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Abstract. In this paper, we establish some equivalence relations between coincidence theorems

and KKM-type theorems. We also obtain some new coincidence theorems and fixed point
theorems. Applying the KKM-type theorems we obtain the existence theorems of generalized
vector equilibrium problems. From these results, some existence theorems of generalized

vector implicit variational inequality problems are established in this paper.
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1. Introduction

In 1929, Knaster et al. [21] established the well-known KKM theorem.
Since then, there were many generalizations and applications of KKM the-
orem; see for example [9, 11, 15–,17, 23, 24, 28–30, 32–39, 42, 44]. Border
[8] showed the equivalence relations between Brouwer fixed point theorem,
KKM theory and geometric form of minimax theorem, Tarafdar [42]
established the equivalence relation between fixed point theorem and
KKM theorem, Park [34] studied the equivalence theorems between some
KKM theorem, matching theorem, coincidence theorem, and minimax
inequality. Recently Lin et al. [28] Lin and Wan [29], Chang and Yen [15]
established some generalized KKM theorems and coincidence theorems. In
the first part of this paper, we want to establish the equivalence relations
between the generalized KKM theorems and coincidence theorems. We
establish some new coincidence theorem and fixed point theorem. Our
result on fixed point theorem include the results of Tarafdar [17, 41, 42] as
a special cases. The coincidence theorem we establish also include recent
result of Djafari-Rouhani et al. [17] as a special case.
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In the second part of this paper, we use the generalized KKM theorem
in this paper to establish the existence theorems of equilibrium problems.
Let X be a nonempty subset of a topological vector space (in short

t.v.s.) E, and F : X� X! R be a real valued bifunction such that
Fðx; xÞP0 for all x 2 X. Then the scalar equilibrium Problem (in short,
EP) is to find �y 2 X such that

Fðx; �yÞP0 for all x 2 X:

The EP has many applications in mathematical physics, economics, game
theory, and operation research, etc. It contains several problems like opti-
mization, variational inequality, complementarity, Nash equilibrium, and
fixed point problems; for detail, see for example [7].
(A) If Z is a t.v.s. with order cone C; that is a closed convex pointed

cone, and F : X� X! Z, then the equilibrium problem (EP) can be gener-
alized in the following ways:
find �y 2 X such that

(1) Fðx; �yÞ 2 C for all x 2 X; or
(2) Fðx; �yÞ 62 ()Int C) for all x 2 X.

In these cases, (EP) are called vector equilibrium problem (in short, VEP).
These problems contains vector optimization, vector variational inequality
problem and vector Nash problem as special cases.
(B) Let F : X� X� �Z and C : X� �Z be multivalued maps such that

CðxÞ is a closed convex pointed cone for each x 2 X, (VEP) can be general-
ized in the following forms.

VEP (1): find �y 2 X such that Fðx; �yÞ � Cð�yÞ for all x 2 X.
VEP (2): find �y 2 X such that Fðx; �yÞ \ Cð�yÞ 6¼ ; for all x 2 X.
VEP (3): find �y 2 X such that Fðx; �yÞ 6� ()IntCð�yÞÞ for all x 2 X.
VEP (4): find �y 2 X such that Fðx; �yÞ \ ð)IntC ð�yÞÞ ¼ ; for all x 2 X.

Recently, the equilibrium problems in both scalar and vector cases have
been extensively studied in many literatures, see [2–6, 12–14, 18–20, 22, 25,
27–29, 31, 40].
In this paper, we consider the above four types of equilibrium problems

when F is defined on the product of two different spaces and CðyÞ is not
necessary a closed convex cone for each y 2 Y. Bianchi and Pini [6] first
considered these types of equilibrium problem when CðyÞ is a constant set
for all y 2 Y. Recently Lin and Wan [29] studied the above four types of
equilibrium problems when CðyÞ is not necessary a cone and is not a con-
stant set. In this paper , we continue the study of Lin and Wan [29]. We
study the above four types of equilibrium problems by applying the KKM
theorem in Section 3.
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As applications of our results, we study the following generalized vector
equilibrium problems:

GVEP (1): Find �y 2 X such that

gðx; �y; uÞ � Cð�yÞ for all u 2 /ð�yÞ and x 2 X;

GVEP (2): Find �y 2 X such that for each x 2 X

there exists u 2 /ð�yÞ with gðx; �y; uÞ \ Cð�yÞ 6¼ ;;

GVEP (3): Find �y 2 X such that for each x 2 X

there exists u 2 /ð�yÞ with gðx; �y; uÞ 6� ð�IntCð�yÞÞ;

GVEP (4): Find �y 2 X such that

gðx; �y; uÞ \ ð�IntCð�yÞÞ ¼ ; for all u 2 /ð�yÞ and all x 2 X;

where g : X� X�D� �Z;/ : X� �D and D is a nonempty subset of topo-
logical space Y . Recently Fu and Wan [19] studied the existence theorems
of (GVEP (3)).
If g is a single valued function, the above four equilibrium problems are

reduced to the following four types of implicit vector variational inequali-
ties problems.

GVEP ð1Þ0: Find �y 2 X such that

gðx; �y; uÞ 2 Cð�yÞ for all u 2 /ð�yÞ and all x 2 X;

GVEP ð2Þ0: Find �y 2 X such that for each x 2 X

there exists u 2 /ð�yÞ with gðx; �y; uÞ 2 Cð�yÞ;

GVEP ð3Þ0: Find �y 2 X such that for each x 2 X

there exists u 2 /ð�yÞ with gðx; �y; uÞ 62 �IntCð�yÞ;

GVEP ð4Þ0: Find �y 2 X such that

gðx; �y; uÞ 62 �IntCð�yÞ for all u 2 /ð�yÞ and all x 2 X:

Let E be a t.v.s., LðE;ZÞ ¼ fTjT : E! Zg is a continuous linear
operatorg, let u 2 LðE;ZÞ; y 2 E, we denote hu; yi the evaluation of u at y.
If gðx; y; uÞ ¼ hu; yi þ hðx; yÞ, then the above equilibrium problem contains
the mixed variational inequality problem recently studied by Khanh and
Luu [22]. In this paper, we apply the existence theorems of VEP to study
the existence theorems of GVEP for both the cases that g is a multivalued
map and g is a single valued function.
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2. Preliminaries

Let X and Y be nonempty sets. A multivalued map T : X��Y is a function
from X into power set of Y. Let x 2 X;B � Y and y 2 Y, we define
x 2 T�ðyÞ if and only if y 2 TðxÞ;T�ðBÞ ¼ fx 2 X : TðxÞ \ B 6¼ ;g;
TþðBÞ ¼ fx 2 X : TðxÞ � Bg and T�1ðBÞ will denote either T�ðBÞ or
TþðBÞ. For topological space E;A � E;A is said to be compactly open
(compactly closed) if for every nonempty compact subset K of E;A \ K is
open (closed) in K.
Let X and Y be two topological spaces, T : X� �Y;T is said to be trans-

fer open [43], if for every x 2 X; y 2 TðxÞ, there exists an x0 2 X such that
y 2 int Tðx0Þ; transfer closed [43], if for every x 2 X; y 62 TðxÞ, there exists
an x0 2 X such that y 62 clTðx0ÞÞ; compact if TðXÞ is compact; upper semi-
continuous (in short u.s.c.) (resp. lower semicontinuous (in short l.s.c.)) at
x 2 X, if for every open set U in Y with TðxÞ � U (resp. TðxÞ \U 6¼ ;),
there exists an open neighborhood VðxÞ of x such that Tðx0Þ � U (resp.
Tðx0Þ \U 6¼ ;Þ for all x0 2 VðxÞ; T is said to be u.s.c. (resp. l.s.c.) on X if T
is u.s.c. at every point of X.

LEMMA 2.1 [30]. Let X and Y be topological spaces and G : X� �Y be mul-
tivalued map. Then

(1) G is transfer closed if and only if
T

x2X GðxÞ ¼
T

x2X clGðxÞ;
(2) G is transfer open if and only if F : X� �Y defined by FðxÞ ¼ YnGðxÞ

for all x 2 X is transfer closed;
(3) G is transfer open if and only if

S
x2X GðxÞ ¼

S
x2X intGðxÞ.

LEMMA 2.2 [26]. Let X and Y be topological spaces, T : X� �Y be a multi-
valed map. Then the following statements are equivalent:

(1) T � : Y� �X is transfer open and TðxÞ 6¼ ; for all x 2 X;
(2) X ¼ [y2YintT�ðyÞ.

LEMMA 2.3 [40]. Let X and Y be topological spaces, T : X� �Y be a multi-
valued map. Then T is l.s.c. at x 2 X if and only if for any y 2 TðxÞ and any
net fxag in X converges to x, there exists a net fyag such that
ya 2 TðxaÞ with ya ! y.
A convex space [23] X is a nonempty convex set in a vector space with

any topology that induces the Euclidean topology on the convex hull of its
finite subsets.
Let X be a convex space and Y be a topological space. If S;T : X� �Y

are multivalued maps such that for each N 2 hXi;T(coN) � SðNÞ, then S
is said to be a generalized KKM mapping w.r.t. T; the multivalued map
T : X� �Y is said to have the KKM property [15] if S : X� �Y is a
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generalized KKM mapping w.r.t. T such that the family fSðxÞ : x 2 Xg has
the finite intersection property. We denote by KKMðX;YÞ [15] the family
of all multivalued maps from X into Y having the KKM property. We
denote by KðX;YÞ the family of all u.s.c. multivalued maps with compact
convex values and VðX;YÞ the family of all u.s.c. multivalued maps with
compact acyclic values. Any convex set in a Hausdorff t.v.s. is acyclic.
Then KðX;YÞ � VðX;YÞ. In [15], Chang and Yen showed that VðX;YÞ �
KKM ðX;YÞ.

LEMMA 2.4 [26]. Let X be a convex space and Y be a topological space,
T;S : X��Y be multivalued maps and F;H : Y� �X be defined by
FðyÞ ¼ XnT�ðyÞ and HðyÞ ¼ XnS�ðyÞ. Then the following two statements
are equivalent:

(1) for each y 2 Y, A 2 hFðyÞi implies coA � HðyÞ;
(2) for each A 2 hXi;SðcoAÞ � TðAÞ.

DEFINITION 2.1 [20]. Let X be a convex subset of a t.v.s and Z be a
Hausdorff t.v.s.. Let C : X� �Z and F : X� X� �Z be multivalued maps.
Given any finite subset N ¼ fx1; x2; . . . ;xng in X and any x 2 coN,

(1) F is said to be strong type I C-diagonally quasiconvex in the first
argument if for some xi in N,

Fðxi;xÞ � CðxÞ;

(2) F is said to be strong type II C-diagonally quasiconvex in the first
argument if for some xi in N,

Fðxi;xÞ \ CðxÞ 6¼ ;;

(3) F is said to be weak type I C-diagonally quasiconvex in the first argu-
ment if for some xi in N,

Fðxi;xÞ \ ð�IntCðxÞÞ ¼ ;;

(4) F is said to be weak type II C-diagonally quasiconvex in the first
argument if for some xi in N,

Fðxi;xÞ 6� ð�IntCðxÞÞ:

THEOREM 2.1 [1]. Let X and Y be Hausdorff topological spaces,
T : X� �Y be a multivalued map.

(1) If T is an u.s.c. multivalued map with closed values, then T is closed;

THE STUDY OF KKM THEOREMS 139



(2) If X is compact and T is an u.s.c. multivalued map with compact values,
then TðXÞ is compact.

THEOREM 2.2 [25]. Let E1;E2 and Z be Hausdorff t.v.s., X and Y be non-
empty subsets of E1 and E2, respectively, F : X� Y� X� �Z and S : X� �X.
(a) If both S and F are l.s.c., then T : X� Y� �Z which is defined by

Tðx; yÞ ¼ [u2SðxÞFðx; y; uÞ ¼ Fðx; y;SðxÞÞ

is l.s.c on X� Y; and
(b) If both S and F are u.s.c. multivalued maps with compact values, then T

is an u.s.c. multivalued map with compact values.

3. Some Equivalent KKM-type Theorems and Coincidence Theorems

In this section, we assume that X is a convex space, Y is a Hausdorff topo-
logically space, T : X� �Y: S;G : X� �Y are multivalued maps. We start
from the following two new results of [28, 29].

THEOREM 3.1 (Theorem 2.6 [28]). Suppose that T 2 KKMðX;YÞ and that

(1) for each y 2 Y;A 2 hPðyÞi implies coA � QðyÞ;
(2) P� : X� �Y is transfer open and for all y 2 Y;PðyÞ is nonempty;
(3) for each compact subset A of X;TðAÞ is compact; and
(4) there exists a nonempty compact subset K of Y such that for each

N 2 hXi, there exists a compact convex subset LN of X containing N
such that

TðLNÞnK � [fintP�ðxÞ : x 2 LNg:

Then there exists ð�x; �yÞ 2 X� Y such that �y 2 Tð�xÞ and �x 2 Qð�yÞ.

THEOREM 3.2 (Theorem 3.6 [29]). Suppose that T 2 KKM(X;YÞ and that

(1) for each x 2 X;TðxÞ � SðxÞ;
(2) for each A 2 hXi;SðcoAÞ � ðAÞ;
(3) G : X� �Y is transfer closed;
(4) for each compact subset A of X;TðAÞ is compact; and
(5) there exists a nonempty compact subset K of Y such that for each

N 2< X >, there exists a compact convex subset LN of X containing N
such that

TðLNÞ \
\
fclGðxÞ : x 2 LNg � K:
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Then
T

x2X GðxÞ 6¼ ;:

Proof. Suppose that \x2XGðxÞ ¼ ;: Then for any y 2 Y , there exists x 2 X
such that y 62 GðxÞ. Now we define P0;Q0 : Y� �X by P0ðyÞ ¼ XnG�ðyÞ and
Q0ðyÞ ¼ XnS�ðyÞ for all y 2 Y. Then for y 2 Y, there exists x 2 X such
that x 2 P0ðyÞ. By (3), ðP0Þ� : X� �Y is transfer open. By (2) and
Lemma 2.4, for each y 2 Y;A 2 hP0ðyÞi implies coA � Q0ðyÞ. By (5),
TðLNÞnK �

S
fintðP0Þ�ðxÞ : x 2 LNg. Then by Theorem 3.1 that there exists

ð�x; �yÞ 2 X� Y such that �y 2 Tð�xÞ and �x 2 Q0ð�yÞ. Then �y 62 Sð�xÞ. This
contradicts (1). Therefore \x2XGðxÞ 6¼ ;. (

REMARK 3.1. Theorems 3.1 and 3.2 are equivalent.

Proof. We want to show that Theorem 3.2 implies Theorem 3.1. Under the
assumptions of Theorem 3.1. Suppose that for all x 2 X;TðxÞ \Q�ðxÞ ¼ ;.
This implies TðxÞ � YnQ�ðxÞ. LetH;S : X��Y be defined byHðxÞ ¼ YnP�ðxÞ,
and SðxÞ ¼ YnQ�ðxÞ for x 2 X: Then

(1) for each x 2 X;TðxÞ � SðxÞ.
(2) H : X� �Y is transfer closed.

Since for each y 2 Y;A 2 hPðyÞi implies coA � QðyÞ, it follows from
Lemma 2.4 that for each A 2 hXi implies SðcoAÞ � HðAÞ. By (4),
TðLNÞ \

T
TfclHðxÞ : x 2 LNg � K: Hence by Theorem 3.2, we getT

x2X HðxÞ 6¼ ;. That is for all x 2 X, there exists y 2 HðxÞ ¼ YnP�ðxÞ. Then
for all x 2 X; y 62 P�ðxÞ i.e. x 62 PðyÞ. Thus PðyÞ ¼ ;. This leads to a con-
tradiction. Therefore, there exists �x 2 X;Tð�xÞ

T
Q�ð�xÞ 6¼ ;: This shows that

ð�x; �yÞ 2 X� Y such that �y 2 Tð�xÞ and �x 2 Qð�yÞ. In Theorem 3.2, we see
that Theorem 3.1 implies Theorem 3.2. (
The following Theorem is a special case of Theorem 3.2, but it is equiva-

lent to Theorem 3.2.

THEOREM 3.3. Suppose that T 2 KKMðX;YÞ and that

(1) for each x 2 X;TðxÞ � SðxÞ;
(2) for each x 2 X;Gx is closed in Y;
(3) for any N 2< X >;SðcoNÞ � GðNÞ;
(4) for each compact subset A of X;TðAÞ is compact; and
(5) there exists a nonempty compact subset K of Y such that for each

N 2 hXi, there exists a compact convex subset LN of X containing N
such that

TðLNÞ \
\
fGðxÞ : x 2 LNg � K:
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Then
T
fGx : x 2 Xg 6¼ ;:

Proof. Since G has closed values, then G : X� �Y is transfer closed. Hence
by Theorem 3.2, we get

T
fGx : x 2 Xg 6¼ ;: (

THEOREM 3.4. Theorems 3.2 and 3.3 are equivalent.

Proof. Under the assumptions of Theorem 3.2. Let M : X� �Y be defined
by

MðxÞ ¼ fy 2 Y : y 2 clGðxÞg for x 2 X:

Then for each x 2 X;MðxÞ ¼ clGðxÞ is closed. By (4) and Lemma 2.1,
TðLNÞ \

T
TfclGðxÞ : xLNg ¼ TðLNÞ \

T
fMðxÞ : x 2 LNg � K: By Theo-

rem 3.3,
T

x2XMðxÞ 6¼ ;: That is
T

x2X clGðxÞ 6¼ ;: Since G : X� �Y is
transfer closed, by Lemma 2.1,

T
x2X GðxÞ ¼

T
x2X clGðxÞ 6¼ ;: (

The following theorem is a special case of Theorem 3.1, but it is equiva-
lent to Theorem 3.1.

THEOREM 3.5. Suppose that T 2 KKMðX;YÞ and that

(1) for each y 2 Y;A 2 hPðyÞi implies coA � QðyÞ;
(2) P� : X� �Y;P�ðxÞ is open for all x 2 X and for all y 2 Y;PðyÞ is

nonempty;
(3) for each compact subset A of X;TðAÞ is compact ; and
(4) there exists a nonempty compact subset K of Y such that for each

N 2< X >, there exists a compact convex subset LN of X containing N
such that

TðLNÞnK � [fP�ðxÞ : x 2 LNg:

Then there exists ð�x; �yÞ 2 X� Y such that �y 2 Tð�xÞ and �x 2 Qð�yÞ.

THEOREM 3.6. Theorems 3.1 and 3.5 are equivalent.

Proof. It is clear that Theorem 3.1 implies Theorem 3.5. Under the assump-
tions of Theorem 3.1. By (2), Y ¼ [x2XintP�ðxÞ, therefore, for each y 2 Y ,
there exists x 2 X such that y 2 intP�ðxÞ. Let H : Y� �X be defined by

HðyÞ ¼ fx 2 X : y 2 intP�ðxÞg for y 2 Y: :

Then H�ðxÞ ¼ intP�ðxÞ is open and for each y 2 Y;HðyÞ 6¼ ;: It is easy
to see that HðyÞ � PðyÞ for all y 2 Y . By (1), for each y 2 Y;A 2 hHðyÞi
implies coA � QðyÞ. By (4), for each y 2 TðLNÞnK, there exists x 2 LN
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such that y 2 intP�ðxÞ. Therefore x 2 HðyÞ and y 2 H�ðxÞ. Hence
TðLNÞnK �

S
fH�ðxÞ: x 2 LNg. By Theorem 3.5, there exists

ð�x; �yÞ 2 X� Y such that �y 2 Tð�xÞ and �x 2 Qð�yÞ. (
By Theorem 3.1, we obtain the following coincidence theorem which

contains many fixed point theorems and coincidence theorems as special
cases.

THEOREM 3.7. Suppose the conditions (2) and (4) in Theorem 3.2 are
replaced by (2)0 and (4)0 respectively, where

(2)0 for each x 2 X;P�ðxÞ contains an open set Ox � Y and [x2XOx ¼ Y;
(4)0 there exists a nonempty compact subset K of Y such that for each

N 2 hXi, there exists a compact convex subset LN of X containing N
such that

TðLNÞnK � [fOx : x 2 LNg:

Then there exists ð�x; �yÞ 2 X� Y such that �y 2 Tð�xÞ and �x 2 Qð�yÞ.

Proof. Since Ox � P�ðxÞ;Ox is open, and [x2XOx ¼ Y. Then
[x2XintP�ðxÞ ¼

S
x2X Ox ¼ Y . By Lemma 2.2, P� : X� �Y is transfer open

and for all y 2 Y;PðyÞ is nonempty. By (4)0, TðLNÞnK � [fOx : x 2 LNg
� [fintP�ðxÞ : x 2 LNg. By Theorem 3.1, there exists ð�x; �yÞ 2 X� Y such
that �y 2 Tð�xÞ and �x 2 Qð�yÞ. (

If TðxÞ ¼ fxg and PðxÞ ¼ QðxÞ for all x 2 X, then Theorem 3.7 is
reduced to the following fixed point theorem.

COROLLARY 3.1. Suppose that

(1) for each x 2 X;A 2< PðxÞ > implies coA � PðxÞ;
(2) for each x 2 X;P�ðxÞ contains an open set Ox � X and [2XOx ¼ X;

and
(3) there exists a nonempty compact subset K of Y such that for each

N 2 hXi, there exists a compact convex subset LN of X containing N
such that

LNnK � [fOx : x 2 LNg:

Then there exists �x 2 X such that �x 2 Pð�xÞ:

THEOREM 3.8. Theorems 3.1 and 3.7 are equivalent.

Proof. In Theorem 3.7, we see that Theorem 3.1 implies Theorem 3.7.
Under the assumptions of Theorem 3.1. By (2), X ¼ [x2XintP�ðxÞ. Let
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Ox ¼ intP�ðxÞ. Then Ox is open , Ox � P�ðxÞ, and X ¼ [x2XOx. By (4),
TðLNÞnK � [fintP�ðxÞ : x 2 LNg ¼ [fOx : x 2 LNg. Then Theorem 3.1
follows from Theorem 3.7. (

REMARK 3.2. Corollary 3.2 contains Theorem 1 [41], Theorem 1 [42] and
Theorem 2.1 [21] as special cases.

REMARK 3.3. Theorems 3.1–3.3, 3.5 and 3.7 are equivalent.

4. Existence Results of General Vector Equilibrium Problems

When dealing with equilibrium problems, the definition of properly quasi-
monotone bimap is frequently used (see [5, 6]).

DEFINITION 4.1 [6] Let X;Z be t.v.s., Y a topological space. Let
T : X� �Y;F : X� Y� �Z and C : Y� �Z be multivalued maps. F is said to
be properly quasimonotone relatively to T on X� Y if the map G : X� �Y ,

GðxÞ ¼ fy 2 Y : ðx; yÞ 2 F�1ðCðyÞÞg:

is a KKM mapping w.r.t. T.
The following Proposition gives a sufficient condition for the properly

quasi-monotonicity.

PROPOSITION 4.1. Let X;Z be t.v.s., Y be a topological space. Let
T : X� �Y;F : X� Y� �Z and C : Y� �Z: Assume that

(1) for all x 2 X and y 2 TðxÞ; ðx; yÞ 2 F�1ðCðyÞÞ; and
(2) for any y 2 Y;BðyÞ ¼ fx 2 K : ðx; yÞ 62 F�1ðCðyÞÞgis convex.

Then F is properly quasimonotone relative to T.

Proof. Let G : X� �Y be defined by

GðxÞ ¼ fy 2 Y : ðx; yÞ 2 F�1ðCðyÞÞg for x 2 X:

Suppose F is not properly quasimonotone relative to T. Then there exists a
finite subset N ¼ fx1;x2; . . . ; xng in X such that TðcoNÞ 6� GðNÞ. There exist
�x 2 coN and �y 2 Tð�xÞ such that �y 62 GðxiÞ for all i ¼ 1; 2; . . . ; n: Then
ðxi; �yÞ 62 F�1ðCð�yÞÞ for all i ¼ 1; 2; . . . ; n: Hence xi 2 Bð�yÞ for all i ¼ 1; 2; . . . ; n:
By (2), �x 2 Bð�yÞ. Thus ð�x; �yÞ 62 F�1ðCð�yÞÞ. This contradicts to condition (1).
Therefore, F is properly quasimonotone relative to T. (

REMARK 4.1. There are similar results in [5, 6]. In Proposition 1.1 [5],
CðyÞ ¼ C for all y 2 Y .
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In this section, unless otherwise specify, we assume that X is a convex
space, Y a Hausdorff topological space and Z is a Hausdorff t.v.s. We
assume T : X� �Y;F : X� Y� �Z and C : Y� �Z are multivalued maps.
Applying Proposition 4.1 and the KKM-type theorems in Section 3, we
establish the existence theorems of the four types of (VEP).

THEOREM 4.1. Let T 2 KKMðX;YÞ and suppose that

(1) for any x 2 X;Fðx; �Þ is l.s.c.and C : Y� �Z is closed;
(2) for all x 2 X and y 2 TðxÞ;Fðx; yÞ � CðyÞ;
(3) for any y 2 Y;BðyÞ ¼ fx 2 X : Fðx; yÞ 6� CðyÞgÞ is convex;
(4) for each compact subset A of X;TðAÞ is compact; and
(5) there exists a nonempty compact subset K of Y such that for each

N 2 hXi, there exists a compact convex subset LN of X containing N such
that for each y 2 TðLNÞnK, there exists x 2 LN with Fðx; yÞ 6� CðyÞ.

Then there exists �y 2 Y such that Fðx; �yÞ � Cð�yÞÞ for all x 2 X.

Proof. Let G : X� �Y be defined by

GðxÞ ¼ fy 2 Y : Fðx; yÞ � CðyÞg for x 2 X:

Take F�1 :¼ Fþ in Proposition 4.1. By assumption (2) and (3), for any
N 2 hXi;TðcoNÞ � GðNÞ. For any x 2 X;GðxÞ is closed; Indeed let
�y 2 GðxÞ, then there exists a net fyag in GðxÞ such that ya converges to �y.
Since ya 2 GðxÞ;Fðx; yaÞ � CðyaÞ. Let z 2 Fðx; �yÞ. Since for any
x 2 X;Fðx; �Þ is l.s.c., by Lemma 2.3, there exists a net fzag such that
za 2 Fðx; yaÞ with fzag converges to z. Thus za 2 CðyaÞ. Since C is closed,
z 2 Cð�yÞ. Hence Fðx; �yÞ � Cð�yÞ. That is �y 2 GðxÞ. Therefore GðxÞ is closed.
By Theorem 3.3,

T
x2X GðxÞ 6¼ ;. Therefore, there exists �y 2 Y such that

Fðx; �yÞ � Cð�yÞÞ for all x 2 X. (

COROLLARY 4.1. In Theorem 4.1, if T 2 KKMðX;YÞ is replaced by T is
an u.s.c. multivalued map with nonempty compact convex values and suppose
that conditions, (1–3) and (5) of Theorem 4.1 hold.
Then there exists �y 2 Y such that Fðx; �yÞ � Cð�yÞÞ for all x 2 X.

Proof. Since T is u.s.c. with nonempty compact convex values,
T 2 KðX;YÞ � KKMðX;YÞ [15]. If A is a compact subset of X, then by
Theorem 2.6, TðAÞ and TðAÞ are compact and Corollary 4.1 follows from
Theorem 4.1. (

COROLLARY 4.2. Suppose that X is a Hausdorff convex space,
F : X� X� �Z and C : X� �Z is multivalued maps satisfying the following
conditions:
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(1) for any x 2 X;Fðx; �Þ is l.s.c. and C is closed;
(2) for all x 2 X;Fðx;xÞ � CðxÞ;
(3) for any y 2 X;BðyÞ ¼ fx 2 X : Fðx; yÞ 6� CðyÞg is convex; and
(4) there exists a nonempty compact subset K of Y such that for each

N 2 hXi, there exists a compact convex subset LN of X containing N
such that for each y 2 LNnK; there exists x 2 LN with Fðx; yÞ 6� CðyÞ.

Then there exists �y 2 X such that Fðx; �yÞ � Cð�yÞ for all x 2 X.

Proof. Take TðxÞ ¼ fxg in Corollary 4.1. (

THEOREM 4.2. Let X be a Hausdorff convex space.
Suppose that conditions (1) and (4) of Corollary 4.2 and (20), where
(20) F : X� X� �Z is strong type I C-diagonally quasiconvex in the first

argument.
Then there exists �y 2 X such that Fðx; �yÞ � Cð�yÞÞ for all x 2 X.

Proof. Let TðxÞ ¼ SðxÞ ¼ fxg for all x 2 X and G : X� �X be defined by

GðxÞ ¼ fy 2 X : Fðx; yÞ � CðyÞg for x 2 X:

Suppose that there exists N ¼ fx1;x2; . . . ; xng 2 hXi such that
coN ¼ TðcoNÞ 6� GðNÞ. Then there exists �x 2 coN such that �x 62 GðxiÞ for all
i ¼ 1; 2; . . . ; n. That is Fðxi; �xÞ 6� Cð�xÞ for all i ¼ 1; 2; . . . ; n. But F is strong type
I P-diagonally quasiconvex in the first argument (20), Fðxi; �xÞ � Cð�xÞ for some
xi 2 N. This leads to a contradiction. Hence for each N 2 hXi; coN � GðNÞ. By
(1), GðxÞ is closed for all x 2 X. Therefore the conclusion of Theorem 4.2 follows
from Theorem 3.3. (

DEFINITION 4.2. Let C : X� �Z be a multivalued map such that CðyÞ is
convex cone for all y 2 Y . We say that

(a) For each y 2 Y; x� �Fðx; yÞ is CðyÞ-quasiconvex [20] if x1; x2 2 X,
and k 2 ½0; 1�, then either

Fðx1; yÞ � Fðkx1 þ ð1� kÞx2; yÞ þ CðyÞ:
or Fðx2; yÞ � Fðkx1 þ ð1� kÞx2; yÞ þ CðyÞ:

(b) For each y 2 Y; x� �Fðx; yÞ is CðyÞ-quasiconvex-like [3] if for
x1;x2 2 X, and k 2 ½0; 1�, then either

Fðkx1 þ ð1� kÞx2; yÞ � Fðx1Þ � CðyÞ:
or Fðkx1 þ ð1� kÞx2; yÞ � Fðx2Þ � CðyÞ:

146 LAI-JIU LIN AND HSIU-LI CHEN



REMARK 4.2. If CðyÞ is a convex cone and Fð�; yÞ is CðyÞ-quasiconvex,
then the set BðyÞ ¼ fx 2 X : Fðx; yÞ 6� CðyÞg is convex.

Proof. (a) To prove BðyÞ ¼ fx 2 X : Fðx; yÞ 6� CðyÞg is convex.
Let x1; x2 2 BðyÞ, then Fðx1; yÞ 6� CðyÞ and Fðx1; yÞ 6� CðyÞ. We want to

show that kx1 þ ð1� kÞx2 2 BðyÞ for all k 2 ½0; 1�. Suppose there exists
k0 2 ½0; 1� such that Fðk0x1 þ ð1� k0Þx2; yÞ � CðyÞ. Since Fð�; yÞ is CðyÞ-
quasiconvex, either Fðx1; yÞ � CðyÞ or Fðx2; yÞ � CðyÞ. This leads to a con-
tradiction. Hence for all k 2 ½0; 1�;Fðkx1 þ ð1� kÞx2; yÞ 6� CðyÞ and BðyÞ is
convex.
By using Theorem 3.3 and Theorem 4.1, we establish the following theo-

rem.

THEOREM 4.3. Suppose that T 2 KKMðX;YÞ, (1), (4), (5) of Theorem 4.1
and

(a) for all x 2 X and y 2 TðxÞ;Aðx; yÞ � CðyÞ;
(b) for all ðx; yÞ 2 X� Y;Aðx; yÞ � CðyÞ implies Fðx; yÞ � CðyÞ;
(c) for any y 2 Y;BðyÞ ¼ fx 2 X : Aðx; yÞ 6� CðyÞg is convex;

Then there exists �y 2 Y such that Fðx; �yÞ � Cð�yÞ; for all x 2 X .

Proof. Let G;H : X� �Y be defined by GðxÞ ¼ fy 2 Y : Aðx; yÞ � CðyÞg and
HðxÞ ¼ fy 2 Y : Fðx; yÞ � CðyÞg for x 2 X: By (1), HðxÞ is closed for all
x 2 X. By (b), for any x 2 X;GðxÞ � HðxÞ. By (a) ,(c) and Proposition 4.1
that for all N 2 hXi;TðcoNÞ � GðNÞ. By (c), TðLNÞ\

T
fHðxÞ : x 2 LNg � K.

Then by Theorem 3.3,
T

x2X HðxÞ 6¼ ;, i.e. there exists �y 2 Y such that
Fðx; �yÞ � Cð�yÞ, for all x 2 X. (

DEFINITION 4.3 [18]. Let H : X� �Z be a multivalued map. H is said to be
properly quasiconvex if for every x; y 2 K; t 2 ½0; 1�, and u 2 HðxÞ; v 2 HðyÞ,
there exists z 2 Hðtx1 þ ð1� tÞx2Þ such that either zOu or zOv.

LEMMA 4.1 [18]. Let H : X� �Z be a multivalued mapping. Then H is prop-
erly quasiconvex if and only if for any xi 2 K; zi 2 HðxiÞ; ti > 0, for

i ¼ 1; 2; . . . ; n;
P

n
i¼1ti ¼ 1, there exist z 2 Fðt1x1 þ � � � þ tnxnÞ and some i

such that zOzi.

THEOREM 4.4. In Theorem 4.1, if condition (3) is replaced by (3)0, then we
have the same conclusion, where
(3)0 for any y 2 Y;x� �Fðx; yÞ is properly quasiconvex.
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Proof. Let G : X� �Y be defined by

GðxÞ ¼ fy 2 Y : Fðx; yÞ � CðyÞg for x 2 X:

By (2), (3)0 and following the same arguments as in Theorem 2 of [18], we
can show that for all N 2 hXi;TðcoNÞ � GðNÞ. Then the conclusion of
Theorem 4.4 follows from Theorem 3.3. (

REMARK 4.3. Theorem 4.4 is different from Theorem 2 [18]. In Theorem 2
[18], the multivalued map T : X� �D is u.s.c. with nonempty compact con-
vex values, X is a nonempty compact convex set, and GðxÞ is closed for all
x 2 X.

THEOREM 4.5. Suppose T 2 KKMðX;YÞ and
(1) for any x 2 X; y� �Fðx; yÞ is u.s.c. with compact values and C : Y� �Z

is closed;
(2) for all x 2 X and y 2 TðxÞ;Fðx; yÞ \ CðyÞ 6¼ ;;
(3) for any y 2 Y;BðyÞ ¼ fx 2 X : Fðx; yÞ \ CðyÞ ¼ ;g is convex;
(4) for each compact subset A of X;TðAÞ is compact; and
(5) there exists a nonempty compact subset K of Y such that for each

N 2 hXi, there exists a compact convex subset LN of X containing N such
that for each y 2 TðLNÞnK, there exists x 2 LN with Fðx; yÞ \ CðyÞ ¼ ;.

Then there exists �y 2 Y such that Fðx; �yÞ \ Cð�yÞ 6¼ ;; for all x 2 X.

Proof. Let G : X� �Y be defined by

GðxÞ ¼ fy 2 Y : Fðx; yÞ \ CðyÞ 6¼ ;g for x 2 X:

Take F�1 :¼ F� in Proposition 4.1. By (2), (3) and Proposition 4.1, for
any N 2 hXi;TðcoNÞ � GðNÞ. By (1) and following the same argument as
in [3], GðxÞ is closed for each x 2 X. Then by Theorem 3.3,
\x2XGðxÞ 6¼ ;. Therefore, there exists �y 2 Y such that Fðx; �yÞ \ Cð�yÞ 6¼ ;
for all x 2 X. (

REMARK 4.4. Following the method of Ansari and Yao [3], we can show
that if for each y 2 Y;Fð�; yÞ is CðyÞ-quasiconvex-like and CðyÞ is a convex
cone for each y 2 Y . Then the set BðyÞ ¼ fx 2 X : Fðx; yÞ \ CðyÞ ¼ ;g is
convex.

THEOREM 4.6. Let X be a Hausdorff convex space, let F : X� X� �Z and
C : X� �Z be multivalued maps. Suppose that
(1) of Theorem 4.5 and
(2)0 F is strong type II C-diagonally quasiconvex in the first argument;

and
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(3)0 there exists a nonempty compact subset K of X such that for each
N 2 hXi, there exists a compact convex subset LN of X containing N
such that for each y 2 LNnK, there exists x 2 LN with
Fðx; yÞ \ CðyÞ ¼ ;.

Then there exists �y 2 X such that Fðx; �yÞ \ Cð�yÞ 6¼ ;, for all x 2 X.

Proof. Let TðxÞ ¼ fxg for x 2 X and G : X� �X be defined by

GðxÞ ¼ fy 2 X : Fðx; yÞ \ CðyÞ 6¼ ;g for x 2 X:

Suppose that there exists N ¼ fx1; x2; . . . ;xng 2 hXi such that
coN ¼ TðcoNÞ 6� GðNÞ. Then there exists �x 2 coN such that �x 62 GðxiÞ for all
i ¼ 1; 2; . . . ; n. That is Fðxi; �xÞ \ Cð�xÞ ¼ ; for all i ¼ 1; 2; . . . ; n. But by (2)0,
Fðxi; �xÞ \ Cð�xÞ 6¼ ; for some xi 2 N. This leads to a contradiction. Hence for
each N 2 hXi; coN � GðNÞ. Therefore the conclusion of Theorem 4.6 follows
from Theorem 3.3.

Applying Remark 3.3 of Lin [28], we establish the following theorem

THEOREM 4.7. Suppose that T 2 KKMðX;YÞ and
(1) for any x 2 X; y� �Fðx; yÞ is u.s.c. with compact values and W : Y� �Z

is u.s.c., where WðyÞ ¼ Zn ()IntCðyÞÞfor all y 2 Y ;
(2) for all x 2 X and y 2 TðxÞ;Fðx; yÞ 6� ð�IntCðyÞÞ;
(3) for any y 2 Y;BðyÞ ¼ fx 2 X : Fðx; yÞ � ()IntCðyÞÞg is convex;
(4) for each compact subset A of X, TðAÞ is compact; and
(5) there exists a nonempty compact subset K of Y such that for each

N 2 hXi, there exists a compact convex subset LN of X containing N
such that for each y 2 TðLNÞnK, there exists x 2 LN with
Fðx; yÞ � ð�IntCðyÞÞ.

Then there exists �y 2 Y such that Fðx; �yÞ 6� ()IntCð�yÞÞ for all x 2 X.

Proof. Let G : X� �Y be defined by

GðxÞ ¼ fy 2 Y : Fðx; yÞ 6� ð�IntCðyÞg for x 2 X:

By (2), (3) and Proposition 4.1, for all N 2 hXi;TðcoNÞ � GðNÞ.
By (1) and following the same argument as in Theorem 2.1 of Ansari and

Yao [3], for each x 2 X;GðxÞ is closed. By Theorem 3.3 , \x2XGðxÞ 6¼ ;.
Therefore, there exists �y 2 Y such that Fðx; �yÞ 6� ð�IntCð�yÞÞ, for all x 2 X.(

REMARK 4.5. Following the method of Ansari and Yao [3], we can show
that if F is CðyÞ-quasiconvexlike and CðyÞ is a convex cone for each y 2 Y,
then the set BðyÞ ¼ fx 2 X : Fðx; yÞ � ð�IntCðyÞÞg is convex.
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THEOREM 4.8. Let X be a Hausdorff convex space, let F : X� X� �Z and
C : X� �Z be multivalued maps. Suppose that

(1) of Theorem 4.7 and
(2)0 F is weak type II C-diagonally quasiconvex in the first argument for

each fixed y; and
(3)0 there exists a nonempty compact subset K of X such that for each

N 2 hXi, there exists a compact convex subset LN of X containing N such
that for each y 2 LNnK, there exists x 2 LN with Fðx; yÞ � ð�IntCðyÞÞ.

Then exists �y 2 X such that Fðx; �yÞ 6� ð�IntCð�yÞÞ for all x 2 X.

Proof. Let TðxÞ ¼ fxg for x 2 X and G : X� �X be defined by

GðxÞ ¼ fy 2 X : Fðx; yÞ 6� ð�IntCðyÞÞg for x 2 X:

By (1) and following the same argument as in Theorem 4.1, GðxÞ is closed.
By (2)0 and follows the same argument as in Theorem 4.2, we show that
for each N 2 hXi; coN ¼ TðcoNÞ � GðNÞ. Therefore the conclusion of The-
orem 4.8 follows from Theorem 3.3.

THEOREM 4.9. Suppose that T 2 KKMðX;YÞ, (4) of Theorem 4.7 and

(1)0 for any x 2 X; y� �Fðx; yÞ is l.s.c. and W : Y� �Z is u.s.c, where
WðyÞ ¼ Znð�IntCðyÞÞ for all y 2 Y;

(2)0 for all x 2 X and y 2 TðxÞ;Fðx; yÞ \ ð�IntCðyÞÞ ¼ ;;
(3)0 for any y 2 Y;BðyÞ ¼ fx 2 X : Fðx; yÞ \ ð)CðyÞÞ 6¼ ;gis convex; and
(5)0 there exists a nonempty compact subset K of Y such that for each

N 2 hXi,there exists a compact convex subset LN of X containing N
such that for each y 2 TðLNÞnK, there exists x 2 LN with
Fðx; yÞ \ ð�IntCðyÞÞ 6¼ ;:

Then there exists �y 2 Y such that Fðx; yÞ \ ð�IntCðyÞÞ ¼ ; for all x 2 X.

Proof. Let G : X� �Y be defined by

GðxÞ ¼ fy 2 X : Fðx; yÞ \ ð�IntCðyÞÞ ¼ ;g for x 2 X:

By (2)0 (3)0 and Proposition 4.1, for all N 2 hXi;TðcoNÞ � GðNÞ.
By (1)0 GðxÞ is closed for all x 2 X. By Theorem 3.3, there exists �y 2 Y

such that Fðx; �yÞ \ ð�IntCð�yÞÞ ¼ ; for all x 2 X .

THEOREM 4.10. Let X be a Hausdorff convex space, let F : X� X� �Z
and C : X� �Z be multivalued maps. Suppose that

(1) for any x 2 X; y� �Fðx; yÞ is l.s.c. and W : Y� �Z is u.s.c., where
WðyÞ ¼ Znð�IntCðyÞÞ for all y 2 Y;

(2) F is weak type I C-diagonally quasiconvex in the first argument; and
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(3) there exists a nonempty compact subset K of X such that for each
N 2 hXi, there exists a compact convex subset LN of X containing N such
that for each y 2 LNnK, there exists x 2 LN with Fðx; yÞ\
ð�IntCðyÞÞ 6¼ ;:

Then there exists �y 2 X such that Fðx; �yÞ \ ð�IntCð�yÞÞ ¼ ; for all x 2 X.

Proof. Let TðxÞ ¼ fxg for x 2 X and G : X� �X be defined by

GðxÞ ¼ fy 2 X : Fðx; yÞ \ ð�IntCðyÞÞ ¼ ;g for x 2 X:

By (1), GðxÞ is closed for all x 2 X. With the similar argument as Theorem
4.2, we show that for each N 2 hXi; coN ¼ TðcoNÞ � GðNÞ. Therefore The-
orem 4.10 follows from Theorem 3.3. (
The rest of this section, let X be a Hausdorff convex space, Y a

Hausdorff topological space, D be a nonempty subset of Y;Z be a Haus-
dorff t.v.s. As simple consequences of (VEP), we establish the existence the-
orems of (GVEP).

THEOREM 4.11. Suppose that g : X� X�D� �Z;/ : X� �D and

(1) for each fixed x 2 X; ðy; uÞ � �gðx; y; uÞ and / are l.s.c. and C is
closed;

(2) for each y 2 X and u 2 /ðyÞ; gðy; y; uÞ � CðyÞ;
(3) for each fixed y 2 X;x� �gðx; y;/ðyÞÞ is CðyÞ-quasiconvex; and
(4) there exists a nonempty compact subset K of X such that for each

N 2 hXi, there exists a compact convex subset LN of X containing N
such that for each y 2 LNnK, there exists x 2 LN and u 2 /ðyÞ such
that gðx; y; uÞ 6� CðyÞ.

Then there exists �y 2 X such that gðx; �y; uÞ � Cð�yÞÞ for all u 2 /ð�yÞ and
all x 2 X.

Proof. Let Fðx; yÞ ¼ gðx; y;/ðyÞÞ ¼ [u2/ðyÞgðx; y; uÞ. By (1) and Theorem
2.2, Fðx; yÞ is l.s.c. By (3), the multivalued map x� �Fðx; yÞ is CðyÞ-
quasiconvex. Then by Remark 4.2, the set fx 2 X : Fðx; yÞ 6� CðyÞg is
convex. By Corollary 4.2, then there exists �y 2 X such that
gðx; �y; uÞ � Cð�yÞ for all x 2 X and u 2 /ð�yÞ. (
In Theorem 4.11, if g : X� X�D� �Z is a single value function, we

have the following existence theorem of generalized vector implicit vector
variational inequality.

COROLLARY 4.3. Suppose that D; g and / be the same as Theorem 4.11
and
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(1) / is l.s.c. and for each fixed x 2 X; ðy; uÞ ! gðx; y; uÞ is a continuous
function and C is closed and CðyÞ is a convex cone for each y 2 Y;

(2) for each y 2 X and u 2 /ðyÞ; gðy; y; uÞ 2 CðyÞ;
(3) for each fixed y 2 X; x� �gðx; y;/ðyÞÞis CðyÞ-quasiconvex; and
(4) there exists a nonempty compact subset K of X such that for each

N 2< X >, there exists a compact convex subset LN of X containing N
such that for each y 2 LNnK, there exists x 2 LN; u 2 /ðyÞ such that
gðx; y; uÞ 2 CðyÞ.

Then there exists �y 2 X such that gðx; �y; uÞ 2 Cð�yÞÞ for all u 2 /ð�yÞ and all
x 2 X.

THEOREM 4.12. Suppose that g : X� X�D� �Z;/ : X� �D and

(1) for each fixed x 2 X; ðy; uÞ � �gðx; y; uÞand / are u.s.c. with compact
values and C : Y� �Z is closed;

(2) for all y 2 X and u 2 /ðyÞ; gðy; y; uÞ \ CðyÞ 6¼ ;;
(3) for each fixed y 2 X; x� �gðx; y;/ðyÞÞis CðyÞ-quasiconvex-like and

CðyÞ is a closed convex cone for each y 2 Y; and
(4) there exists a nonempty compact subset K of X such that for each

N 2 hXi, there exists a compact convex subset LN of X containing N such
that for each y 2 LNnK, there exists x 2 LN with gðx; y;/ðyÞÞ\
CðyÞ ¼ ;.

Then there exists �y 2 X such that for each x 2 X, there exists u 2 /ð�yÞwith
gðx; �y; uÞ \ Cð�yÞ 6¼ ;:

Proof. Let Fðx; yÞ ¼ gðx; y;/ðyÞÞ ¼ [u2/ðyÞgðx; y; uÞ. By (1) and Theorem
2.7, for each x 2 X;Fðx; yÞ is u.s.c. with compact values. Since for each
y 2 X; x� �Fðx; yÞ is CðyÞ-quasiconvex-like and CðyÞ is a closed convex
cone, by (3) and Remark 4.4, the set fx 2 X : Fðx; yÞ \ CðyÞ 6¼ /g is con-
vex. By Theorem 4.5 with TðxÞ ¼ fxg for all x 2 X, there exists �y 2 X such
that Fðx; �yÞ ¼ gðx; �y;/ð�yÞÞ \ Cð�yÞ 6¼ ; for all x 2 X. Therefore for each
x 2 X, there exists u 2 /ð�yÞ such that gðx; �y; uÞ \ Cð�yÞ 6¼ ;: (

For the special cases of Theorem 4.12, we have the following existence
theorem of generalized implicit vector variational inequality.

COROLLARY 4.4. Let g : X� X�D! Z be a function satisfying the
following conditions:

(1) for each fixed x 2 X; ðy; uÞ ! gðx; y; uÞ is continuous, / is u.s.c. with
compact values and C is closed;

(2) for any y 2 X and u 2 /ðyÞ; gðy; y; uÞ 2 CðyÞ;
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(3) for each fixed y 2 X; x� �gðx; y;/ðyÞÞ is CðyÞ-quasiconvex-like and
CðyÞ is a closed convex cone for each y 2 Y; and

(4) there exists a nonempty compact subset K of X such that for each
N 2 <X> there exists a compact convex subset LN of X containing N
such that for each y 2 LNnK, there exists x 2 LN such that
gðx; y; uÞ 62 CðyÞ for all u 2 /ðyÞ.

Then there exists �y 2 X such that for each x 2 X, there exists u 2 /ð�yÞsuch
that gðx; �y; uÞ 2 Cð�yÞ.

THEOREM 4.13. Suppose that g; h : X� X�D� �Z;/ : X� �D and

(1) for each fixed x 2 X; ðy; uÞ � �gðx; y; uÞ and / are u.s.c. with compact
values and W : X� �Z is u.s.c., where WðyÞ ¼ Znð�IntCðyÞÞ for all
y 2 Y;

(2) for all y 2 X, there exists u 2 /ðyÞ such that gðy; y; uÞ 6� �IntCðyÞ;
(3) for each fixed y 2 X; x� �gðx; y;/ðyÞÞ is CðyÞ-quasiconvex-like and

CðyÞ is a closed convex cone for each y 2 Y; and
(4) there exists a nonempty compact subset K of X such that for each

N 2 hXi, there exists a compact convex subset LN of X containing N
such that for each y 2 LNnK, there exists x 2 LN with gðx; y;/ðyÞÞ �
()IntCðyÞÞ.

Then there exists �y 2 X such that for each x 2 X, there exists u 2 /ð�yÞ with
gðx; �y; uÞ 6� ()IntCð�yÞÞ.

Proof. Let Fðx; yÞ ¼ gðx; y;/ðyÞÞ ¼ [u2/ðyÞgðx; y; uÞ. Let G : X� �X be
defined by

GðxÞ ¼ fy 2 X : Fðx; yÞ ¼ gðx; y;/ðyÞÞ 6� ð�IntCðyÞÞg for x 2 X:

By Theorem 2.2 and Theorem 4.7, we can prove that Theorem 4.13. (
For the special case of Theorem 4.13, we have the following existence

theorem of generalized vector implicit variational inequality.

COROLLARY 4.5. Suppose that g : X� X�D! Z and / : X� �Z and

(1) for each fixed x 2 X; ðy; uÞ ! gðx; y; uÞ is continuous, / is u.s.c. with
compact values and W : X� �Z is u.s.c., where WðyÞ ¼ Znð�IntCðyÞÞ
for all y 2 Y;

(2) for all y 2 X there exist u 2 /ðyÞsuch that gðy; y; uÞ 62 ð�IntCðyÞÞ;
(3) for each fixed y 2 X;x� �gðx; y;/ðyÞÞis CðyÞ-quasiconvex-like and

CðyÞ is a closed convex cone for each y 2 Y;
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(4) there exists a nonempty compact subset K of X such that for each
N 2 hXi there exists a compact convex subset LN of X containing N
such that for each y 2 LNnK, there exists x 2 LN with gðx; y; uÞ
2 ð�IntCðyÞÞ for all u 2 CðyÞ.

Then there exists �y 2 X such that for each x 2 X, there exists u 2 /ð�yÞ with
gðx; �y; uÞ 62 ()Int Cð�yÞÞ.

THEOREM 4.14. Suppose that g : X� X�D� �Z;/ : X� �D and

(1) for each fixed x 2 X, the multivalued maps ðy; uÞ � �gðx; y; uÞ and / are
l.s.c. and W : X� �Z is u.s.c., where WðyÞ ¼ Zn()IntCðyÞÞfor all y 2 Y;

(2) gðx; y;/ðyÞÞ is weak type I C-diagonally quasiconvex in the first argu-
ment; and

(3) there exists a nonempty compact subset K of X such that for each
N 2< X >, there exists a compact convex subset LN of X containing N
such that for each y 2 LNnK, there exists x 2 LN with
gðx; y;/ðyÞÞ \ ð�IntCðyÞÞ 6¼ ;:

Then there exists �y 2 X such that gðx; �y; uÞ\()IntCð�yÞÞ ¼ ; for all u 2 /ð�yÞ
and all x 2 X.

Proof. Let Fðx; yÞ ¼ gðx; y;/ðyÞÞ ¼ [u2/ðyÞgðx; y; uÞ. Let G : X� �X be
defined by

GðxÞ ¼ fy 2 X : Fðx; yÞ ¼ gðx; y;/ðyÞÞ \ ð�IntCðyÞÞ ¼ ;g for x 2 X:

Theorem 4.14 follows from Theorems 2.7 and 4.10.

COROLLARY 4.6. Suppose that g : X� X�D! Z;/ : X� �Z and

(1) for each fixed x 2 X; ðy; uÞ ! gðx; y; uÞ is continuous, / is l.s.c. and
W : X� �Z is u.s.c., where WðyÞ ¼ Zn (�IntCðyÞÞ for all y 2 Y;

(2) gðx; y;/ðyÞÞ is weak type I C-diagonally quasiconvex in the first argu-
ment; and

(3) there exists a nonempty compact subset K of X such that for each
N 2< X >, there exists a compact convex subset LN of X containing N
such that for each y 2 LNnK, there exists x 2 LN; u 2 /ðy) with
gðx; y; uÞ 2 ()IntCðyÞÞ.

Then there exists �y 2 X such that gðx; �y; uÞ 62 ()IntCð�yÞÞ for all u 2 /ð�yÞ
and all x 2 X.

REMARK 4.6.

(1) Corollaries 4.4 and 4.5 are different from Theorems 3 and 4 [19].
(2) If gðx; y; uÞ ¼< u; gðy;xÞ > þhðx; yÞ
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where h : X� X! Z and g : X� X! X; u 2 LðX;ZÞ ¼ fTjT : X! Z
is a continuous linear operatorg. Then Corollaries 4.5 and 4.6 are the exis-
tence theorems of mixed generalized vector variational inequality problems
recently studied by Khanh and Luu. [22].
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