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Abstract. In this paper, we obtain several new continuous selection theorems for
multi-valued mappings on completely regular spaces and fixed point theorems for
multi-valued maps on non-metrizable spaces. They, in particular, provide a partial
solution of a conjecture of X. Wu.

1. Introduction

In [4, 5], Browder first used continuous selection theorem to prove the Fan-Browder

fixed point theorem. Later, Yannelis and N. D. Prabhakar [17], Ben-El-Mechaiekh

[2, 3], Ding, Kim and Tan [8], Horvath [11], Wu [16, 15], Park [12, 13], and many

others, established several continuous selection theorems with applications. We note

that all the continuous selection theorems studied by the above authors, the multi-

valued maps are defined on a compact or paracompact space. In [17], Yu and Lin

studied continuous selections of multi-valued mappings defined on noncompact spaces,

but they assume some kind of coercivity conditions instead.

In this paper, we establish a continuous selection theorem for a multi-valued map

defined on a completely regular topological space. We do not assume the compactness

of its domain.

In the second part of this paper, we discuss collectively fixed points of lower semi-

continuous multi-valued maps. Recently, many authors studied fixed point theorems of

lower semicontinuous multi-valued maps, see for example [14, 6, 15, 1]. In particular,

Wu established the following one.

Theorem 1.1 ([15]). Let X be a nonempty subset of a Hausdorff locally convex topo-

logical vector space, let D be a nonempty compact metrizable subset of X, and let

T : X → 2D be a multi-valued mapping with the following properties:

(a) T (x) is a nonempty closed convex set for each x in X;
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(b) T is lower semicontinuous.

Then there exists a point x̄ in D such that x̄ ∈ T (x̄).

Wu conjectured in [15] that the conclusion of Theorem 1.1 remains true even if the

metrizability condition of D is dropped. In this paper, we shall use the approximate

continuous selection theorem of Deutsch and Kenderov [7] (see also [19]) to establish

an approximate fixed point theorem for a sub-lower semicontinuous multi-valued map.

This gives rise to a partial solution of the conjecture of Wu [15]. We shall also provide

a simple proof of a Himmelberg type collectively fixed point theorem. We remark that

our results differ from the approximate fixed point theorem recently established by

Park [13].

We would like to thank the referee for many helpful suggestions on improving the

presentation and the bibliography in this paper.

2. Preliminaries

Let X and Y be topological spaces. A multi-valued map T : X → 2Y is a map from

X into the power set 2Y of Y . Let T−1 : Y → 2X be defined by the condition that

x ∈ T−1y if and only if y ∈ T (x). Recall that

(a) T is said to be closed if its graph Gr(T ) = {(x, y) : x ∈ X, y ∈ T (x)} is closed in

the product space X × Y ;

(b) T is said to be upper semicontinuous (in short, u.s.c.) at x if for every open set V in

Y with T (x) ⊂ V , there exists a neighborhood W (x) of x such that T (W (x)) ⊂ V ;

T is said to be u.s.c. on X if T is u.s.c. at every point of X;

(c) T is said to be lower semicontinuous (in short, l.s.c.) at x if for every open neigh-

borhood V (y) of every y in T (x), there exists a neighborhood W (x) of x such that

T (u) ∩ V (y) 6= ∅ for all u in W (x); T is said to be l.s.c. on X if T is l.s.c. at every

point of X;

(d) In case Y is a topological linear space, T is said to be sub-lower semicontinuous

(see, e.g., [19]) at an x in X if for each neighborhood V of 0 in Y , there is a z in

T (x) and a neighborhood U(x) of x in X such that z ∈ T (y)+V for each y in U(x);

T is said to be sub-lower semicontinuous on X if T is sub-lower semicontinuous

at every point of X. It is plain that if T is lower semicontinuous at x, then T is

sub-lower semicontinuous at x;

The following lemmas are needed in this paper.

Lemma 2.1 (Deutsch and Kenderov [7]). Let X be a paracompact topological space,

let Y be a locally convex topological linear space, and let F : X → 2Y . Then F is
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sub-lower semicontinuous if and only if for each neighborhood V of 0 in Y , there is a

continuous function f : X → Y such that f(x) ∈ F (x) + V for each x in X.

Lemma 2.2 (Yuan [18]). Let X be a topological space, let Y be a nonempty subset of a

topological vector space with a base B for the zero neighborhoods, and let F : X → 2Y .

For each V in B, define FV : X → 2Y by

FV (x) = (F (x) + V ) ∩ Y, ∀x ∈ X.

Write ȳ ∈ F (x̄) if (x̄, ȳ) ∈ GrF . Then for any x̄ in X and ȳ in Y , we have

ȳ ∈ F (x̄) whenever ȳ ∈
⋂

V ∈B
FV (x̄).

Lemma 2.3 (Himmelberg [10]). Let X be a nonempty convex subset of a locally convex

topological vector space. Let T : X → 2X be an u.s.c. multi-valued map with nonempty

closed convex values such that T (X) = ∪x∈XT (x) is contained in a compact subset of

X. Then there exists an x̄ in X such that x̄ ∈ T (x̄).

Lemma 2.4 (Granas [9]; see also Ding, Kim and Tan [8]). Let D be a nonempty

compact subset of a topological vector space. Then the convex hull co D of D is σ-

compact and hence is paracompact.

3. Continuous selection theorems

Note that the set S−1(y) = {x ∈ X : y ∈ S(x)} below can have empty interior for

some y in K.

Theorem 3.1. Let X be a completely regular space and let K be a nonempty subset of

a Hausdorff topological vector space E. Assume a multi-valued function S : X −→ 2K

satisfies the following conditions:

(a) For each x in X, the set S(x) is convex.

(b) X =
⋃
{int S−1(y) : y ∈ K}.

Then for any compact subset F of X there is an open dense subset U of X containing

F such that S has a continuous selection f : U → K, that is, f(x) ∈ S(x) for all x in

U .

Proof. By assumption (b), there are finitely many points y1, . . . , yn in K such that

F ⊆ int S−1(y1) ∪ · · · ∪ int S−1(yn).

For each k = 1, . . . , n and x in F ∩ int S−1(yk), there is a continuous function gx on

X such that 0 ≤ gx ≤ 1, gx(x) = 1 and gx vanishes outside int S−1(yk). By the

compactness of F , there are finitely many gx such that for every point in F at least one



4 L.-J. LIN, N.-C. WONG, AND Z.-T. YU

of them assumes value not less than 1/2. Summing them in an appropriate way, we will

have nonnegative continuous functions g1, . . . , gn on X such that gk vanishes outside

int S−1(yk), and
∑n

k=1 gk(x) ≥ 1/2 for all x in F . Let V = {x ∈ X :
∑n

k=1 gk(x) > 1/3}.
Set fj(x) = gj(x)/

∑n
k=1 gk(x) on V , and fj(x) = 3gj(x) on X \V . Define a continuous

function fV : X −→ E by

fV (x) =
n∑

k=1

fk(x)yk, ∀x ∈ X.

For each x in V and for each k with fk(x) 6= 0, we have x ∈ int S−1(yk). Hence,

yk ∈ S(x). Consequently, fV (x) ∈ co(S(x)) = S(x) ⊆ K for all x in V . In other words,

the restriction of fV to V gives rise to a continuous selection of S on the open set V

which contains F .

Denote by

W = {(fW , W ) : where W is an open subset of X containing F and

fW : W → K gives rise to a continuous selection of S on W}.

Then W is not empty as (fV , V ) ∈ W . Order W by extension and we get a non-empty

partially ordered set. In other words, (fW , W ) ≤ (fV , V ) if W ⊆ V and fV |W = fW .

Applying Zorn’s Lemma, we get a maximal element (fU , U) of W .

The last step is to verify that U is dense in X. Suppose not and there were an x in

X outside the closure of U . Let x ∈ int S−1(y) for some y in K. By setting f|W ≡ y,

we get a continuous selection of S on an open neighborhood W of x disjoint from U

by restriction. Then the union fU∪W : U ∪W −→ K defined in a natural way provides

a contradiction to the maximality of (fU , U). �

We call a topological space X residually paracompact if for every open dense subset

U of X the complement X \ U is paracompact.

Theorem 3.2. In addition to the conditions (a) and (b) in Theorem 3.1, if we assume

further that

(c) X is residually paracompact.

Then there is a continuous function f : X → K such that f(x) ∈ S(x) for all x in X.

Proof. It follows from Theorem 3.1 that there is a continuous function fU : U −→ K

defined on an open dense subset U of X with fU(x) ∈ S(x) for all x in U . For each

z in X \ U , there is a y in K such that z ∈ int S−1(y) by condition (b). By setting

f|Wz ≡ y we get a continuous selection of S on an open neighborhood Wz of z. The

paracompactness of X \ U ensures it has a locally finite covering by open sets in X,
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each of which is contained in some Wz. Adding one more open set U , we have a locally

finite open covering of X. This provides us with a family {gλ}λ of nonzero continuous

functions from X into [0, 1] dominated by the open sets Wz and U such that gλ(x) = 0

for all but finitely many λ’s and
∑

λ gλ(x) = 1 for all x in X. If gλ vanishes outside U ,

we set fλ = fU . Otherwise, we fix a choice of z such that gλ vanishes outside Wz, and

set fλ = fWz . Define f : X −→ K by

f(x) =
∑

λ

gλ(x)fλ(x), ∀x ∈ X.

For each x in X, only finitely many gλ(x)’s are non-zero in the sum, and the nonzero

terms give rise to a convex combination of points in the convex set S(x). Thus f(x) ∈
S(x) for all x in X. �

It is easy to see that the following corollary follows from Theorem 3.1.

Corollary 3.3. The conclusion of Theorem 3.1 remains true if the conditions (a) and

(b) are replaced by

(a)′ for each x in X, the set S(x) is a nonempty convex set;

(b)′ for each y in K, the set S−1(y) is open.

Remark 3.4. Corollary 3.3 implies Theorem 3.1.

Proof. Let T : X → 2K be defined by

T (x) = {y ∈ K : x ∈ int S−1(y)}.

Then T−1(y) = int S−1(y) is open for each y in K. By (b), for each x in X, there

exists y in K such that x ∈ int S−1(y). Therefore y ∈ T (x) 6= ∅ for each x in X. Let

H : X → 2K be defined by H(x) = co T (x). Then H(x) is nonempty for each x in X.

and H−1(y) is open for each y in K. By Corollary 3.3, there is an open dense subset

U of X, containing any but fixed compact set D, and there is a continuous function

f : U → K such that f(x) ∈ H(x) = co T (x) ⊂ S(x) for all x in U . �

4. Fixed Point Theorems

Theorem 4.1. For each i in a nonempty index set I, let Xi be a nonempty convex

subset of a Hausdorff locally convex topological vector space Ei, and let Di be a compact

subset of Xi. Let X =
∏

i∈I Xi be the product space. Let Fi : X → 2Di be sub-lower

semicontinuous with nonempty convex values. Then for every neighborhood Vi of 0 in

Ei, there exists a point x̄V = (xVi
) in D =

∏
i∈I Di such that (x̄Vi

+ Vi) ∩ Fi(x̄V ) 6= ∅
for all i in I.
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Proof. Given a neighborhood Vi of zero in Ei for each i in I. Fix any i in I. There

exists an absolutely convex neighborhood Wi of 0 such that Wi ⊂ Vi. Note that D

is a compact subset of X. By Lemma 2.4, co D is a paracompact subset of X. Since

Fi : X → 2Di is a sub-lower semicontinuous multi-valued map with nonempty convex

values, by Lemma 2.1 there exists a continuous function fi : co D → Di such that

fi(x) ∈ (Fi(x) + Wi) ∩Di for each x ∈ co D.

Define f : co D → D by f(x) =
∏

i∈Ifi(x) for x in co D. By Himmelberg fixed

point theorem (Lemma 2.3), there exists an x̄V = (x̄Vi
)i∈I in co D such that x̄V =

f(x̄V ) =
∏

i∈Ifi(x̄V ). That is, x̄Vi
= fi(x̄V ) ∈ (Fi(x̄V ) + Wi) ∩Di. Thus, x̄Vi

∈ Di and

(x̄Vi
+ Wi) ∩ Fi(x̄V ) 6= ∅ for all i in I. Since Wi ⊂ Vi, we have (x̄i + Vi) ∩ Fi(x̄V ) 6= ∅

for all i in I. �

Theorem 4.2. Suppose in Theorem 4.1 we assume further that for each x = (x̄i)i∈I ∈
X, its coordinates xi 6∈ Fi(x) \ Fi(x) for all i in I. Then there exists a point x̄ =

(x̄i)i∈I ∈ D =
∏

i∈IDi such that x̄ ∈ Fi(x̄) for each i in I.

Proof. For each i in I, let Bi be the collection of all absolutely convex open neigh-

borhoods of zero in Ei and B =
∏

i∈IBi. Given any V =
∏

i∈IVi in B, let QV =

{x ∈ D : xi ∈ FVi
(x) for all i in I}. Then QV is a nonempty closed subset of D for

each V in B by Theorem 4.1. Let {V (1), · · ·, V (n)} be any finite subset of B. Write

V (i) =
∏

j∈IV
(i)
j , where V

(i)
j ∈ Bj for each i = 1, · · ·, n. Let V ′ =

∏
j∈I(

⋂n
i=1V

(i)
j ) ∈ B.

Clearly, ∅ 6= QV ′ ⊆
⋂n

i=1QV (i) . Therefore, the family {QV : V ∈ B} has the finite

intersection property. Since QV ⊂ D for all V in B and D is compact,
⋂

V ∈BQV 6= ∅.
Let x̄ = (x̄i)i∈I ∈

⋂
V ∈BQV . Then x̄i ∈ FVi

(x̄) for all i in I and all Vi in Bi, i.e.,

x̄i ∈
⋂

Vi∈Bi
FVi

(x̄) for all i in I. It follows from Lemma 2.2 that x̄i ∈ Fi(x̄) for all i in

I. By assumption, x̄i ∈ Fi(x̄) for all i in I. �

We remark that if Fi is closed then xi 6∈ Fi(x)\Fi(x) for each x = (xi)i∈I in X. As a

special case of Theorem 4.2, we have the following collectively Himmelberg type fixed

point theorem.

Corollary 4.3. For each i in a nonempty index set I, let Xi be a nonempty convex

subset of a locally convex topological vector space Ei, let Di be a nonempty compact

subset of Xi, and let fi : X =
∏

i∈IXi → Di be a continuous function. Then there

exists x̄ = (x̄i)i∈I ∈ D =
∏

i∈IDi such that x̄ = fi(x̄) for each i in I.

If the index set I is a singleton, then Theorem 4.2 redues to the following corollary,

which provides a partial solution to a conjecture of Wu [15].
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Corollary 4.4. Let X be a nonempty convex subset of a locally convex topological

vector space E, let D be a nonempty compact subset of X, and let F : X → 2D be

sub-lower semicontinuous with nonempty convex values. Suppose x 6∈ F (x) \ F (x) for

each x in X. Then there exists a point x̄ in D such that x̄ ∈ F (x̄).

By Theorem 4.1, we have the following almost fixed point theorem.

Corollary 4.5. The conclusions of Theorems 4.1 and 4.2 remain valid if the condition

“Fi : X → 2Di is sub-lower semicontinuous for each i in I” is replaced by that “F−1
i (yi)

is open for each yi in Di and each i in I.”

Finally we remark that in case I is a singleton, Theorem 4.1 provides a different

result from [12, Theorem 3].
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