Available online at www.sciencedirect.com

Fournal pf*
sclENCE@DlRECT" MATHEMATICAL
. BN ANALYSIS AND
ELSEVIER J. Math. Anal. Appl. 298 (2004) 398-410 w

www.elsevier.com/locate/jmaa

Solutions of system of generalized vector
guasi-equilibrium problems in localk -convex
uniform spaces

Xie-Ping Ding?!, Jen-Chih Yaé*2, Lai-Jiu Lin®?

@ College of Mathematics and Software Science, Sichuan Normal University, Chengdu,
Sichuan 610066, PR China
b Department of Applied Mathematics, National Sub-s&n University, 804 Kaohsiung, Taiwan, ROC
¢ Department of Mathematics, National Changhua\émsity of Education, 50058 Changhua, Taiwan, ROC

Received 7 October 2003

Submitted by H. Frankowska

Abstract

In this paper we establish a collectively fixed point theorem and an equilibrium existence theo-
rem for generalized games in product locallyconvex uniform spaces. As applications, some new
existence theorems of solutions for the system of generalized vector quasi-equilibrium problems are
derived in product locallyG-convex uniform spaces. These theorems are new and generalize some
known results in the literature.

0 2004 Elsevier Inc. All rights reserved.

Keywords:Collectively fixed point; Generalized game; System of generalized vector quasi-equilibrium
problems; LocallyG-convex uniform space

* Corresponding author. Tel.: 886-7-5253816; fax: 886-7-5253809.
E-mail addressyaojc@math.nsysu.edu.tw (J.-C. Yao).
1 This research was partially supported by theiNs Sichuan Education Department of China.
2 This research was partially supported by a grant freenNational Science Council of the Republic of China.

0022-247X/$ — see front mattdrl 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.05.039



X.-P. Ding et al. / J. Math. Anal. Appl. 298 (2004) 398-410 399

1. Introduction and preliminaries

The vector variational inequality problem s/irst introduced andsdied by Giannessi
[22] in finite dimensional Euclidean spaces. Since then, such problem has been extended
and generalized by many authors in variouedént directions. We noticed that vector
variational inequalities and its various generalizations have extensive and important ap-
plications in vector optimization, optimabatrol, mathematical programming, operations
research and equilibrium problem of econosietc. Inspired and motivated by above
applications, various generalized vector variational inequality problems and generalized
vector equilibrium problems have become important developed directions of the classi-
cal vector variational inequality theory, for example, see [2,8,11,12,23,26,27,30,31] and
references therein.

Pang [32] has shown that a variety of equilibrium models, for example, the traffic equi-
librium problem, the spatial equilibrium problem, the Nash equilibrium problem and the
general equilibrium programming problem can be uniformly modelled as a variational in-
equality defined on the product sets. He deposed the original variational inequality into
a system of variational inequalities which are easy to solve. The method of decomposition
was also used by Zhu and Marcotte [39], and Cohen and Chaplais [10] to solve a varia-
tional inequality problem defined on a set of inequality constraints. Motivated and inspired
by the above development, Ansari and Yao [3,4], Ansari et al. [5,6], and Ding [13,14] in-
troduced and studied the system of vector equilibrium problems. Some existence theorems
of solutions for the system of vector equiiibm problems are established in topological
vector spaces an@d-convex spaces, respectively.

On the other hand, the quasi-equilibrium problems, the generalized quasi-equilibrium
problems and their applications have also been studied extensively by many authors, for
example, see [9,15,16,18,19,28,29,33].

Following the trend of the above research fields, we will introduce and study some new
classes of system of generalized vectorgingguilibrium problems on a product space of
G-convex spaces in this paper.

Let I be a finite or infinite index setX;};c; and{Y;};c; be two families of topological
spaces, anflZ; };c; be a family of nonempty sets. Lat=[],.; X; andY =[], ¥;. For
eachiel,letA;:X - 2% F: X x X; — 2%, T;: X - 2%, C;: X — 2% andg; : X x
Y; x X; — 2% be set-valued mappings.

A system of generalized vector quasjedibrium problems of type (I) (SGVQEP(I)) is
to find x € X such that for eache I,

X €A;j(x) and Fi(%,z) € Ci(X) Vz € Ai(R). (1.1)

A system of generalized vector quagiedibrium problems of type (11) (SGVQEP(II))
isto findx € X andy € Y such that for eache I,

XeA®), yieTi(®) and (X, 3i,z) L Ci(X) Vz € Ai(%). (1.2)

A system of generalized vector quasjedlibrium problems of type (11I) (SGVQEP(11I))
is to findx € X such that for eache I,

% eAi(®) and Fi(%,z)CCG(H) Vi€ Ai(R). (1.3)



400 X.-P. Ding et al. / J. Math. Anal. Appl. 298 (2004) 398-410

A system of generalized vector quasi-equilibrium problems of type (IV) (SGVQEP(IV))
is to findx € X andy € Y such that for eache I,

X €eAi(X), yieTi(x) and ¢;(X,y,z) S Ci(X) Vz € Ai(%). (1.4)

If Z; = [—o00,+00] andC;(x) =[—o0,0] foralli e I andx € X, and F;(x, z;) =
@i (x, z;) for each(x, z;) € X x X; is a single-valued function, then the SGVQEP(I) re-
duces to the following system of generalized quasi-equilibrium problems of type (V)
(SGQEP(V)) which is to find € X such that for eache I,

Xi € A,’()?) and (p,'(f, zi)>0 Vz; e A,»()G). (1.5)

Whenl is a singleton, problem (1.5) has been introduced and studied by many authors.
For example, see [9,15,16,18,19,28,29,33].

If Z; =[—00,+00] andC;(x) =[—o00,0) forall i e I andx € X andg; (x, y;, z;) IS
a single-valued function, then the SGVQEP¢#}luces to the following system of gener-
alized quasi-equilibrium problems of type (VI) (SGQEP(VI)) which is to find X and
y € Y such that for eache I,

X eAi(X), JieTi(X) and ¢;(X,9,2) <0 Vz € A;(®). (1.6)

When is a singleton and = Y, problem (1.6) has been introduced and studied by
Ding and Park [19], Lin and Park [28], Lin and Yu [29], and Chen et al. [9] and Park [33],
respectively.

If A;(x)=X; for eachi € I andx € X, then the SGVQEP(I) reduces to the following
system of generalized vector equilibriygmoblems of type (VII) (SGVEP(VII)) which is
to find x € X such that for eache I,

Fi(%,z:) £ Ci(X) Vzi € X;. (1.7)

The SGVEP(VII) and its special cases hdeen introduced and studied by Ansari et
al. [5,6] in topological vector spaces. Wheéris a singleton, problem (1.7) and its special
cases have been extensively studied by many authors. For example, see [2,8,11,12,23,26,
27,30,31] and references therein.

If A;j(x)=X; foreachi € I andx € X, then the SGVQEP(II) reduces to the following
system of generalized vector equilibriggroblems of type (VIII) (SGVEP(VIII)) which is
to findx € X andy € Y such that for eache I,

yieT;(x) and ¢i(X,3;,z) SCi(X) Vzi€X;. (1.8)

Obviously, SGVQEP(I) and SGVQEP(II) inclugeoblems (1.3)—(1.8) as special cases.
For appropriate choices of the spacés Y;, Z; and the mappingg;, 7;, C; and ¢;,
it is easy to see that SGVQEP(l) and SGVQERnclude a nhumber of extensions and
generalizations of generalized (vector) equilibrium problems, generalized (vector) varia-
tional inequality problems, generalized (vector) quasi-equilibrium problems and general-
ized (vector) quasi-variational inequalityginlems as special cases. For example, see [2—6,
8-16,18,19,21-23,26-33,39] and references therein.

In this paper, we will establish a collectively fixed point theorem and an equilibrium
existence theorem for generalized games in product localbpnvex uniform spaces. As
applications, some new existence theuos of solutions for SGVQEP(I) and SGVQEP(II)
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are derived in product locallg-convex uniform spaces. Let us first recall the following
preliminaries which will be needed in the sequel.

For a setX, we will denote by ¥ andF (X) the family of all subsets aX and the family
of all nonempty finite subsets of, respectively. ForA € F(X), we denote byA| the
cardinality ofA. Let A, be the standard-dimensional simplex with vertices, e1, ..., e,.
If Jis a nonempty subset ¢@, 1, ..., n}, we denote byt ; the convex hull of the vertices
{ej: j € J}. The notion of a generalized convex @rconvex) space was introduced under
an extra isotonic condition by Park and Kim [34]. Recently Park [35] gave the following
definition of aG-convex space by removing the extra condition.

A G-convex spacéX, D; I') consists of a topological spacé, a nonempty seD
and a set-valued mapping: (D) — 2X \ {#}} such that for eaclt = {ag, a1, ...,a,} €
F (D) with |A| = n + 1, there exists a continuous mappipg: A, — I'(A) such that/ C
{0,1,...,n} impliesga(Ay) € I'({a;: j e J}), whereA; =cofe;: j € J}, the convex
hull of the set{e;: j € J}. WhenD = X, we will write (X, X; I') = (X, I'). In the case
of D C X, a subsetC of (X, D; I') is said to bel"-convex if for eachA € (D N C),
r'(A)cC.

A locally G-convex uniform space (also see [35]) isaconvex spacéX, D; I') such
that

(1) X is a separated uniform space with the bagsfer symmetric entourages;
(2) D is adense subset &f; and
(3) foreachV € g and eachx € X, the setV[x] ={y € X: (x,y) € V}is I"-convex.

G-convex spaces include the convelbsets of a topological vector spadé;spaces
(see Horvath [24,25]) and margpological spaces with abstract convexity structure as
special cases; see [34-36]. The notion of locélkzonvex uniform spaces generalizes the
notions of locally conveX{ -spaces and locallgF-convex spaces introduced by Wu and Li
[37] and Yuan [38], respectively.

Let (X, D; I') be aG-convex space and be a nonempty set. Lef: X — 27 and
C:X — 2% be set-valued mapping#. is said to beG-quasi-convex (respectively;-
guasi-concave) with respect @ if the set{x € X: F(x) € C(x)} (respectively{x € X:
F(x) ¢ C(x)}) is G-convex.

Let X andY be both topological spaces. A set-valued mappihgX — 2¥ is said
to be compact ifG(X) is contained in some compact subset’ofG is said to be upper
semicontinuous (u.s.c.) (respectively, lower semicontinuous (l.s.cX)ibfor eachx € X
and for each open sét of Y, the set{x € X: G(x) C U} (respectively{x € X: F(x) N
U #@))isopeninX.If S,T:X — 2Y are set-valued mappings, thehn 7): X — 2¥ is
the set-valued mapping defined @/N 7T)(x) = T (x) N S(x) for eachx € X.

In order to prove the main result (Theorem 1.2) of this section, we need the following
results.

Theorem 1.1[17, Theorem 3.1]Let (X;, D;; I;);c; be a family of locallyG-convex uni-
form spaces with eack; having the basig; of symmetric entourages. For each I, let
Gi: X=][lje; Xi — 2% pe an upper semicontinuous compact set-valued mapping with
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nonempty closed’;-convex values. Then there exists a pdint (X;)ic; € X such that
Xi € Gi(x) foreachi € I.

Lemma 1.1 [1, Theorem 14.18]Let X, Y be topological spaces ang,: X — 2 be a
set-valued mapping. Then the following statements are equivalent

(i) ¢ is lower semicontinuous at a pointe X,
(i) if xo, — x, then for eachy € ¢(x) there exists a subnéiy, },<4 of the index sefa}
and elements, € ¢(x,,) for eachix € A such thaty, — y.

Lemma 1.2 [38, Lemma 4.7.3, p. 301Let X and Y be two topological spaces andl
be a closedrespectively, opersubset ofX. Suppose: X — 2¥ and F>: A — 2 are
both I.s.c(respectively, u.s.psuch thatF,(x) € Fi(x) for eachx € A. Then the mapping
F:X — 2" defined by

_ [ B, ifxea,
F(x)_{Fl(x), if x ¢ A,

is also I.s.c(respectively, u.s.k.

Now we describe a generalized gafie= (X;, A;, P;)ic;, Wherel is a finite or in-
finite set of agents; for eache I, X; is a the strategy set (or commodity space} tf
agent;A; 1 X = [[,; Xi — 2% is the constrained correspondence (set-valued mapping)
andP; : X — 2%i is the preference correspondence. A pdirt X is called an equilibrium
point of the generalized gandeif x; € A;(¥) andA; (x) N P;(x) =@ for eachi € I.

Theorem 1.2. Let ((X;, D;; I7), A;, P;)ic; be ageneralized game such that for eaeh!,

() (X;, D;; I;) is a locally G-convex uniform space,
(ii) A; is anu.s.c. compact mapping with nonempty claSedonvex values oi,
(iii) the setk; ={x € X: A;(x) N P;(x) # @} is open inX,
(iv) A; NP E C X — 2% is u.s.c. with closed}-convex values,
(v) foreachx € X, x; ¢ A; (x) N P;(x).

Then there exist§ € X such that for each € 1,

xi€A;(x) and A;(X)NP;(x)=40.

Proof. For each e I, define a set-valued mappifg: X — 2%i by

AN P(x), ifxekE;,
T’(x)_{A,»(x), if x ¢ E;.

From conditions (ii)—(iv) and Lemma 1.2 it follows that for eack I, 7; is an u.s.c.
compact mapping with nonempty closédconvex values. By Theorem 1.1, there exists a
pointx € X such that for eache I, x; € T;(x). If for somei € I, X; € E;, then we have
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X; € A;(x) N P;(x) which contradicts the condition (v). Hence we conclude that for each
iel,
Xi€Ai(x) and A;(X)NPi(x)=0,

i.e.,x is an equilibrium point of the generalized gathe O

2. Existence of solutionsfor SGVQEP

In this section by using Theorem 1.2, we shall establish some new existence theorems
of solutions for SGVQEP(I) and SGVQEP(lI), respectively, in locallyconvex uniform
spaces.

The following result is a variant of Theorem 3.1 of Ding and Park [20].

Lemma2.1. Let X be a normal space and, D; I') be aG-convex space. Lgt: X — 2
be a set-valued mapping satisfy the following conditions

(i) foreachx € X, T(x) is I'-convex,
(ii) there exists¥ ={yo, y1, ..., ya} € F(D) such thatX =, intT~1(y).

Then there exists a continuous selectibpnX — Y of T such thatf = ¢ o ¥, where
oM A, — Y andy : X — A, are both continuous.

Proof. SinceY is aG-convex space anf = {yo, y1, ..., yu} € F(D) by (ii), there exists
a continuous mappingy, : A, — I'(M) such that

pm(Ay) S I'(B), VBe(M), |B[=[J|+1 (2.1)

SinceX is normal andX = | J;_gint T—1(y) by (ii), there exists a continuous partition
of unity {v;}?_, subordinated to the open coveril{igtT—l(yi)}j?:O such that for each
i€{0,1,...,n} andx € X, we have

Yix)#£0 & xeintT i) = yieTk). (2.2)

Define a mapping/ : X — A, by ¢¥(x) = >/, ¥i(x)e;. Theny is continuous and
for eachx € X, ¥ (x) = Z,EJ(X) Vi(x)ej € Ay, WhereJ(x) ={j € {0,1,...,n}:
¥;j(x) #0}. By (2.2), we havqy,-: J(x)} € F(T'(x)). From (2.1) and the condition (i)
we obtain

F@)=(pmo)(x) €pu(As) ST ({yit jeJ@®)}) ST ).

This shows thalf = ¢ o ¢ continuous selection df. O

Theorem 2.1. Let (X;, D;; I;);c; be a family of locallyG-convex uniform spaces and
{Zi}icr be afamily of nonempty sets. Foreach/, letA;: X =[[,.; Xi — 2Xi F X x
X; — 2% andC; : X — 2% be three set-valued mappings such that for eiae,

(i) A; is an u.s.c. compact mapping with nonempty claSedonvex values,
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(i) the setk; = {x € X: A;(x) N P;(x) # @} is open inX where the mapping@; : X —
2% is defined byP; (x) = {z; € X;: Fi(x,z) € Ci(x)},

(iii) the mappingd; N P; : E; € X — 2%i is u.s.c. with nonempty closé@-convex values,

(iv) foreachx € X, x; ¢ A;(x) N P;(x).

Then there existé € X such that for each e I,
)2,' S A,’()?) and F,'()e,Z[) ,d_ C,’()?) Vz; € A,-()%).

Proof. For each € I, define a set-valued mappiRy: X — 2% by
Pi(x)={zi € X;t Fi(x,z;)) CCi(x)} VxeX.

It is easy to check that all conditions of Theord.2 are satisfied. By Theorem 1.2, there
existsx € X such that for eache I,

%€ Ai(®) and A;(X)NPi&E)=0.
It follows that for each € I,

X €Ai(x) and Fi(X,z) € Ci(X) Vzi € Ai(X),
i.e.,x is a solution of the SGVQEP(l). O

Theorem 2.2. Let (X;, D;; I';) be a family of locallyG-convex uniform spaces afd; };c;
be a family of topological spaces. Ldt : X = [[;.; X; — 2%/, F;: X x X; — 2% and
C; : X — 2% be three set-valued mappings. Suppose that for éach

(i) A; is an u.s.c. compact mapping with nonempty claSedonvex values,
(i) the setk; = {x € X: A;(x) N P;(x) # @} is open inX where the mappin®; : X —
2% is defined byP; (x) = {z; € X;: Fi(xizi) € Ci(x)},
(i) Fi(x,z;)isl.s.c.onX x X;,
(iv) the mappingC; has closed graph,
(v) foreachx € X, z; — F(x, z;) is G-quasi-convex with respect g,
(vi) foreachx € X, F(x,x;) € Ci(x).

Then there existé € X such that for each e I,
)2,' S A,’()?) and F,'()e,Z[) ,d_ C,’()?) Vz; € A,-()%).

Proof. Define a set-valued mappirgy: X — 2%i by
Pi(x)={zi € X;t Fi(x,z;)) CCi(x)} VxeX.

We claim that P, has closed graph. Indeed, |&txy,zio)} be a net in GtP;) and
(X, zi,a) = (x0, zi,0). Then we have thaf; (xq, zi.«} € Ci(xq) foreachu. If F(xo, zi0) €
Ci(xg), then there exists a poing o € F(xo, zi,0) such thats; o ¢ C;(xp). By the condi-
tion (iii) and Lemma 1.1, there exists a subifei},ca of {o} andu; y, € Fi(Xq,, Ziiay)
such thatu; 4, — ui 0. Sinceu;q, € Fi(xa,,Zia;,) C Ci(xy,) for eachr € A and C;
has closed graph, we must hawvg € C;(xp) which is a contradiction. Hence we have
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F;(x0, zi.0) € Ci(x0). So the mapping®; has closed graph. By Theorem 3.1.8 of Aubin—
Ekeland [7],A; N P;: E; € X — 2%i is an u.s.c. mapping with nonempty closed values.
By (v), P; hasl;-convex values and henég; N P;)(x) is I';-convex for each € E by (i).
The condition (iii) of Theorem 2.1 is clearly satisfied. By (vi) for each X, x; ¢ P;(x).
Hencex; ¢ A;(x) N P;(x) and the condition (iv) of Theorem 2.1 is also satisfied. The
conclusion of Theorem 2.2 now follows from Theorem 2.1.

Corollary 2.1. Let (X;, D;; I';) be a family of locallyG-convex uniform spaces. Let
A;: X — 2%i pe a set-valued mapping argg: X x X; — [—oo, +00] be a single-valued
continuous function such that for eack 1,

(i) A;is an u.s.c. compact mapping with nonempty claBedonvex values,
(i) the setk; = {x € X: A;(x) N P;(x) # @} is open inX where the mapping@; : X —
2%i is defined byP; (x) = {z; € X;: ¢(x,z;) <0},
(iii) for eachx € X, the sef{z; € X;: ¢;(x, z;) < 0} is I';-convex,
(iv) foreachx € X, ¢;(x,x;) > 0.

Then there exist§ € X such that for each € 1,
)2,’ € A,‘()CA) and (p,'()e,zi) >0 Vz e A,‘()CA).
Proof. Let Z; = [—o0, +o¢], Ci(x) = [—00, O] for eachx € X and F; (x, z;) = {¢(x, z;)}

forall (x,z;) € X x X;. Itis easy to check that all conditions of Theorem 2.2 are satisfied.
The conclusion of Corollary 2.2 follows from Theorem 2.2

Theorem 2.3. Let (X;, D;; I';) be a family of locallyG-convex uniform space anfd; };c;
be a family of topological spaces. L&t: X — 2%, F;: X x X; — 2% andC;: X — 2%
be three set-valued mappings such that for eaet,

(i) A; is an u.s.c. compact mapping with nonempty claSedonvex values,
(i) the setk; = {x € X: A;(x) N P;(x) # @} is open inX where the mapping@; : X —
2Xi is defined byP; (x) = {z; € X;: Fi(x,z) € Ci(x)},
(iii) Fi(x,z;) isanu.s.c. compact mapping with closed values,
(iv) the mappingC; has open graph,
(v) foreachx € X, z; — Fi(x, z;) IS G-quasi-concave with respect ),
(vi) foreachx € X, F;(x,x;) C C;(x).

Then there existé € X such that for each e I,
X €eAi(X) and F;(%,zj)) CCi(X) Vz; € Ai(X).

Proof. Define set-valued mappings H : X — 2% by
Pi(x)={z € X;: Fi(x,z)) £ Ci(x)} VxeX,
and
Hi(x) = Ai(x) N Pi(x) = {zi € Ai(x): Fi(x,z))N(Zi\ Ci(x)) #0} VxeX,
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respectively. Sincel; is a compact mappingd; is also a compact mapping. We claim
that H; has closed graph. Indeed, gk, zi. o) }ocr be a netin G(H;) and (xy, zio) —
(x0, zi,0)- Then we have; , € A;(xy) andF; (xq, zi.a) N (Z;i \ Ci(xy)) # @ for eacha € 1.
Hence there exists; o € F;(xq, zi¢) SUCh that; o € Z; \ C;(xy) for eacha € 1. Without
loss of generality, by (iii) we can assume that, — u; o and sau; o € F; (xo, zi,0). By (iv)
the mappingV; : X — 2% defined byW; (x) = Z; \ C; (x) has closed graph. It follows that
ui,0 € Wi(xo) = Z; \ Ci(xo0) and F;(xo, zi,0) N (Z; \ Ci(x0)) # ¥. By (i) we havez; o €
A;(x0). Therefore(xo, zi.0) € Gr(H;) and the graph GH;) of H; is closed. Hencéd; =

A; N P; is an u.s.c. compact mapping with nonempty closed values. By (i) andl; (W)P;
hasI;-convex values. The condition (iii) of Theorem 2.1 is clearly satisfied. By (vi) for
eachx € X, x; ¢ P;(x) and hencer; ¢ A;(x) N P;(x), from which the condition (iv) of
Theorem 2.1 is satisfied. Therefore by Theorem 2.1, there exists aipaint such that
foreachi €I,

Xi€eA(x) and A;(x)NP;(x)=0.
It follows that for each € I,
X eAj(x) and Fi(X,z;)) SCi(X) Vzi € Ai(R).

The proof is now complete. O

Corollary 2.2. Let (X;, D;; I;) be a family of locallyG-convex uniform spaces. Let
A:X — 2% be a set-valued mapping apg: X x X; — [—oo, +00] be a function such
that for eachi € I,

(i) A; is an u.s.c. compact mapping with nonempty claSedonvex values,
(i) the setE; = {x € X: A;(x) N P;(x) # @} is open inX where the mappin®; : X —
2Xi js defined byP; (x) = {z; € X;: ¢;(x,z;) > 0},
(iii) ¢;(x,y) is a continuous bounded function,
(vi) for eachx € X, the sef{z; € X;: ¢;(x, z;) > 0} is I;-convex,
(v) foreachx € X, ¢;(x, x;) <O.

Then there existé € X such that for each e I,
)2,’ € A,‘()CA) and (p,'()e,zi) <0 Vzi € A,‘()CA).
Proof. Let Z = [—o0, +00], C; (x) = [—00, 0) for eachx € X and F; (x, z;) = {¢; (x, z;)}

forall (x,z;) € X x X;. Itis easy to check that all conditions of Theorem 2.3 are satisfied.
The conclusion of Corollary 2.2 now follows from Theorem 2.33

Remark 2.1. Theorems 2.1-2.3 and Corollaries 2.1 and 2.2 are new results which are
different from the corresponding results in [2—6,8-16,18,19,22,23,26-33,39] and our argu-
ment methods are also different.

Theorem 2.4. Let (X;, D;; I;) be a family of locallyG-convex uniform spaces such that
X =[];¢; Xi is a normal space. Lety;, D;; I'/);c; be a family ofG-convex spaces and
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{Zi}ie1 be a family of topological spaces. For eatle I, let A;: X =[[,.; Xi — 2Xi
T X — 2%, ¢ i X x Y; x X; — 2% andC; : X — 2% be set-valued mappings. Suppose
that for eachi € I,

(i) T; has nonempty’/-convex values,
(i) there existsVl; = {i.0. ... yin;} € F(D}) such thatX = J,, . int T, (1),
(iii) A; is an u.s.c. compact mapping with nonempty claSedonvex values,
(iv) for any continuous mapping : X — Y; the setE; = {x € X: A;(x) N P;(x) # 0}
is open inX where the mapping?; : X — 2% is defined byP;(x) = {z; € X;:
@i (x, fi(x),zi) € Ci(x)},
(V) ¢i(x,y;,z)isl.s.c.onX x Y; x X;,
(vi) the mapping_; has closed graph,
(vii) foreach(x,y;) € X x Y;, zi = @(x, ¥, z;) is G-quasi-convex with respect (G,
(viii) for any continuous mapping : X — ¥; andx € X, @i (x, f;(x), x;) € Ci(x).

Then there exist € X andy € Y =[],
feA®), PeT(®) and ¢ 5inz) € CiE) Vi€ AiR).

Y; such that for each € I,

Proof. By conditions (i), (i) and Lemma 2.1 for eac¢ke I, T; has a continuous selection
fi X — Y;. For each € I, define a set-valued mappig: X x X; — 2% by

Fi(x,z) = @i(x, fi(x),z1) V(x,z) € X x X;.

By conditions (iii)—(viii), it is easy to see #t all conditions of Theorem 2.2 are satisfied.
Hence by Theorem 2.2, there existg X such that for eache I,

)2,'614,'()2) and E()?,zi),@Ci(i) VZ[EA,’()?).

Foreach € I, lety; = fi(x). Theny e Y =[],.; ¥i. Note thatf; is a continuous selection
of T;. We get for eachi € I, y; = f; () € T;(x) from which it follows that for each € I,

XeAi®), yieTi(®) and (X, 3i,z) L Ci(X) Vz € Ai(%).

Corollary 2.3. Let (X;, D;; I';) be a family of locallyG-convex uniform spaces such that
X =[];¢; Xi is anormal space. LetY;, D;; I'/);c; be a family ofG-convex spaces. For
eachi e I, let A;: X =[];c; Xi — 2%, T;: X — 2% and C;: X — 2% be set-valued
mappings. Lep; : X x ¥; x X; — [—o0, +00] be a continuous function. Suppose that for
eachi € I,

() T; has nonempty?/-convex values,

(i) there existsVl; = {y;0. ... Yin; } € F(D}) such thatX =, ., int T, (),

(iii) A; is an u.s.c. compact mapping with nonempty cloSedonvex values,

(iv) for any continuous mapping; : X — Y;, the setE; = {x € X: A;(x) N P;(x) # 0}
is open inX where the mapping? : X — 2% is defined byP;(x) = {z; € X;:
@i(x, fi(x),zi) <0},

(v) foreach(x, y;) € X x Y;, z; = ¢;(x, y;, z;) is G-quasi-convex,

(vi) for any continuous mapping : X — Y; andx € X, ¢; (x, fi(x),x;) > 0.
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Then there exist € X andy € Y =], ¥; such that for each € I,

X eAi(x), JieTi(x) and ¢;(%,9i,z)>0 VzieA;X).

iel

Proof. Foreach €I, let Z; = [—o0, +00] andC;(x) = [—o0, 0] for eachx € X. Noting
thaty; is a single-valued function, it is easy to check that all conditions of Theorem 2.4 are
satisfied. By Theorem 2.4, there exist X andy € Y =[], ¥: such that for eache I,

X eAi(X), JieTi(X) and ¢;(X,9,2)>0 Vz € A;®). O

iel

Theorem 2.5. Let (X;, D;; I;) be a family of locallyG-convex uniform spacesy;, le;
I'))ier be afamily ofG-convex spaces and; };<; be a family of topological spaces. For
eachiel,letA;:X - 25 T;:X - 2% ¢, X x Y; x X; = 2%, andC;: X — 2% be
set-valued mappings such that for each1,

(i) T; has nonempty’/-convex values,
(ii) there existsl; = {yi.0. ... yin;} € F(D}) such thatX = J, ., int T, (1),
(iii) A; is an u.s.c. compact mapping with nonempty claSedonvex values,
(iv) for any continuous mapping : X — Y;, the setE; = {x € X: A;(x) N P;(x) # 0}
is open inX where the mapping® : X — 2% is defined byP; (x) = {z; € X;:
@i (x, fi(x), 21) € Ci(x)},
(V) ¢;i(x,yi,z) is an u.s.c. compact mapping with closed values,
(vi) the mapping_; has open graph,
(vii) foreach(x,y;) € X x Y;, zi = ¢i(x, yi, zi) is G-quasi-concave with respect @,
(viii) for any continuous mapping : X — Y; andx € X, ¢; (x, fi(x), xi) C C;(x).

Thenthere exist e X andy e ¥ =[];;
Xi€ Ai(x), JieTi(x) and ¢;(x,3i,2i) SCi(X) Vzi € Ai(X).

Y; such that for each e I,

Proof. By conditions (i), (i) and Lemma 2.1 for ea¢ke I, T; has a continuous selection
fi:X — Y;. For each € I, define a set-valued mappig: X x X; — 2% by
Fi(x,z) = i(xi fi(x),zi) VY(x,zi) € X x X;.

By conditions (iii)—(viii), it is easy to see #i all conditions of Theorem 2.3 are satisfied.
By Theorem 2.3, there exisfse X such that for eache I,

X eAj(x) and Fi(X,z;)) SCi(X) Vzi € Ai(R).
For eachi € I, let y; = f;(x). Theny € Y = [[,.; ¥i. Noting that f; is a continuous
selection off; we conclude that for eache I, y; = f; (%) € T;(x). It follows that for each
iel,

X €Ai(®), yieTi(®) and (%, ¥, z) S Ci(X) Vz € Ai(%). O

Corollary 2.4. Let (X;, D;; I;) be a family of locallyG-convex uniform spaces such that
X =[];¢; Xi is anormal space. Let;, D;, I'/);c; be a family ofG-convex spaces. For
eachi € I, A;: X =[];c; Xi > 2% andT: X — 2%, Letp: X x ¥; x X; — [—00, +00]

be a continuous function. Suppose that for eaehy,
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() T; has nonempty?/-convex values,

(i) there existsl; = {y;0. ... Yin; } € F(D}) such thatX = J, _,, int T, (1),

(iii) A; is an u.s.c. compact mapping with nonempty cloSedonvex values,

(iv) for any continuous mapping; : X — Y;, the setE; = {x € X: A;(x) N P;(x) # ¢}
is open inX where the mapping? : X — 2% is defined byP;(x) = {z; € X;:
@i(x, fi(x),zi) =0},

(v) foreach(x, y;) € X x Y;, zi = ¢;(x, i, z;) is G-quasi-concave,

(vi) for any continuous mapping : X — Y; andx € X, ¢; (x, f;(x),x;) <O.

Then there exist € X andy € Y =[], ¥; such that for each e I,

iel

X eAi(x), JieTi(x) and ¢;(%,9i,z) <0 Vzi € A;j(X).

Proof. Foreach €1, let Z; = [—o0, +o0] andC; (x) = [—o0, 0) for eachx € X. Noting
thaty is a single-valued function, it is easy to check that all conditions of Theorem 2.5 are
satisfied. Hence by Theorem 2.5 there existX andy € Y =[],.; ¥i such that for each
iel,

iel

X eAi(®), JieTli(®) and ¢(%, 3i,z) <0 Vz € A;j(%).

The proof is now complete. O
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