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Abstract

In this paper, we establish systems of coincidence theorems from which solution of system of
inequalities and system of minimax theorems was established in this paper.
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1. Introduction

In 1937 von Neumann [18] established the well-known coincidence theorem. Since
then, there have been a lot of generalization and applications, see [3,8,12], [12, pp. 96-97]
and references therein. Recently Deguire and Lassonde [5] and Deguire et al. [6] studied
some system of coincidence theorems of KF families [6] and give some of its applications.
In [5,6], the authors only established the existence theorems of a pair of multimaps in two
families of multimaps. Recently, Ansari et al. [2], Yu and Lin [20], and Lin and Chen [14]
studied the coincidence theorems for two families of multimaps. Ansari et al. [2] and Lin
and Chen [14] also gave some applications to the study of the equilibrium problem. In
this paper, we establish some systems of coincidence theorems, from which the existence
theorem of system of inequalities and system of minimax theorems are established. The
system of minimax theorems we establish in this paper are quite different from the minimax
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theorem in [5]. Our results on system of coincidence theorems are different from [2,5,6,14,
20] and our results include some results of [3] and many well-known results in the literature
as special cases.

2. Preliminaries

Let X andY be nonempty sets. A multimap: X — Y is a function fromX into the
power set ofY. Let A C X, x € X, andy € Y. We defineT (A) = [ J{T(x) | x € A};
xeT (y)ifandonlyify e T(x).

For topological space¥ andY, A C X, we denote int A to be the interior ofA in X;
A is said to be compactly closed (respectively, open) if for every nonempty compact subset
K of X, AN K is closed (respectively, open) K. The compact closure of (see [7]) is
defined by

cCclA = ﬂ{B C X | AC B andB is compactly closed iX}
and the compactly interior oA is defined by

CintA = U{B C X | B C A andB is compactly open irX}.
It is easy to see that

ccl(X\A) = X\ cintA.

LetT:X — Y, T is said to be transfer compactly closed valued (respectively, transfer
closed valued) orX [7,17], if for everyx € X, y € T(x), there exists’ € X such that

y ¢ cclT (x') (respectivelyy ¢ cl T (x")); T is said to be transfer compactly open valued
(respectively, transfer open valued) &nif for everyx € X, y € T(x), there exists’ € X

such thaty € cintT (x”) (respectivelyy € intT (x")).

Definition [17]. Let X andY be two topological spaced,: X x ¥ - R U {—o0, 00} a
function, f is said to be transfer compactly (respectively, transfer) |.s.¢. iinffor each
yeY and eachy e R with y e {u € Y: f(x,u) > y}, there exists an’ € X such that
yecintyeY: f(x/,y) >y} (respectivelyy eint{y e Y: f(x’,y) > y}); f is said to be
transfer compactly (respectively, transfer) u.s.cy i — f is transfer compactly (respec-
tively, transfer) I.s.c. iny.

Remark 1. (a) It is easy to see that if for eache X, y — f(x, y) is l.s.c., thenf is
transfer l.s.c. iny.

(b) Let F: X — Y be defined byF(x) ={y e Y | f(x,y) > y}. If f(x,y) is transfer
compactly (respectively, transfer) I.s.chinthenF : X — Y is transfer compactly (respec-
tively, transfer) open valued oX.

Following the method of Chang et al. [4], we have the following lemma.
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Lemma2.1l. Let X andY be two topological spaces af@: X — Y be a multivalued map.
Theng is transfer compactly open valued if and only if

U G(x) = U cintG (x).

xeX xeX

Proof. Suppose thatG is transfer compactly open valued. Lete | J,.x G(x), then
there existsx; € X such thaty € G(x1). Since G is transfer compactly open valued,
there existsc” € X such thaty € cintG(x’) C |,y CintG(x). Therefore| J,.x G(x) C
U, ex CiNtG(x). Since cinG(x) C G(x), U, ex CINtG(x) C J,cx G(x). Therefore,
Urex Gx) = U ex CiNtG(x). Conversely, if J, .y G(x) = U, cx CiNtG(x). For each
x € X andy € G(x), we havey € |,y G(x) = ,cx CiNtG (x). Therefore, there exists
x" € X such thaty € cintG(x). HenceG is transfer compactly open valued

Applying Lemma 2.1 and following the same argument of Proposition 1 [13], we have
the following lemma.

Lemma2.2. LetX andY be two topological spaces ar@: X — Y be a multivalued map.
Then the following statements are equivalent

(i) G(x)isnonemptyforeache X andG~:Y —o X is transfer compactly open valugd
(i) X =U,eycintG™ ().

Proof. (ii) = (i). SupposeX = Uyey cintG~(y). Then for eachx € X, we havex €
UyeycintG*(y). There existsy € Y such thatx € cintG~(y) € G~ (y). Therefore

y € G(x) and G(x) is nonempty. SinceX = Uyey cintG~(y) € UyeyG*(y) C X,

X = U),EY cintG—(y) = Uer G~ (y). By Lemma 2.1,G™:Y — X is transfer com-
pactly open valued and (i) is true. Conversely, suppose that (i) is true, then for each
x € X, G(x) is nonempty and; ~ : Y — X is transfer compactly open valued. Therefore

X = UyeX G~ (y) and by Lemma 2.1 we have th@jyex G (y)= UyeX cintG~ (y).

From this, X = Uyex cintG~ (y) and (ii) is true. O

The following example shows a set which is transfer compactly open, but it is not com-
pactly open.

Example [19]. Let X =Y =[0,2) and F : X — Y be defined byF(x) = [x, 2). Then
F~(»)=1[0,ylandX = | J{intx F~(y): y e Y} C|J{cintF~(y): y € Y} C X. Therefore
X =J{cintF~(y): ye Y}.ByLemma2,F~:Y — X is transfer compactly open valued,
but F~(y) =[O0, y] is not compactly open.

Let X be a nonempty convex subset of a real topological vector spagefunction
f:X — Ris said to be quasiconvex if for eaghy € X, A € [0, 1], f[Ax + (1 —2)y] <
max{ f (x), f(y)}; f is said to be quasiconcave-f is quasiconvex.

Throughout this paper, all topological spaces are assumed to be Hausdorff and topolog-
ical vector spaces will be denoted by t.v.s.



L.-J. Lin / J. Math. Anal. Appl. 285 (2003) 408-418 411

3. System of coincidence theorem

Theorem 3.1. Let I be an index sef,E;}ic; t_)e a family of t.v.s. For eache I, let X; be
a nonempty convex subsetif, let S;, F; : X' = Hjel#i X;—oX;andH;, T;:X; = X'
be multimaps satisfying the following conditions

(i) Forall x' e X!, coS; (x') C F;(x');

(ii) S; has nonempty values on each poinXéfandSl.‘ is transfer compactly open valued
onX;;

(iii) If X’ is not compact, there exists a nonempty compact sub&etof X’ such that for
each finite subse®; of X;, there exists a compact convex sulisgtof X; containing
P; such thatX’\K (i) C J{cintS, (yi): yi € Lp};

(iv) Foreachx; € X;, cOH;(x;) C T; (x;);

(V) H; has nonempty values oty and H;” is transfer compactly open valued o;

(vi) If X; is not compact, there exists a nonempty compact susgatof X; such that for
each finite subsa®’ of X', there exists a compact convex subisgt of X' such that

xi\M (i) c | {cintH (x'): x" € Lyi}.

Then there exist = (¥;)ie; € X andy = (3i)ies € X =[[;; Xi such that for eacli € /,
yi € Fi(x") andx' € T; (3).

Proof. By (ii) and Lemma 2.2X' = U{cintS (yi): yi € X;} for eachi € I. Sincek (i)
is a compact subset &f , there exists a finite subsef of X; such that

Kk (i) c | Jfcints; (vi): yi € Pi}. 1)

Similarly, by (v) there exists finite subsé¥ of X’ such that

M) | J{cintH (x): x' € Qi) )
By (iii),

Lo \K (i) € X'\K (i) | J{cintS; (yi): yi e Lp,}. ©)
By (1) and (3),

Lo, | J{cintS; (x): xi € Lp}. (4)

Similarly by (2) and (iv),
Lp, | J{cintH ("): x' e L, }. (5)
By (5), there exist$a;1, ..., aim; } in L, such that

mi
Lp C U CiNtH, (a;;). (6)
j=1
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By (4), there exist$b;1, ..., big;} in Lp, such that

i
Ly, C U cintSf(b,-j). (7)
j=1

Let A’ =colai1, ..., dim;}, Bi =CObi1, ..., big,}, andB = [];., B;. Let W; be the vector
subspace of; generated byb;1, ..., bis}. SinceW; is finite dimensionalW; and W =
[Tic; Wi are locally convex t.v.sd’, B;, and B are compact convex subsetsiof,, W;,
andW, respectively.

By (7),
4
Al = U(cints; (bij)) N A" (8)
j=1
By (6),
B; = U(CintHi_(a,'j)) N B;. 9)
j=1

By (8) and using partition of unity, there exist continuous functians. .., ;e Al -
[0, 1] such thath{";l)»,»k(x’) =1 and for eachk = 1,...,¢;, A (x') =0 for x' ¢
cintS;” (bix) N A'. For each e I, we definef; : A’ — B; by

Li
fix) =" nirxHby forx' e Al

k=1
For eachr’ € X and eactk with A (x") # 0, we havex’ € cintS; (bix) N A" € S, (bix).
Therefore p;; € S;(x') for eachi € I. By (i), for eachi € I, f;(x") € coS;(x") C F;(x')
forall x' € A’ and f; : A’ — B, is a continuous function. Similarly by (9), for eacke I,
there exists a continuous functign: B; — A’ such thatg; (y;) € coH;(y;) C T;(y;) for
all y; € B;. Leth: B — B be defined byi(x) =[1,; fi(gi (xi)).

B is a compact convex subset of the locally convex tMs.; W; = W. Then by Ty-
chnoff’s fixed point theorem, there exisfs= (y;)ic; € B € X such thaty = h(y) =
]‘[ie,ﬁ(g,-(yi)).Therefo_rey,- = fi(&i (i) for all i € I. Let X' = gi(3i). Then x! =
g eT:(y),yi € fi(x) e Fi(x")foralli e I andx = (X')ic; € X. O

As a consequence of Lemma 2.2 and Theorem 3.1, we have the following theorem.

Theorem 3.2. Let I be an index setEi}ier be a family of t.v.s. For eache I, let Xi be
a nonempty convex subsetiof, S;, F; : X' = Hjel#i X;— X;andH;, T; : X; — X' be
multimaps satisfying the following conditions

(i) Forall x' e X%, co(S; (x))) C F;(x');
(i) X' =Ulintyi ;" (xi): xi € Xi};
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(iii) If X' is not compact, there exists a compact sulssgy of X’ such that for each finite
subsetP; of X;, there exists a compact convex subbgt of X; containingP; such
that X'\ K (i) C \J{cintS; (yi): yi € Lp}:

(iv) Foreachx; € X;, COH;(x;) C T; (x;);

(v) Xi =Ulintx, H™(x"): x' € X'};

(vi) If X; is not compact, there exists a nonempty compact sugetof X; such that for

each finite subse®’ of X', there exists a compact convex subisgt of X’ such that

Xi\M (i) c UfcintH; (x'): x' € Lgi}.

Then 'there exist = (x;)ic; € X andy = (§;)ie; € X such that for each e I, y; € F; (x')
andx' € T; (3;).

Proof. Since ink, S; (x;) C cintS; (x;), by (ii) we haveX’ = [ J{inty: S (xi): xi € X;}
c UlcintS; (xi): xi € X;} C X'. Therefore, X! = UlcintS; (xi): x; € X;}. It follows
from Lemma 2.2 thaS; : X; —o X' is transfer compactly open aX; andS; (x’) is non-
empty for allx’ € X',

Similarly, by (v) for all x; € X;, H;(x;) is nonempty andH,” : X! —o X; is transfer
compactly open o’. Since inj S;(yi) S cintS;” (y:), it follows from (iii) that XI\K (i)
C U{CintSi_(y,»): vi € Lp}. ' '

Similarly, X;\M (i) C [J{cintH;” (x"): x' € Lyi}. Then all the conditions of Theo-
rem 3.1 are satisfied and the conclusion of Theorem 3.2 follows from Theorem(3.1.

Remark 2. Ifforall i € 7, x" € X', S;(x") is nonempty, and; (y;) is open for ally; € X;,
then condition (ii) of Theorem 3.2 is satisfied. Similarly, foriadt I andx; € X;, H; (x;)

is nonempty and?;” (x') is open for allx’ € X', then condition (v) of Theorem 3.2 is
satisfied.

If I ={1,2}andforalli €1, X; is compact, then by Theorem 3.2, it is easy to show
the Fan'’s coincidence theorem.

Corollary 3.1[9]. Let X C E andY C Z be nonempty compact convex sets in the t&.s.
and Z, respectively. LefA, B: X — Y be two multivalued maps such that

(i) Ax is open andB(x) is a nonempty convex set for eack X;
(i) B~y is openandA~y is a nonempty convex set for eack Y.

Then there existgy € X such thatAxo N Bxg=?.

Remark 3. (a) The coercivity conditions used in Theorem 10 in [6] and Theorem 3.1
are different. Theorem 10 in [6] assume one multivalued map in each family satisfies the
coercivity conditions. The conclusions of Theorem 10 in [6] and Theorem 4a in [5] are that
there exist one pair of multivalued maps among two families of multivalued maps having
a coincidence point. The proofs of Theorem 10 in [5] and Theorem 3.1 are different.
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(b) In[2,14,20], the authors also establish system of coincidence theorems for two fam-
ilies of multivalued maps, but the conditions, proofs and the conclusions of Theorems 3.1—
3.6 in [14], Theorem 8 in [20], and Theorem 2.1 in [2] are different from Theorems 3.1
and 3.2.

(c) It is very easy to see the coercivity condition in Theorem 3.1 or 3.2 is weaker than
the coercivity conditions in [1,10,11,15].

4. Applications of system of coincidence theorems

Theorem 4.1. Let I be an index set4,E;};c; be family of t.v.s. For eache I, let X; be

a nonempty convex subsetsi)f Z; be a real t.v.s.C; a closed convex solid corfee.,

intC; # @) in Z;, and A;, Bi: X' x X; — Z and P;, Q; : X' x X; — Z; be multimaps
satisfying the following conditions

(1) For all x € X, A;(x) € intC; implies B;(x) € intC; and P;(x) £ —intC; implies
Qi(x) £ —intC;; _

(2) Forall x' € X', the sef{y; € X; | A;(x', y;) CintC;}is convex and for aly; € X; the
set{x' e X' | Pi(x', y;) € —intC;} is convex

(3) The multimapy; € X; — {x' € X | B;(x!, y;) € intC;} is transfer compactly closed
on X; and the multimap’ € X' — {y; € X; | Qi (x, y;) € —intC;} is transfer com-
pactly closed orX';

(4) Forall i e I andx’ € X', there existy; € X; such thatB; (x', y;) CintC;;

(5) If X' is not compact, there exist a nonempty compact subggtof X’ and a compact
convex subseb; of X; such that for each’ € X'\ K (i), there existy; € X; such that
xt ecint{u’ € X' | Bi(u', y;) CintC;};

(6) Foralli €1, y; € X;, there exists’ € X' such thatQ; (x', y;) € —intC;;

(7) If X; is not compact, there exist a nonempty compact sulget of X; and a compact
convex subsdt’ of X’ such that for eacly; € X;\M (i), there exists’ € L; such that
yi € cint{u; € X; | Qi (x!, u;) € —intC;}.

Then there exist = (%i)ic1 € X =[;; Xi, ¥ = (Ji)ier € X such thatd; (x', 3;) CintC;
and P; (', y;) € —intC; forall i e I.

Proof. For eachi € I, we defineS;, T; : X! — X; by Si(x') = {y; € X; | Bi(x', y;) C
intCi}, Ti(x") = {yi € X; | Ai(x*, y;) CintC;}, and Fy, G; 1 X; — X' by Fi(y;) = {x' €
X' Qi(x', y) € —intCi}, Gi(yi) = {x' € X' | Pi(x', yi) € —intC;}.

(1) and (2) imply that ceS; (x')) € T; (x?) for all x' € X and cdF;(y;)) € G;(y;) for
all yi € X;.

(3) implies thatS;” is transfer compactly open oty andF;™ is transfer compactly open
onX*.

(4) implies that for allx’ € X', S;(x) is nonempty. Therefores; (x’) is nonempty on
each compact subset &f and condition (i) of Theorem 3.1 is satisfied.



L.-J. Lin / J. Math. Anal. Appl. 285 (2003) 408-418 415

For each finite subse¥; of (X;) and R; of (X?), let Ly, =cofC; UN;} andLg, =
co{D; U R;}. Then Ly, is a compact convex subset &f containingN; and L, is a
compact convex subset &f containingr; .

(5) implies thatx’ \ K (i) C J{cintS; (yi): yi € Lu,}-

(6) implies that for ally; € X;, F;(y;) is nonempty. This together with (3) imply condi-
tion (v) of Theorem 3.1.

(7) implies that; \ K (i) C J{cintF; (x'): x' € Lg,}.

Then, by Theorem 4.1 there exist (x;)ic; € X andy = (3;);e; € X such that

yie;(x) and X' eGiGi).
Therefore A; (x', y;) CintC; and P; (3%, y;) € —intC;. O

As a simple consequence of Theorem 4.1 we have the following theorem which estab-
lishes the existence of solution for a system of inequalities.

Theorem 4.2. Let / be an index set and for ea¢le 7, X; be a nonempty convex subset of
tV.S.E;, fi,gi: X' x X; > R, pi,qi: X' x X; — R be functions, anda; };c; and {b;}ics
be families of real numbers. Suppose that for ea€t, the following conditions hotd

(1) gi(x) < fi(x) and p; (x) < gi (x) for all x € X;

(2) For eachx’ € X', x; — f;(x', x;) is quasiconcave oX; and for eachy; € X;, x' —
pi(x', x;) is quasiconvex oX‘;

(3) For eachx; € X;, x' — g;(x',x;) is transfer compactly |.s.c. o’ and for each
xi e X, x; — qi(x', x;) is transfer compactly u.s.c. oXj;

(4) For xi € X, there existy; € X; such thatg; (x, x;) > a;;

(5) If X! is not compact, there exist a nonempty compact subgotof X’ and a nonempty
compact convex subsBt of X; such that for each’ € X'\ K (i), there exists; € D;
such thatv! e cint{u’ € X' | g;(u’, yi) > a;};

(6) For eachx; € X;, there exists’ € X’ such thaig, (x', x;) < b;;

(7) If X; is not compact, there exist a nonempty compact sul#get of X; and a non-
empty compact convex subgétof X’ such that for eachy; € X;\M (i), there exists
xi e L' such thaty; € cint{u; € X; | g (xi, u;) < b;}.

Then there exist = (x;);e; € X andy = (3;);es € X such that
fiGi,yi)>a; and p;(x;,y;) <b; foralliel.

Proof. Foreach e I, letC; = [0, c0) andA;, B;, P;, Q; : X' x X; — R be defined by
A xi) = fitx x) —ai, Bi(x' x) =gi(x',x) —ai,
and
Pi(x' xi) = i, x) = biy, Qi x) = gqi (', xi) = bi.
Then all the conditions of Theorem 4.1 are satisfied. It follows from Theorem 4.1 that there

existx = (¥;)ie; € X andy = (3)ies € X such thatf; (X', y;) > a; andp; (x', y;) < b; for
alliel. O
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Remark 4. (a) In Theorem 4.2, if for eache I, we let

Sitx') ={yi € Xi | gi(x", yi) —a; > 0},
Fi(x)={yieXi| fix',yi) —a; > 0},
H(x;) = {x" € X' | qi(x', x;) — b < O},
Ti(xi) = {x" € X' | pi(x', x;) — bi < 0}.
Then all the conditions of Theorem 3.1 are satisfied and the conclusion of Theorem 4.2

follows from Theorem 3.1.
(b) If I is a singleton, then Theorem 4.2 reduces to Theorem 5.6 in [3].

By Theorem 4.2, we have the following system minimax theorem.

Theorem 4.3. For eachi € [, let X; be a nonempty convex subset of t.&s. fi, gi X x
X; = R, pi,qi: X' x X; — R be functions such that

(1) gi(x) < fi(x) < pi(x) < gi(x) forall x € X; '

(2) For eachx' € X', x; — fi(x', x;) is quasiconcave o; and for eachy; € X;, x' —
pi(x', x;) is quasiconvex oX‘;

(3) For eachyx; € X;, x! — g;(x,x;) is transfer compactly |.s.c. oX’ and for each
xi e X, x; — q;i(x, x;) is transfer compactly u.s.c. oXj;

(4) If X is not compact, there exist a nonempty compact subggtof X’ and a nonempty
compact convex subsBt of X; such that for each’ € X'\ K (i), there existg; € D;
such that

xie Cint[ui eX'|gi(',y)> inf supgu, ui)};
u'eX' y;eX;
(5) If X; is not compact, there exist a nonempty compact suldge} of X; and a non-

empty compact convex subgetof X’ such that for eacly; € X;\M (i), there exists
x' € L; such that

yi € Cint{ui €Xi|qi(x',u;) > inf sup g, ui)}-

u'eX' y;eX;
Then

inf sup gi(u',u;) < sup inf g;(u',u;) foralliel.
u'eX' ui€X; ui€X; u'eX'

Proof. Lete > 0 and for eachi € I, let

a;= inf supgi(u',uj))—e and b= sup inf q;(u' ,u;)+e.
weXiyex; weX; uexi
Then for each’ € X, there exists; € X; such thatg; (x', x;) > a; and for eachx; € X;,

there exists’ € X’ such thay; (x!, x;) < b;. Therefore, all the conditions of Theorem 4.2
are satisfied.
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It follows from Theorem 4.2 that there exist= (x;);c; € X andy = (3;);e; € X such
that for alli € I,

£ 5) > inf supgi(u',uj)—e and p;(x',5) < sup inf g;(u', u;)+e.
weXiyeX; ujeX; uex

Sincep; &, ¥1) > fi (&%, 3),

sup inf q;(u',u;))+e> inf supg @' u)—e,
u;i €X; uteX! uteX! u;i€X;

sincee is arbitrary positive number,
sup inf g;(u',u;)> inf supgi(u',u;) foralliel. O
ujeX;u'ex ueX' yeX;
If we let p; = fi = q; = g in Theorem 4.3, we have the following corollary.
Remark 5. Theorem 4.3 is different from Theorem 4b in [5].

Corollary 4.4. In Theoremd.3, if for all i € I, f;i = gi = pi = ¢, then there exist =
(Xi)ier € X, ¥y = (i)ier € X such thatforalli € I,

sup inf fi(u',u)= inf sup fiu' u).
ul-EXi uteX! uteX! uiEXi
Proof. By Theorem 4.3, we see that for al€ 1,

sup inf fi(u',u;) > inf sup fi(u',u;).
ujeX;uteX! u'eX y;eX;

Since for alli € I, we have

sup inf fi(u',u;) < inf sup fi(u',u;),
u; €X; uteX! uteX! u;i€X;

it follows that
sup inf fiu',u;)= inf sup fiu',u;)). O

ujeX;u ext u'eX' y;eX;

Theorem 4.5. Let be an index set. For eaghe 7, let X; be a nonempty compact convex
subset of t.v.sE;, fi: X' x X; — R be a function satisfying the following conditions

(i) Foreachx’ e X;,x; — f;(x',x;) is quasiconcave and u.s.c. 6f;
(i) Foreachx; € X', x' — f;(x', x;) is quasiconvex and |.s.c. ott.

Then there exist = (x;);c; € X andy = (§;)ies € X such that for alli € I,
min max f; (u', u;) = f; (X', ;) = max min f; ', u;).
uleXiu€X; uieXjyleXi

Proof. Theorem 4.5 follows immediately from the compactnesX odnd Remark 5. O

Remark 6. If I is a singleton, then Theorem 4.5 reduces to the Sion’s mimimax theo-
rem [16].
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