, y ∈ T (x), there existsx ′ ∈X
such thaty ∈ cintT (x ′) (respectively,y ∈ intT (x ′)).

Definition [17]. Let X andY be two topological spaces,f :X × Y → R ∪ {−∞,∞} a
function,f is said to be transfer compactly (respectively, transfer) l.s.c. iny if for each
y ∈ Y and eachγ ∈ R with y ∈ {u ∈ Y : f (x,u) > γ }, there exists anx ′ ∈ X such that
y ∈ cint{y ∈ Y : f (x ′, y) > γ } (respectively,y ∈ int{y ∈ Y : f (x ′, y) > γ }); f is said to be
transfer compactly (respectively, transfer) u.s.c. iny if −f is transfer compactly (respe
tively, transfer) l.s.c. iny.

Remark 1. (a) It is easy to see that if for eachx ∈ X, y → f (x, y) is l.s.c., thenf is
transfer l.s.c. iny.

(b) Let F :X� Y be defined byF(x)= {y ∈ Y | f (x, y) > γ }. If f (x, y) is transfer
compactly (respectively, transfer) l.s.c. iny, thenF :X� Y is transfer compactly (respe
tively, transfer) open valued onX.

Following the method of Chang et al. [4], we have the following lemma.
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Lemma 2.1. LetX andY be two topological spaces andG :X� Y be a multivalued map
ThenG is transfer compactly open valued if and only if

⋃
x∈X

G(x)=
⋃
x∈X

cintG(x).

Proof. Suppose thatG is transfer compactly open valued. Lety ∈ ⋃
x∈XG(x), then

there existsx1 ∈ X such thaty ∈ G(x1). SinceG is transfer compactly open value
there existsx ′ ∈ X such thaty ∈ cintG(x ′) ⊂ ⋃

x∈X cintG(x). Therefore,
⋃
x∈XG(x)⊂⋃

x∈X cintG(x). Since cintG(x) ⊂ G(x),
⋃
x∈X cintG(x) ⊂ ⋃

x∈XG(x). Therefore,⋃
x∈XG(x) = ⋃

x∈X cintG(x). Conversely, if
⋃
x∈XG(x) = ⋃

x∈X cintG(x). For each
x ∈X andy ∈G(x), we havey ∈ ⋃

x∈XG(x)=
⋃
x∈X cintG(x). Therefore, there exist

x ′ ∈X such thaty ∈ cintG(x ′). HenceG is transfer compactly open valued.✷
Applying Lemma 2.1 and following the same argument of Proposition 1 [13], we

the following lemma.

Lemma 2.2. LetX andY be two topological spaces andG :X� Y be a multivalued map
Then the following statements are equivalent:

(i) G(x) is nonempty for eachx ∈X andG− :Y �X is transfer compactly open value;
(ii) X = ⋃

y∈Y cintG−(y).

Proof. (ii) ⇒ (i). SupposeX = ⋃
y∈Y cintG−(y). Then for eachx ∈ X, we havex ∈⋃

y∈Y cintG−(y). There existsy ∈ Y such thatx ∈ cintG−(y) ⊂ G−(y). Therefore
y ∈ G(x) and G(x) is nonempty. SinceX = ⋃

y∈Y cintG−(y) ⊆ ⋃
y∈Y G−(y) ⊆ X,

X = ⋃
y∈Y cintG−(y) = ⋃

y∈Y G−(y). By Lemma 2.1,G− :Y � X is transfer com-
pactly open valued and (i) is true. Conversely, suppose that (i) is true, then for
x ∈ X, G(x) is nonempty andG− :Y � X is transfer compactly open valued. Therefo
X = ⋃

y∈XG−(y) and by Lemma 2.1 we have that
⋃
y∈XG−(y) = ⋃

y∈X cintG−(y).
From this,X = ⋃

y∈X cintG−(y) and (ii) is true. ✷
The following example shows a set which is transfer compactly open, but it is not

pactly open.

Example [19]. Let X = Y = [0,2) andF : X � Y be defined byF(x) = [x,2). Then
F−(y)= [0, y] andX = ⋃{intX F−(y): y ∈ Y } ⊆ ⋃{cintF−(y): y ∈ Y } ⊂X. Therefore
X = ⋃{cintF−(y): y ∈ Y }. By Lemma 2,F− :Y �X is transfer compactly open value
butF−(y)= [0, y] is not compactly open.

Let X be a nonempty convex subset of a real topological vector spaceE. A function
f :X→ R is said to be quasiconvex if for eachx, y ∈X, λ ∈ [0,1], f [λx + (1 − λ)y] �
max{f (x), f (y)}; f is said to be quasiconcave if−f is quasiconvex.

Throughout this paper, all topological spaces are assumed to be Hausdorff and to
ical vector spaces will be denoted by t.v.s.
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3. System of coincidence theorem

Theorem 3.1. Let I be an index set,{Ei}i∈I be a family of t.v.s. For eachi ∈ I , letXi be
a nonempty convex subset ofEi , let Si,Fi :Xi = ∏

j∈I j �=i Xj �Xi andHi,Ti :Xi �Xi

be multimaps satisfying the following conditions:

(i) For all xi ∈Xi , coSi(xi)⊂ Fi(xi);
(ii) Si has nonempty values on each point ofXi andS−

i is transfer compactly open value
onXi;

(iii) If Xi is not compact, there exists a nonempty compact subsetK(i) ofXi such that for
each finite subsetPi ofXi , there exists a compact convex subsetLPi ofXi containing
Pi such thatXi\K(i)⊂ ⋃{cintS−

i (yi): yi ∈LPi };
(iv) For eachxi ∈Xi , coHi(xi)⊂ Ti(xi);
(v) Hi has nonempty values onXi andH−

i is transfer compactly open valued onXi;
(vi) If Xi is not compact, there exists a nonempty compact subsetM(i) ofXi such that for

each finite subsetQi ofXi , there exists a compact convex subsetLQi ofXi such that

Xi\M(i)⊂
⋃{

cintH−
i (x

i): xi ∈LQi
}
.

Then there exist̄x = (x̄i)i∈I ∈X and ȳ = (ȳi)i∈I ∈X = ∏
i∈I Xi such that for eachi ∈ I ,

ȳi ∈ Fi(x̄i) and x̄i ∈ Ti(ȳi).

Proof. By (ii) and Lemma 2.2,Xi = ⋃{cintS−
i (yi): yi ∈Xi} for eachi ∈ I . SinceK(i)

is a compact subset ofXi , there exists a finite subsetPi of Xi such that

K(i)⊂
⋃{

cintS−
i (yi): yi ∈ Pi

}
. (1)

Similarly, by (v) there exists finite subsetQi of Xi such that

M(i)⊂
⋃{

cintH−
i (x

i): xi ∈Qi
}
. (2)

By (iii),

LQi\K(i)⊂Xi\K(i)⊂
⋃{

cintS−
i (yi): yi ∈LPi

}
. (3)

By (1) and (3),

LQi ⊂
⋃{

cintS−
i (xi): xi ∈ LPi

}
. (4)

Similarly by (2) and (iv),

LPi ⊂
⋃{

cintH−
i (x

i): xi ∈LQi
}
. (5)

By (5), there exists{ai1, . . . , aimi } in LQi such that

LPi ⊂
mi⋃

cintH−
i (aij ). (6)
j=1
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By (4), there exists{bi1, . . . , bi"i } in LPi such that

LQi ⊂
"i⋃
j=1

cintS−
i (bij ). (7)

LetAi = co{ai1, . . . , aimi }, Bi = co{bi1, . . . , bi"i }, andB = ∏
i∈I Bi . LetWi be the vector

subspace ofEi generated by{bi1, . . . , bis}. SinceWi is finite dimensional,Wi andW =∏
i∈I Wi are locally convex t.v.s.Ai , Bi , andB are compact convex subsets ofLQi , Wi ,

andW , respectively.
By (7),

Ai =
"i⋃
j=1

(
cintS−

i (bij )
) ∩Ai. (8)

By (6),

Bi =
mi⋃
j=1

(
cintH−

i (aij )
) ∩Bi. (9)

By (8) and using partition of unity, there exist continuous functionsλi1, . . . , λi"i :Ai →
[0,1] such that

∑mi
k=1λik(x

i) = 1 and for eachk = 1, . . . , "i , λik(xi) = 0 for xi /∈
cintS−

i (bik) ∩Ai . For eachi ∈ I , we definefi :Ai → Bi by

fi(x
i)=

"i∑
k=1

λik(x
i)bik for xi ∈Ai.

For eachxi ∈Xi and eachk with λik(xi) �= 0, we havexi ∈ cintS−
i (bik) ∩Ai ⊆ S−

i (bik).
Therefore,bik ∈ Si(xi) for eachi ∈ I . By (i), for eachi ∈ I , fi(xi) ∈ coSi(xi) ⊆ Fi(xi)
for all xi ∈ Ai andfi :Ai → Bi is a continuous function. Similarly by (9), for eachi ∈ I ,
there exists a continuous functiongi :Bi → Ai such thatgi(yi) ∈ coHi(yi) ⊂ Ti(yi) for
all yi ∈Bi . Let h :B→B be defined byh(x)= ∏

i∈I fi(gi(xi)).
B is a compact convex subset of the locally convex t.v.s.

∏
i∈I Wi =W . Then by Ty-

chnoff’s fixed point theorem, there exists̄y = (ȳi)i∈I ∈ B ⊆ X such thatȳ = h(ȳ) =∏
i∈I fi(gi(ȳi)).Thereforeȳi = fi(gi(ȳi)) for all i ∈ I . Let x̄i = gi(ȳi). Then x̄i =

gi(ȳi) ∈ Ti(ȳi), ȳi ∈ fi(x̄i) ∈ Fi(x̄i) for all i ∈ I andx̄ = (x̄i)i∈I ∈X. ✷
As a consequence of Lemma 2.2 and Theorem 3.1, we have the following theore

Theorem 3.2. Let I be an index set,{Ei}i∈I be a family of t.v.s. For eachi ∈ I , letXi be
a nonempty convex subset ofEi,Si,Fi :Xi = ∏

j∈Ij �=i Xj �Xi andHi,Ti :Xi �Xi be
multimaps satisfying the following conditions:

(i) For all xi ∈Xi , co(Si(xi))⊆ Fi(xi);
(ii) Xi = ⋃{intXi S

−(xi): xi ∈Xi};
i
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(iii) If Xi is not compact, there exists a compact subsetK(i) ofXi such that for each finite
subsetPi of Xi , there exists a compact convex subsetLPi of Xi containingPi such
thatXi\K(i)⊂ ⋃{cintS−

i (yi): yi ∈LPi };
(iv) For eachxi ∈Xi , coHi(xi)⊆ Ti(xi);
(v) Xi = ⋃{intXi H

−
i (x

i): xi ∈Xi};
(vi) If Xi is not compact, there exists a nonempty compact subsetM(i) ofXi such that for

each finite subsetQi ofXi , there exists a compact convex subsetLQi ofXi such that
Xi\M(i)⊂ ⋃{cintH−

i (x
i): xi ∈ LQi }.

Then there exist̄x = (x̄i)i∈I ∈X and ȳ = (ȳi)i∈I ∈X such that for eachi ∈ I , ȳi ∈ Fi(x̄i)
and x̄i ∈ Ti(ȳi).

Proof. Since intXi S
−
i (xi)⊂ cintS−

i (xi), by (ii) we haveXi = ⋃{intXi S
−
i (xi): xi ∈ Xi}

⊂ ⋃{cintS−
i (xi): xi ∈ Xi} ⊂ Xi . Therefore,Xi = ⋃{cintS−

i (xi): xi ∈ Xi}. It follows
from Lemma 2.2 thatS−

i :Xi � Xi is transfer compactly open onXi andSi(xi) is non-
empty for allxi ∈Xi .

Similarly, by (v) for all xi ∈ Xi , Hi(xi) is nonempty andH−
i :Xi � Xi is transfer

compactly open onXi . Since intXi S
−
i (yi)⊆ cintS−

i (yi), it follows from (iii) thatXi\K(i)
⊂ ⋃{cintS−

i (yi): yi ∈ LPi }.
Similarly, Xi\M(i) ⊂ ⋃{cintH−

i (x
i): xi ∈ LQi }. Then all the conditions of Theo

rem 3.1 are satisfied and the conclusion of Theorem 3.2 follows from Theorem 3.1.✷
Remark 2. If for all i ∈ I , xi ∈Xi , Si(xi) is nonempty, andS−

i (yi) is open for allyi ∈Xi ,
then condition (ii) of Theorem 3.2 is satisfied. Similarly, for alli ∈ I andxi ∈Xi , Hi(xi)
is nonempty andH−

i (x
i) is open for allxi ∈ Xi , then condition (v) of Theorem 3.2

satisfied.

If I = {1,2} and for alli ∈ I , Xi is compact, then by Theorem 3.2, it is easy to sh
the Fan’s coincidence theorem.

Corollary 3.1 [9]. LetX ⊂E andY ⊂ Z be nonempty compact convex sets in the t.v.E
andZ, respectively. LetA,B :X� Y be two multivalued maps such that

(i) Ax is open andB(x) is a nonempty convex set for eachx ∈X;
(ii) B−y is open andA−y is a nonempty convex set for eachy ∈ Y .

Then there existsx0 ∈X such thatAx0 ∩Bx0 = ∅.

Remark 3. (a) The coercivity conditions used in Theorem 10 in [6] and Theorem
are different. Theorem 10 in [6] assume one multivalued map in each family satisfi
coercivity conditions. The conclusions of Theorem 10 in [6] and Theorem 4a in [5] ar
there exist one pair of multivalued maps among two families of multivalued maps h
a coincidence point. The proofs of Theorem 10 in [5] and Theorem 3.1 are different.
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(b) In [2,14,20], the authors also establish system of coincidence theorems for tw
ilies of multivalued maps, but the conditions, proofs and the conclusions of Theorem
3.6 in [14], Theorem 8 in [20], and Theorem 2.1 in [2] are different from Theorems
and 3.2.

(c) It is very easy to see the coercivity condition in Theorem 3.1 or 3.2 is weaker
the coercivity conditions in [1,10,11,15].

4. Applications of system of coincidence theorems

Theorem 4.1. Let I be an index sets,{Ei}i∈I be family of t.v.s. For eachi ∈ I , letXi be
a nonempty convex subsets ofEi , Zi be a real t.v.s.,Ci a closed convex solid cone(i.e.,
intCi �= ∅) in Zi , andAi,Bi :Xi × Xi � Z and Pi,Qi :Xi × Xi � Zi be multimaps
satisfying the following conditions:

(1) For all x ∈ X, Ai(x) �⊆ intCi impliesBi(x) �⊆ intCi and Pi(x) �⊆ − intCi implies
Qi(x) �⊆ − intCi;

(2) For all xi ∈Xi , the set{yi ∈Xi |Ai(xi, yi)⊆ intCi} is convex and for allyi ∈Xi the
set{xi ∈Xi | Pi(xi, yi)⊆ − intCi} is convex;

(3) The multimapyi ∈ Xi → {xi ∈ Xi | Bi(xi, yi) �⊆ intCi} is transfer compactly close
onXi and the multimapxi ∈Xi → {yi ∈Xi |Qi(xi, yi) �⊆ − intCi} is transfer com-
pactly closed onXi;

(4) For all i ∈ I andxi ∈Xi , there existsyi ∈Xi such thatBi(xi, yi)⊆ intCi;
(5) If Xi is not compact, there exist a nonempty compact subsetK(i) ofXi and a compac

convex subsetDi ofXi such that for eachxi ∈Xi\K(i), there existsyi ∈Xi such that
xi ∈ cint{ui ∈Xi | Bi(ui, yi)⊆ intCi};

(6) For all i ∈ I , yi ∈Xi , there existsxi ∈Xi such thatQi(xi, yi)⊆ − intCi;
(7) If Xi is not compact, there exist a nonempty compact subsetM(i) ofXi and a compac

convex subsetLi ofXi such that for eachyi ∈Xi\M(i), there existsxi ∈ Li such that
yi ∈ cint{ui ∈Xi |Qi(xi, ui)⊆ − intCi}.

Then there exist̄x = (x̄i)i∈I ∈X = ∏
i∈I Xi , ȳ = (ȳi)i∈I ∈X such thatAi(x̄i, ȳi)⊆ intCi

andPi(x̄i, ȳi)⊆ − intCi for all i ∈ I .

Proof. For eachi ∈ I , we defineSi, Ti :Xi � Xi by Si(xi) = {yi ∈ Xi | Bi(xi, yi) ⊆
intCi}, Ti(xi) = {yi ∈ Xi | Ai(xi, yi) ⊆ intCi}, andFi,Gi :Xi � Xi by Fi(yi) = {xi ∈
Xi |Qi(xi, yi)⊆ − intCi},Gi(yi)= {xi ∈Xi | Pi(xi, yi)⊆ − intCi}.

(1) and (2) imply that co(Si(xi))⊆ Ti(xi) for all xi ∈ Xi and co(Fi(yi))⊆Gi(yi) for
all yi ∈Xi .

(3) implies thatS−
i is transfer compactly open onXi andF−

i is transfer compactly ope
onXi .

(4) implies that for allxi ∈Xi , Si(xi) is nonempty. Therefore,Si(xi) is nonempty on
each compact subset ofXi and condition (ii) of Theorem 3.1 is satisfied.
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For each finite subsetNi of 〈Xi〉 andRi of 〈Xi〉, let LNi = co{Ci ∪ Ni} andLRi =
co{Di ∪ Ri}. ThenLNi is a compact convex subset ofXi containingNi andLRi is a
compact convex subset ofXi containingRi .

(5) implies thatXi \K(i)⊂ ⋃{cintS−
i (yi): yi ∈LNi }.

(6) implies that for allyi ∈Xi , Fi(yi) is nonempty. This together with (3) imply cond
tion (v) of Theorem 3.1.

(7) implies thatXi \K(i)⊂ ⋃{cintF−
i (x

i): xi ∈LRi }.
Then, by Theorem 4.1 there existx̄ = (x̄i)i∈I ∈X andȳ = (ȳi)i∈I ∈X such that

ȳi ∈ Ti(x̄i) and x̄i ∈Gi(ȳi).
Therefore,Ai(x̄i, ȳi)⊆ intCi andPi(x̄i, ȳi)⊆ − intCi . ✷

As a simple consequence of Theorem 4.1 we have the following theorem which
lishes the existence of solution for a system of inequalities.

Theorem 4.2. Let I be an index set and for eachi ∈ I , Xi be a nonempty convex subset
t.v.s.Ei,fi , gi :Xi ×Xi → R, pi, qi :Xi ×Xi → R be functions, and{ai}i∈I and{bi}i∈I
be families of real numbers. Suppose that for eachi ∈ I , the following conditions hold:

(1) gi(x)� fi(x) andpi(x)� qi(x) for all x ∈X;
(2) For eachxi ∈Xi , xi → fi(x

i, xi) is quasiconcave onXi and for eachxi ∈Xi , xi →
pi(x

i, xi) is quasiconvex onXi;
(3) For eachxi ∈ Xi , xi → gi(x

i, xi) is transfer compactly l.s.c. onXi and for each
xi ∈Xi , xi → qi(x

i, xi) is transfer compactly u.s.c. onXi;
(4) For xi ∈Xi , there existxi ∈Xi such thatgi(xi, xi) > ai;
(5) If Xi is not compact, there exist a nonempty compact subsetK(i) ofXi and a nonempty

compact convex subsetDi ofXi such that for eachxi ∈Xi\K(i), there existsyi ∈Di
such thatxi ∈ cint{ui ∈Xi | gi(ui , yi) > ai};

(6) For eachxi ∈Xi , there existsxi ∈Xi such thatqi(xi, xi) < bi;
(7) If Xi is not compact, there exist a nonempty compact subsetM(i) of Xi and a non-

empty compact convex subsetLi of Xi such that for eachyi ∈ Xi\M(i), there exists
xi ∈ Li such thatyi ∈ cint{ui ∈Xi | qi(xi, ui) < bi}.

Then there exist̄x = (x̄i)i∈I ∈X and ȳ = (ȳi)i∈I ∈X such that

fi(x̄i , ȳi) > ai and pi(x̄i, ȳi) < bi for all i ∈ I.

Proof. For eachi ∈ I , letCi = [0,∞) andAi,Bi,Pi,Qi :Xi ×Xi → R be defined by

Ai(x
i, xi)= fi(xi, xi)− ai, Bi(x

i, xi)= gi(xi, xi)− ai,
and

Pi(x
i, xi)= pi(xi, xi)− bi, Qi(x

i, xi)= qi(xi, xi)− bi.
Then all the conditions of Theorem 4.1 are satisfied. It follows from Theorem 4.1 that
existx̄ = (x̄i)i∈I ∈X andȳ = (ȳi)i∈I ∈X such thatfi(x̄i , ȳi) > ai andpi(x̄i, ȳi) < bi for
all i ∈ I . ✷



416 L.-J. Lin / J. Math. Anal. Appl. 285 (2003) 408–418

m 4.2

.2
Remark 4. (a) In Theorem 4.2, if for eachi ∈ I , we let

Si(x
i)= {

yi ∈Xi | gi(xi, yi)− ai > 0
}
,

Fi(x
i)= {

yi ∈Xi | fi(xi, yi)− ai > 0
}
,

Hi(xi)=
{
xi ∈Xi | qi(xi, xi)− bi < 0

}
,

Ti(xi)=
{
xi ∈Xi | pi(xi, xi)− bi < 0

}
.

Then all the conditions of Theorem 3.1 are satisfied and the conclusion of Theore
follows from Theorem 3.1.

(b) If I is a singleton, then Theorem 4.2 reduces to Theorem 5.6 in [3].

By Theorem 4.2, we have the following system minimax theorem.

Theorem 4.3. For eachi ∈ I , letXi be a nonempty convex subset of t.v.s.Ei , fi, gi :Xi ×
Xi → R, pi, qi :Xi ×Xi → R be functions such that

(1) gi(x)� fi(x)� pi(x)� qi(x) for all x ∈X;
(2) For eachxi ∈Xi , xi → fi(x

i, xi) is quasiconcave onXi and for eachxi ∈Xi , xi →
pi(x

i, xi) is quasiconvex onXi;
(3) For eachxi ∈ Xi , xi → gi(x

i, xi) is transfer compactly l.s.c. onXi and for each
xi ∈Xi , xi → qi(x

i, xi) is transfer compactly u.s.c. onXi;
(4) If Xi is not compact, there exist a nonempty compact subsetK(i) ofXi and a nonempty

compact convex subsetDi ofXi such that for eachxi ∈Xi\K(i), there existsyi ∈Di
such that

xi ∈ cint
{
ui ∈Xi | gi(ui, yi)� inf

ui∈Xi
sup
ui∈Xi

gi(u
i, ui)

}
;

(5) If Xi is not compact, there exist a nonempty compact subsetM(i) of Xi and a non-
empty compact convex subsetLi of Xi such that for eachyi ∈ Xi\M(i), there exists
xi ∈ Li such that

yi ∈ cint
{
ui ∈Xi | qi(xi, ui)� inf

ui∈Xi
sup
ui∈Xi

qi(u
i, ui)

}
.

Then

inf
ui∈Xi

sup
ui∈Xi

gi(u
i, ui)� sup

ui∈Xi
inf
ui∈Xi

qi(u
i, ui) for all i ∈ I.

Proof. Let ε > 0 and for eachi ∈ I , let

ai = inf
ui∈Xi

sup
ui∈Xi

gi(u
i, ui)− ε and bi = sup

ui∈Xi
inf
ui∈Xi

qi(u
i , ui)+ ε.

Then for eachxi ∈Xi , there existsxi ∈Xi such thatgi(xi, xi) > ai and for eachxi ∈Xi ,
there existsxi ∈Xi such thatqi(xi, xi) < bi . Therefore, all the conditions of Theorem 4
are satisfied.
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ex

heo-
It follows from Theorem 4.2 that there existx̄ = (x̄i)i∈I ∈X andȳ = (ȳi)i∈I ∈X such
that for alli ∈ I ,

fi(x̄
i , ȳi) > inf

ui∈Xi
sup
ui∈Xi

gi(u
i, ui)− ε and pi(x̄

i, ȳi) < sup
ui∈Xi

inf
ui∈Xi

qi(u
i , ui)+ ε.

Sincepi(x̄i, ȳi)� fi(x̄i , ȳi),
sup
ui∈Xi

inf
ui∈Xi

qi(u
i, ui)+ ε > inf

ui∈Xi
sup
ui∈Xi

gi(u
i , ui)− ε,

sinceε is arbitrary positive number,

sup
ui∈Xi

inf
ui∈Xi

qi(u
i, ui)� inf

ui∈Xi
sup
ui∈Xi

gi(u
i, ui) for all i ∈ I. ✷

If we let pi = fi = qi = gi in Theorem 4.3, we have the following corollary.

Remark 5. Theorem 4.3 is different from Theorem 4b in [5].

Corollary 4.4. In Theorem4.3, if for all i ∈ I , fi = gi = pi = qi , then there exist̄x =
(x̄i)i∈I ∈X, ȳ = (ȳi)i∈I ∈X such that for alli ∈ I ,

sup
ui∈Xi

inf
ui∈Xi

fi(u
i, ui)= inf

ui∈Xi
sup
ui∈Xi

fi(u
i, ui).

Proof. By Theorem 4.3, we see that for alli ∈ I ,
sup
ui∈Xi

inf
ui∈Xi

fi(u
i, ui)� inf

ui∈Xi
sup
ui∈Xi

fi(u
i , ui).

Since for alli ∈ I , we have

sup
ui∈Xi

inf
ui∈Xi

fi(u
i, ui)� inf

ui∈Xi
sup
ui∈Xi

fi(u
i , ui),

it follows that

sup
ui∈Xi

inf
ui∈Xi

fi(u
i, ui)= inf

ui∈Xi
sup
ui∈Xi

fi(u
i, ui). ✷

Theorem 4.5. Let I be an index set. For eachi ∈ I , letXi be a nonempty compact conv
subset of t.v.s.Ei , fi :Xi ×Xi → R be a function satisfying the following conditions:

(i) For eachxi ∈Xi , xi → fi(x
i, xi) is quasiconcave and u.s.c. onXi;

(ii) For eachxi ∈Xi , xi → fi(x
i, xi) is quasiconvex and l.s.c. onXi .

Then there exist̄x = (x̄i)i∈I ∈X and ȳ = (ȳi)i∈I ∈X such that for alli ∈ I ,
min
ui∈Xi

max
ui∈Xi

fi(u
i, ui)= fi(x̄i , ȳi)= max

ui∈Xi
min
ui∈Xi

fi(u
i, ui).

Proof. Theorem 4.5 follows immediately from the compactness ofXi and Remark 5. ✷
Remark 6. If I is a singleton, then Theorem 4.5 reduces to the Sion’s mimimax t
rem [16].
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