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1. Introduction and preliminaries

The vector variational inequality problem was first introduced and studied by Gianness
[22] in finite dimensional Euclidean spaces. Since then, such problem has been ex
and generalized by many authors in various different directions. We noticed that vect
variational inequalities and its various generalizations have extensive and importa
plications in vector optimization, optimal control, mathematical programming, operatio
research and equilibrium problem of economics, etc. Inspired and motivated by abo
applications, various generalized vector variational inequality problems and gener
vector equilibrium problems have become important developed directions of the c
cal vector variational inequality theory, for example, see [2,8,11,12,23,26,27,30,31
references therein.

Pang [32] has shown that a variety of equilibrium models, for example, the traffic
librium problem, the spatial equilibrium problem, the Nash equilibrium problem and
general equilibrium programming problem can be uniformly modelled as a variation
equality defined on the product sets. He decomposed the original variational inequality in
a system of variational inequalities which are easy to solve. The method of decomp
was also used by Zhu and Marcotte [39], and Cohen and Chaplais [10] to solve a
tional inequality problem defined on a set of inequality constraints. Motivated and ins
by the above development, Ansari and Yao [3,4], Ansari et al. [5,6], and Ding [13,1
troduced and studied the system of vector equilibrium problems. Some existence th
of solutions for the system of vector equilibrium problems are established in topologi
vector spaces andG-convex spaces, respectively.

On the other hand, the quasi-equilibrium problems, the generalized quasi-equil
problems and their applications have also been studied extensively by many autho
example, see [9,15,16,18,19,28,29,33].

Following the trend of the above research fields, we will introduce and study som
classes of system of generalized vector quasi-equilibrium problems on a product space
G-convex spaces in this paper.

Let I be a finite or infinite index set,{Xi}i∈I and{Yi}i∈I be two families of topologica
spaces, and{Zi}i∈I be a family of nonempty sets. LetX = ∏

i∈I Xi andY = ∏
i∈I Yi . For

eachi ∈ I , let Ai :X → 2Xi , Fi :X × Xi → 2Zi , Ti :X → 2Yi , Ci :X → 2Zi andϕi :X ×
Yi × Xi → 2Zi be set-valued mappings.

A system of generalized vector quasi-equilibrium problems of type (I) (SGVQEP(I)) i
to find x̂ ∈ X such that for eachi ∈ I ,

x̂i ∈ Ai(x̂) and Fi(x̂, zi ) � Ci(x̂) ∀zi ∈ Ai(x̂). (1.1)

A system of generalized vector quasi-equilibrium problems of type (II) (SGVQEP(II)
is to find x̂ ∈ X andŷ ∈ Y such that for eachi ∈ I ,

x̂i ∈ Ai(x̂), ŷi ∈ Ti(x̂) and ϕi(x̂, ŷi , zi) � Ci(x̂) ∀zi ∈ Ai(x̂). (1.2)

A system of generalized vector quasi-equilibrium problems of type (III) (SGVQEP(III)
is to find x̂ ∈ X such that for eachi ∈ I ,

x̂i ∈ Ai(x̂) and Fi(x̂, zi ) ⊆ Ci(x̂) ∀zi ∈ Ai(x̂). (1.3)
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A system of generalized vector quasi-equilibrium problems of type (IV) (SGVQEP
is to find x̂ ∈ X andŷ ∈ Y such that for eachi ∈ I ,

x̂i ∈ Ai(x̂), ŷi ∈ Ti(x̂) and ϕi(x̂, ŷi , zi) ⊆ Ci(x̂) ∀zi ∈ Ai(x̂). (1.4)

If Zi = [−∞,+∞] and Ci(x) = [−∞,0] for all i ∈ I and x ∈ X, andFi(x, zi) =
ϕi(x, zi) for each(x, zi) ∈ X × Xi is a single-valued function, then the SGVQEP(I)
duces to the following system of generalized quasi-equilibrium problems of type
(SGQEP(V)) which is to find̂x ∈ X such that for eachi ∈ I ,

x̂i ∈ Ai(x̂) and ϕi(x̂, zi) > 0 ∀zi ∈ Ai(x̂). (1.5)

WhenI is a singleton, problem (1.5) has been introduced and studied by many au
For example, see [9,15,16,18,19,28,29,33].

If Zi = [−∞,+∞] andCi(x) = [−∞,0) for all i ∈ I andx ∈ X andϕi(x, yi, zi) is
a single-valued function, then the SGVQEP(II)reduces to the following system of gene
alized quasi-equilibrium problems of type (VI) (SGQEP(VI)) which is to findx̂ ∈ X and
ŷ ∈ Y such that for eachi ∈ I ,

x̂i ∈ Ai(x̂), ŷi ∈ Ti(x̂) and ϕi(x̂, ŷi , zi) < 0 ∀zi ∈ Ai(x̂). (1.6)

WhenI is a singleton andX = Y , problem (1.6) has been introduced and studied
Ding and Park [19], Lin and Park [28], Lin and Yu [29], and Chen et al. [9] and Park
respectively.

If Ai(x) = Xi for eachi ∈ I andx ∈ X, then the SGVQEP(I) reduces to the followi
system of generalized vector equilibriumproblems of type (VII) (SGVEP(VII)) which is
to find x̂ ∈ X such that for eachi ∈ I ,

Fi(x̂, zi ) � Ci(x̂) ∀zi ∈ Xi. (1.7)

The SGVEP(VII) and its special cases havebeen introduced and studied by Ansari
al. [5,6] in topological vector spaces. WhenI is a singleton, problem (1.7) and its spec
cases have been extensively studied by many authors. For example, see [2,8,11,1
27,30,31] and references therein.

If Ai(x) = Xi for eachi ∈ I andx ∈ X, then the SGVQEP(II) reduces to the followin
system of generalized vector equilibriumproblems of type (VIII) (SGVEP(VIII)) which is
to find x̂ ∈ X andŷ ∈ Y such that for eachi ∈ I ,

ŷi ∈ Ti(x̂) and ϕi(x̂, ŷi , zi) ⊆ Ci(x̂) ∀zi ∈ Xi. (1.8)

Obviously, SGVQEP(I) and SGVQEP(II) includeproblems (1.3)–(1.8) as special cas
For appropriate choices of the spacesXi , Yi , Zi and the mappingsAi , Ti , Ci and ϕi ,
it is easy to see that SGVQEP(I) and SGVQEP(II) include a number of extensions an
generalizations of generalized (vector) equilibrium problems, generalized (vector)
tional inequality problems, generalized (vector) quasi-equilibrium problems and ge
ized (vector) quasi-variational inequality problems as special cases. For example, see [
8–16,18,19,21–23,26–33,39] and references therein.

In this paper, we will establish a collectively fixed point theorem and an equilib
existence theorem for generalized games in product locallyG-convex uniform spaces. A
applications, some new existence theorems of solutions for SGVQEP(I) and SGVQEP(
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are derived in product locallyG-convex uniform spaces. Let us first recall the followi
preliminaries which will be needed in the sequel.

For a setX, we will denote by 2X andF(X) the family of all subsets ofX and the family
of all nonempty finite subsets ofX, respectively. ForA ∈ F(X), we denote by|A| the
cardinality ofA. Let∆n be the standardn-dimensional simplex with verticese0, e1, . . . , en.
If J is a nonempty subset of{0,1, . . . , n}, we denote by∆J the convex hull of the vertice
{ej : j ∈ J }. The notion of a generalized convex (orG-convex) space was introduced und
an extra isotonic condition by Park and Kim [34]. Recently Park [35] gave the follow
definition of aG-convex space by removing the extra condition.

A G-convex space(X,D;Γ ) consists of a topological spaceX, a nonempty setD
and a set-valued mappingΓ :F(D) → 2X \ {∅} such that for eachA = {a0, a1, . . . , an} ∈
F(D) with |A| = n+ 1, there exists a continuous mappingφA :∆n → Γ (A) such thatJ ⊆
{0,1, . . . , n} implies φA(∆J ) ⊆ Γ ({aj : j ∈ J }), where∆J = co{ej : j ∈ J }, the convex
hull of the set{ej : j ∈ J }. WhenD = X, we will write (X,X;Γ ) = (X,Γ ). In the case
of D ⊆ X, a subsetC of (X,D;Γ ) is said to beΓ -convex if for eachA ∈ F(D ∩ C),
Γ (A) ⊆ C.

A locally G-convex uniform space (also see [35]) is aG-convex space(X,D;Γ ) such
that

(1) X is a separated uniform space with the basisβ for symmetric entourages;
(2) D is a dense subset ofX; and
(3) for eachV ∈ β and eachx ∈ X, the setV [x] = {y ∈ X: (x, y) ∈ V } is Γ -convex.

G-convex spaces include the convex subsets of a topological vector space,H -spaces
(see Horvath [24,25]) and manytopological spaces with abstract convexity structure
special cases; see [34–36]. The notion of locallyG-convex uniform spaces generalizes
notions of locally convexH -spaces and locallyG-convex spaces introduced by Wu and
[37] and Yuan [38], respectively.

Let (X,D;Γ ) be aG-convex space andZ be a nonempty set. LetF :X → 2Z and
C :X → 2Z be set-valued mappings.F is said to beG-quasi-convex (respectively,G-
quasi-concave) with respect toC if the set{x ∈ X: F(x) ⊆ C(x)} (respectively,{x ∈ X:
F(x) � C(x)}) is G-convex.

Let X and Y be both topological spaces. A set-valued mappingG :X → 2Y is said
to be compact ifG(X) is contained in some compact subset ofY . G is said to be uppe
semicontinuous (u.s.c.) (respectively, lower semicontinuous (l.s.c.)) onX if for eachx ∈ X

and for each open setU of Y , the set{x ∈ X: G(x) ⊆ U} (respectively,{x ∈ X: F(x) ∩
U 	= ∅}) is open inX. If S,T :X → 2Y are set-valued mappings, then(S ∩ T ) :X → 2Y is
the set-valued mapping defined by(S ∩ T )(x) = T (x) ∩ S(x) for eachx ∈ X.

In order to prove the main result (Theorem 1.2) of this section, we need the follo
results.

Theorem 1.1 [17, Theorem 3.1].Let (Xi,Di;Γi)i∈I be a family of locallyG-convex uni-
form spaces with eachXi having the basisβi of symmetric entourages. For eachi ∈ I , let
Gi :X = ∏

i∈I Xi → 2Xi be an upper semicontinuous compact set-valued mapping
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nonempty closedΓi -convex values. Then there exists a pointx̂ = (x̂i)i∈I ∈ X such that
x̂i ∈ Gi(x̂) for eachi ∈ I .

Lemma 1.1 [1, Theorem 14.18].Let X,Y be topological spaces andϕi :X → 2Y be a
set-valued mapping. Then the following statements are equivalent:

(i) ϕ is lower semicontinuous at a pointx ∈ X,
(ii) if xα → x, then for eachy ∈ ϕ(x) there exists a subnet{αλ}λ∈Λ of the index set{α}

and elementsyλ ∈ ϕ(xαλ) for eachλ ∈ Λ such thatyλ → y.

Lemma 1.2 [38, Lemma 4.7.3, p. 301].Let X and Y be two topological spaces andA
be a closed(respectively, open) subset ofX. SupposeF1 :X → 2Y andF2 :A → 2Y are
both l.s.c.(respectively, u.s.c.) such thatF2(x) ⊆ F1(x) for eachx ∈ A. Then the mapping
F :X → 2Y defined by

F(x) =
{

F2(x), if x ∈ A,

F1(x), if x /∈ A,

is also l.s.c.(respectively, u.s.c.).

Now we describe a generalized gameE = (Xi,Ai,Pi)i∈I , whereI is a finite or in-
finite set of agents; for eachi ∈ I , Xi is a the strategy set (or commodity space) ofith
agent;Ai :X = ∏

i∈I Xi → 2Xi is the constrained correspondence (set-valued map
andPi :X → 2Xi is the preference correspondence. A pointx̂ ∈ X is called an equilibrium
point of the generalized gameE if x̂i ∈ Ai(x̂) andAi(x̂) ∩ Pi(x̂) = ∅ for eachi ∈ I .

Theorem 1.2. Let ((Xi,Di;Γi),Ai,Pi)i∈I be a generalized game such that for eachi ∈ I ,

(i) (Xi,Di;Γi) is a locallyG-convex uniform space,
(ii) Ai is an u.s.c. compact mapping with nonempty closedΓi -convex values onX,
(iii) the setEi = {x ∈ X: Ai(x) ∩ Pi(x) 	= ∅} is open inX,
(iv) Ai ∩ Pi :E ⊆ X → 2Xi is u.s.c. with closedΓi -convex values,
(v) for eachx ∈ X, xi /∈ Ai(x) ∩ Pi(x).

Then there existŝx ∈ X such that for eachi ∈ I ,

x̂i ∈ Ai(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅.

Proof. For eachi ∈ I , define a set-valued mappingTi :X → 2Xi by

Ti(x) =
{

Ai(x) ∩ Pi(x), if x ∈ Ei,

Ai(x), if x /∈ Ei.

From conditions (ii)–(iv) and Lemma 1.2 it follows that for eachi ∈ I , Ti is an u.s.c.
compact mapping with nonempty closedΓ -convex values. By Theorem 1.1, there exist
point x̂ ∈ X such that for eachi ∈ I , x̂i ∈ Ti(x̂). If for somei ∈ I , x̂i ∈ Ei , then we have
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x̂i ∈ Ai(x̂) ∩ Pi(x̂) which contradicts the condition (v). Hence we conclude that for e
i ∈ I ,

x̂i ∈ Ai(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅,

i.e., x̂ is an equilibrium point of the generalized gameE . �

2. Existence of solutions for SGVQEP

In this section by using Theorem 1.2, we shall establish some new existence the
of solutions for SGVQEP(I) and SGVQEP(II), respectively, in locallyG-convex uniform
spaces.

The following result is a variant of Theorem 3.1 of Ding and Park [20].

Lemma 2.1. LetX be a normal space and(Y,D;Γ ) be aG-convex space. LetT :X → 2Y

be a set-valued mapping satisfying the following conditions:

(i) for eachx ∈ X, T (x) is Γ -convex,
(ii) there existsM = {y0, y1, . . . , yn} ∈ F(D) such thatX = ⋃

y∈M intT −1(y).

Then there exists a continuous selectionf :X → Y of T such thatf = ϕM ◦ ψ , where
ϕM :∆n → Y andψ :X → ∆n are both continuous.

Proof. SinceY is aG-convex space andM = {y0, y1, . . . , yn} ∈ F(D) by (ii), there exists
a continuous mappingϕM :∆n → Γ (M) such that

ϕM(∆J ) ⊆ Γ (B), ∀B ∈ 〈M〉, |B| = |J | + 1. (2.1)

SinceX is normal andX = ⋃n
i=0 intT −1(yi) by (ii), there exists a continuous partitio

of unity {ψi}ni=0 subordinated to the open covering{intT −1(yi)}ni=0 such that for each
i ∈ {0,1, . . . , n} andx ∈ X, we have

ψi(x) 	= 0 ⇔ x ∈ intT −1(yi) ⇒ yi ∈ T (x). (2.2)

Define a mappingψ :X → ∆n by ψ(x) = ∑n
i=0 ψi(x)ei . Thenψ is continuous and

for eachx ∈ X, ψ(x) = ∑
j∈J (x) ψj (x)ej ∈ ∆J(x), where J (x) = {j ∈ {0,1, . . . , n}:

ψj (x) 	= 0}. By (2.2), we have{yj : J (x)} ∈ F(T (x)). From (2.1) and the condition (
we obtain

f (x) = (ϕM ◦ ψ)(x) ∈ ϕM(∆J(x)) ⊆ Γ
({

yi: j ∈ J (x)
}) ⊆ T (x).

This shows thatf = φ ◦ ψ continuous selection ofT . �
Theorem 2.1. Let (Xi,Di;Γi)i∈I be a family of locallyG-convex uniform spaces an
{Zi}i∈I be a family of nonempty sets. For eachi ∈ I , let Ai :X = ∏

i∈I Xi → 2Xi , Fi :X ×
Xi → 2Zi andCi :X → 2Zi be three set-valued mappings such that for eachi ∈ I ,

(i) Ai is an u.s.c. compact mapping with nonempty closedΓi -convex values,
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(ii) the setEi = {x ∈ X: Ai(x) ∩ Pi(x) 	= ∅} is open inX where the mappingPi :X →
2Xi is defined byPi(x) = {zi ∈ Xi : Fi(x, zi) ⊆ Ci(x)},

(iii) the mappingAi ∩Pi :Ei ⊆ X → 2Xi is u.s.c. with nonempty closedΓi -convex values
(iv) for eachx ∈ X, xi /∈ Ai(x) ∩ Pi(x).

Then there existŝx ∈ X such that for eachi ∈ I ,

x̂i ∈ Ai(x̂) and Fi(x̂, zi ) � Ci(x̂) ∀zi ∈ Ai(x̂).

Proof. For eachi ∈ I , define a set-valued mappingPi :X → 2Xi by

Pi(x) = {
zi ∈ Xi : Fi(x, zi) ⊆ Ci(x)

} ∀x ∈ X.

It is easy to check that all conditions of Theorem 1.2 are satisfied. By Theorem 1.2, the
existsx̂ ∈ X such that for eachi ∈ I ,

x̂i ∈ Ai(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅.

It follows that for eachi ∈ I ,

x̂i ∈ Ai(x̂) and Fi(x̂, zi ) � Ci(x̂) ∀zi ∈ Ai(x̂),

i.e., x̂ is a solution of the SGVQEP(I).�
Theorem 2.2. Let (Xi,Di;Γi) be a family of locallyG-convex uniform spaces and{Zi}i∈I

be a family of topological spaces. LetAi :X = ∏
i∈I Xi → 2Xi , Fi :X × Xi → 2Zi and

Ci :X → 2Zi be three set-valued mappings. Suppose that for eachi ∈ I ,

(i) Ai is an u.s.c. compact mapping with nonempty closedΓi -convex values,
(ii) the setEi = {x ∈ X: Ai(x) ∩ Pi(x) 	= ∅} is open inX where the mappingPi :X →

2Xi is defined byPi(x) = {zi ∈ Xi : Fi(xizi ) ⊆ Ci(x)},
(iii) Fi(x, zi) is l.s.c. onX × Xi ,
(iv) the mappingCi has closed graph,
(v) for eachx ∈ X, zi �→ F(x, zi) is G-quasi-convex with respect toCi ,
(vi) for eachx ∈ X, F(x, xi) � Ci(x).

Then there existŝx ∈ X such that for eachi ∈ I ,

x̂i ∈ Ai(x̂) and Fi(x̂, zi ) � Ci(x̂) ∀zi ∈ Ai(x̂).

Proof. Define a set-valued mappingPi :X → 2Xi by

Pi(x) = {
zi ∈ Xi : Fi(x, zi) ⊆ Ci(x)

} ∀x ∈ X.

We claim thatPi has closed graph. Indeed, let{(xα, zi,α)} be a net in Gr(Pi) and
(xα, zi,α) → (x0, zi,0). Then we have thatFi(xα, zi,α} ⊆ Ci(xα) for eachα. If F(x0, zi,0) �
Ci(x0), then there exists a pointui,0 ∈ F(x0, zi,0) such thatui,0 /∈ Ci(x0). By the condi-
tion (iii) and Lemma 1.1, there exists a subnet{αλ}λ∈Λ of {α} andui,αλ ∈ Fi(xαλ, zi,αλ )

such thatui,αλ → ui,0. Sinceui,αλ ∈ Fi(xαλ, zi,αλ ) ⊆ Ci(xαλ) for eachλ ∈ Λ and Ci

has closed graph, we must haveui,0 ∈ Ci(x0) which is a contradiction. Hence we ha
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Fi(x0, zi,0) ⊆ Ci(x0). So the mappingPi has closed graph. By Theorem 3.1.8 of Aub
Ekeland [7],Ai ∩ Pi :Ei ⊆ X → 2Xi is an u.s.c. mapping with nonempty closed valu
By (v), Pi hasΓi-convex values and hence(Ai ∩Pi)(x) is Γi -convex for eachx ∈ E by (i).
The condition (iii) of Theorem 2.1 is clearly satisfied. By (vi) for eachx ∈ X, xi /∈ Pi(x).
Hencexi /∈ Ai(x) ∩ Pi(x) and the condition (iv) of Theorem 2.1 is also satisfied. T
conclusion of Theorem 2.2 now follows from Theorem 2.1.

Corollary 2.1. Let (Xi,Di;Γi) be a family of locallyG-convex uniform spaces. L
Ai :X → 2Xi be a set-valued mapping andϕi :X × Xi → [−∞,+∞] be a single-valued
continuous function such that for eachi ∈ I ,

(i) Ai is an u.s.c. compact mapping with nonempty closedΓi -convex values,
(ii) the setEi = {x ∈ X: Ai(x) ∩ Pi(x) 	= ∅} is open inX where the mappingPi :X →

2Xi is defined byPi(x) = {zi ∈ Xi : ϕ(x, zi) � 0},
(iii) for eachx ∈ X, the set{zi ∈ Xi : ϕi(x, zi) � 0} is Γi -convex,
(iv) for eachx ∈ X, ϕi(x, xi) > 0.

Then there existŝx ∈ X such that for eachi ∈ I ,

x̂i ∈ Ai(x̂) and ϕi(x̂, zi ) > 0 ∀zi ∈ Ai(x̂).

Proof. Let Zi = [−∞,+∞], Ci(x) = [−∞,0] for eachx ∈ X andFi(x, zi) = {ϕ(x, zi)}
for all (x, zi) ∈ X × Xi . It is easy to check that all conditions of Theorem 2.2 are satis
The conclusion of Corollary 2.2 follows from Theorem 2.2.�
Theorem 2.3. Let (Xi,Di;Γi) be a family of locallyG-convex uniform space and{Zi}i∈I

be a family of topological spaces. LetAi :X → 2Xi , Fi :X × Xi → 2Zi andCi :X → 2Zi

be three set-valued mappings such that for eachi ∈ I ,

(i) Ai is an u.s.c. compact mapping with nonempty closedΓi -convex values,
(ii) the setEi = {x ∈ X: Ai(x) ∩ Pi(x) 	= ∅} is open inX where the mappingPi :X →

2Xi is defined byPi(x) = {zi ∈ Xi : Fi(x, zi) � Ci(x)},
(iii) Fi(x, zi) is an u.s.c. compact mapping with closed values,
(iv) the mappingCi has open graph,
(v) for eachx ∈ X, zi �→ Fi(x, zi) is G-quasi-concave with respect toCi ,
(vi) for eachx ∈ X, Fi(x, xi) ⊆ Ci(x).

Then there existŝx ∈ X such that for eachi ∈ I ,

x̂i ∈ Ai(x̂) and Fi(x̂, zi ) ⊆ Ci(x̂) ∀zi ∈ Ai(x̂).

Proof. Define set-valued mappingsP,H :X → 2Xi by

Pi(x) = {
zi ∈ Xi : Fi(x, zi) � Ci(x)

} ∀x ∈ X,

and

Hi(x) = Ai(x) ∩ Pi(x) = {
zi ∈ Ai(x): Fi(x, zi) ∩ (

Zi \ Ci(x)
) 	= ∅} ∀x ∈ X,
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respectively. SinceAi is a compact mapping,Hi is also a compact mapping. We cla
thatHi has closed graph. Indeed, let{(xα, zi,α)}α∈I be a net in Gr(Hi) and(xα, zi,α) →
(x0, zi,0). Then we havezi,α ∈ Ai(xα) andFi(xα, zi,α) ∩ (Zi \ Ci(xα)) 	= ∅ for eachα ∈ I .
Hence there existsui,α ∈ Fi(xα, zi,α) such thatui,α ∈ Zi \ Ci(xα) for eachα ∈ I . Without
loss of generality, by (iii) we can assume thatui,α → ui,0 and soui,0 ∈ Fi(x0, zi,0). By (iv)
the mappingWi :X → 2Zi defined byWi(x) = Zi \Ci(x) has closed graph. It follows tha
ui,0 ∈ Wi(x0) = Zi \ Ci(x0) andFi(x0, zi,0) ∩ (Zi \ Ci(x0)) 	= ∅. By (i) we havezi,0 ∈
Ai(x0). Therefore(x0, zi,0) ∈ Gr(Hi) and the graph Gr(Hi) of Hi is closed. HenceHi =
Ai ∩ Pi is an u.s.c. compact mapping with nonempty closed values. By (i) and (v)Ai ∩ Pi

hasΓi -convex values. The condition (iii) of Theorem 2.1 is clearly satisfied. By (vi)
eachx ∈ X, xi /∈ Pi(x) and hencexi /∈ Ai(x) ∩ Pi(x), from which the condition (iv) of
Theorem 2.1 is satisfied. Therefore by Theorem 2.1, there exists a pointx̂ ∈ X such that
for eachi ∈ I ,

x̂i ∈ Ai(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅.

It follows that for eachi ∈ I ,

x̂i ∈ Ai(x̂) and Fi(x̂, zi ) ⊆ Ci(x̂) ∀zi ∈ Ai(x̂).

The proof is now complete.�
Corollary 2.2. Let (Xi,Di;Γi) be a family of locallyG-convex uniform spaces. L
A :X → 2Xi be a set-valued mapping andϕi :X × Xi → [−∞,+∞] be a function such
that for eachi ∈ I ,

(i) Ai is an u.s.c. compact mapping with nonempty closedΓi -convex values,
(ii) the setEi = {x ∈ X: Ai(x) ∩ Pi(x) 	= ∅} is open inX where the mappingPi :X →

2Xi is defined byPi(x) = {zi ∈ Xi : ϕi(x, zi) � 0},
(iii) ϕi(x, y) is a continuous bounded function,
(vi) for eachx ∈ X, the set{zi ∈ Xi : ϕi(x, zi) � 0} is Γi -convex,
(v) for eachx ∈ X, ϕi(x, xi) < 0.

Then there existŝx ∈ X such that for eachi ∈ I ,

x̂i ∈ Ai(x̂) and ϕi(x̂, zi ) < 0 ∀zi ∈ Ai(x̂).

Proof. Let Z = [−∞,+∞], Ci(x) = [−∞,0) for eachx ∈ X andFi(x, zi) = {ϕi(x, zi)}
for all (x, zi) ∈ X × Xi . It is easy to check that all conditions of Theorem 2.3 are satis
The conclusion of Corollary 2.2 now follows from Theorem 2.3.�
Remark 2.1. Theorems 2.1–2.3 and Corollaries 2.1 and 2.2 are new results whic
different from the corresponding results in [2–6,8–16,18,19,22,23,26–33,39] and ou
ment methods are also different.

Theorem 2.4. Let (Xi,Di;Γi) be a family of locallyG-convex uniform spaces such th
X = ∏

i∈I Xi is a normal space. Let(Yi ,D
′ ;Γ ′)i∈I be a family ofG-convex spaces an
i i
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for
{Zi}i∈I be a family of topological spaces. For eachi ∈ I , let Ai :X = ∏
i∈I Xi → 2Xi ,

Ti :X → 2Yi , ϕi :X × Yi × Xi → 2Zi andCi :X → 2Zi be set-valued mappings. Suppo
that for eachi ∈ I ,

(i) Ti has nonemptyΓ ′
i -convex values,

(ii) there existsMi = {yi,0, . . . , yi,ni } ∈ F(D′
i ) such thatX = ⋃

yi∈Mi
intT −1

i (yi),
(iii) Ai is an u.s.c. compact mapping with nonempty closedΓi -convex values,
(iv) for any continuous mappingfi :X → Yi the setEi = {x ∈ X: Ai(x) ∩ Pi(x) 	= ∅}

is open inX where the mappingPi :X → 2Xi is defined byPi(x) = {zi ∈ Xi :
ϕi(x, fi(x), zi) ⊆ Ci(x)},

(v) ϕi(x, yi, zi ) is l.s.c. onX × Yi × Xi ,
(vi) the mappingCi has closed graph,
(vii) for each(x, yi) ∈ X × Yi , zi �→ ϕ(x, yi, zi) is G-quasi-convex with respect toCi ,
(viii) for any continuous mappingfi :X → Yi andx ∈ X, ϕi(x, fi(x), xi) � Ci(x).

Then there exist̂x ∈ X and ŷ ∈ Y = ∏
i∈I Yi such that for eachi ∈ I ,

x̂i ∈ Ai(x̂), ŷi ∈ Ti(x̂) and ϕi(x̂, ŷi , zi) � Ci(x̂) ∀zi ∈ Ai(x̂).

Proof. By conditions (i), (ii) and Lemma 2.1 for eachi ∈ I , Ti has a continuous selectio
fi :X → Yi . For eachi ∈ I , define a set-valued mappingFi :X × Xi → 2Zi by

Fi(x, zi) = ϕi

(
x,fi(x), zi

) ∀(x, zi) ∈ X × Xi.

By conditions (iii)–(viii), it is easy to see that all conditions of Theorem 2.2 are satisfie
Hence by Theorem 2.2, there existsx̂ ∈ X such that for eachi ∈ I ,

x̂i ∈ Ai(x̂) and Fi(x̂, zi ) � Ci(x̂) ∀zi ∈ Ai(x̂).

For eachi ∈ I , let ŷi = fi(x̂). Thenŷ ∈ Y = ∏
i∈I Yi . Note thatfi is a continuous selectio

of Ti . We get for eachi ∈ I , ŷi = fi(x̂) ∈ Ti(x̂) from which it follows that for eachi ∈ I ,

x̂i ∈ Ai(x̂), ŷi ∈ Ti(x̂) and ϕi(x̂, ŷi , zi) � Ci(x̂) ∀zi ∈ Ai(x̂).

Corollary 2.3. Let (Xi,Di;Γi) be a family of locallyG-convex uniform spaces such th
X = ∏

i∈I Xi is a normal space. Let(Yi ,D
′
i;Γ ′

i )i∈I be a family ofG-convex spaces. Fo
each i ∈ I , let Ai :X = ∏

i∈I Xi → 2Xi , Ti :X → 2Yi and Ci :X → 2Zi be set-valued
mappings. Letϕi :X × Yi × Xi → [−∞,+∞] be a continuous function. Suppose that
eachi ∈ I ,

(i) Ti has nonemptyΓ ′
i -convex values,

(ii) there existsMi = {yi,0, . . . , yi,ni } ∈ F(D′
i ) such thatX = ⋃

yi∈Mi
intT −1

i (yi),
(iii) Ai is an u.s.c. compact mapping with nonempty closedΓi -convex values,
(iv) for any continuous mappingfi :X → Yi , the setEi = {x ∈ X: Ai(x) ∩ Pi(x) 	= ∅}

is open inX where the mappingPi :X → 2Xi is defined byPi(x) = {zi ∈ Xi :
ϕi(x, fi(x), zi) � 0},

(v) for each(x, yi) ∈ X × Yi , zi �→ ϕi(x, yi, zi ) is G-quasi-convex,
(vi) for any continuous mappingfi :X → Yi andx ∈ X, ϕi(x, fi(x), xi) > 0.
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Then there exist̂x ∈ X and ŷ ∈ Y = ∏
i∈I Yi such that for eachi ∈ I ,

x̂i ∈ Ai(x̂), ŷi ∈ Ti(x̂) and ϕi(x̂, ŷi , zi) > 0 ∀zi ∈ Ai(x̂).

Proof. For eachi ∈ I , let Zi = [−∞,+∞] andCi(x) = [−∞,0] for eachx ∈ X. Noting
thatϕi is a single-valued function, it is easy to check that all conditions of Theorem 2.
satisfied. By Theorem 2.4, there existx̂ ∈ X andŷ ∈ Y = ∏

i∈I Yi such that for eachi ∈ I ,

x̂i ∈ Ai(x̂), ŷi ∈ Ti(x̂) and ϕi(x̂, ŷi , zi) > 0 ∀zi ∈ Ai(x̂). �
Theorem 2.5. Let (Xi,Di;Γi) be a family of locallyG-convex uniform spaces,(Yi,D

′
i;

Γ ′
i )i∈I be a family ofG-convex spaces and{Zi}i∈I be a family of topological spaces. Fo

eachi ∈ I , let Ai :X → 2Xi , Ti :X → 2Yi , ϕi :X × Yi × Xi → 2Zi , andCi :X → 2Zi be
set-valued mappings such that for eachi ∈ I ,

(i) Ti has nonemptyΓ ′
i -convex values,

(ii) there existsMi = {yi,0, . . . , yi,ni } ∈ F(D′
i ) such thatX = ⋃

yi∈Mi
intT −1

i (yi),
(iii) Ai is an u.s.c. compact mapping with nonempty closedΓi -convex values,
(iv) for any continuous mappingfi :X → Yi , the setEi = {x ∈ X: Ai(x) ∩ Pi(x) 	= ∅}

is open inX where the mappingPi :X → 2Xi is defined byPi(x) = {zi ∈ Xi :
ϕi(x, fi(x), zi) � Ci(x)},

(v) ϕi(x, yi, zi ) is an u.s.c. compact mapping with closed values,
(vi) the mappingCi has open graph,
(vii) for each(x, yi) ∈ X × Yi , zi �→ ϕi(x, yi, zi ) is G-quasi-concave with respect toCi ,
(viii) for any continuous mappingfi :X → Yi andx ∈ X, ϕi(x, fi(x), xi) ⊆ Ci(x).

Then there exist̂x ∈ X and ŷ ∈ Y = ∏
i∈I Yi such that for eachi ∈ I ,

x̂i ∈ Ai(x̂), ŷi ∈ Ti(x̂) and ϕi(x̂, ŷi , zi) ⊆ Ci(x̂) ∀zi ∈ Ai(x̂).

Proof. By conditions (i), (ii) and Lemma 2.1 for eachi ∈ I , Ti has a continuous selectio
fi :X → Yi . For eachi ∈ I , define a set-valued mappingFi :X × Xi → 2Zi by

Fi(x, zi) = ϕi

(
xifi(x), zi

) ∀(x, zi) ∈ X × Xi.

By conditions (iii)–(viii), it is easy to see that all conditions of Theorem 2.3 are satisfie
By Theorem 2.3, there existŝx ∈ X such that for eachi ∈ I ,

x̂i ∈ Ai(x̂) and Fi(x̂, zi ) ⊆ Ci(x̂) ∀zi ∈ Ai(x̂).

For eachi ∈ I , let ŷi = fi(x̂). Then ŷ ∈ Y = ∏
i∈I Yi . Noting thatfi is a continuous

selection ofTi we conclude that for eachi ∈ I , ŷi = fi(x̂) ∈ Ti(x̂). It follows that for each
i ∈ I ,

x̂i ∈ Ai(x̂), ŷi ∈ Ti(x̂) and ϕi(x̂, ŷi , zi) ⊆ Ci(x̂) ∀zi ∈ Ai(x̂). �
Corollary 2.4. Let (Xi,Di;Γi) be a family of locallyG-convex uniform spaces such th
X = ∏

i∈I Xi is a normal space. Let(Yi,D
′
i , Γ

′
i )i∈I be a family ofG-convex spaces. Fo

eachi ∈ I , Ai :X = ∏
i∈I Xi → 2Xi andT :X → 2Yi . Letϕ :X × Yi × Xi → [−∞,+∞]

be a continuous function. Suppose that for eachi ∈ I ,



X.-P. Ding et al. / J. Math. Anal. Appl. 298 (2004) 398–410 409

5 are

Math.

s,

Optim.

n,

-

al. 52

nce

n

(i) Ti has nonemptyΓ ′
i -convex values,

(ii) there existsMi = {yi,0, . . . , yi,ni } ∈ F(D′
i ) such thatX = ⋃

yi∈Mi
intT −1

i (yi),
(iii) Ai is an u.s.c. compact mapping with nonempty closedΓi -convex values,
(iv) for any continuous mappingfi :X → Yi , the setEi = {x ∈ X: Ai(x) ∩ Pi(x) 	= ∅}

is open inX where the mappingPi :X → 2Xi is defined byPi(x) = {zi ∈ Xi :
ϕi(x, fi(x), zi) � 0},

(v) for each(x, yi) ∈ X × Yi , zi �→ ϕi(x, yi, zi ) is G-quasi-concave,
(vi) for any continuous mappingfi :X → Yi andx ∈ X, ϕi(x, fi(x), xi) < 0.

Then there exist̂x ∈ X and ŷ ∈ Y = ∏
i∈I Yi such that for eachi ∈ I ,

x̂i ∈ Ai(x̂), ŷi ∈ Ti(x̂) and ϕi(x̂, ŷi , zi) < 0 ∀zi ∈ Ai(x̂).

Proof. For eachi ∈ I , let Zi = [−∞,+∞] andCi(x) = [−∞,0) for eachx ∈ X. Noting
thatϕ is a single-valued function, it is easy to check that all conditions of Theorem 2.
satisfied. Hence by Theorem 2.5 there existx̂ ∈ X andŷ ∈ Y = ∏

i∈I Yi such that for each
i ∈ I ,

x̂i ∈ Ai(x̂), ŷi ∈ Ti(x̂) and ϕi(x̂, ŷi , zi) < 0 ∀zi ∈ Ai(x̂).

The proof is now complete.�
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