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Abstract

The present paper is in two-fold. The first fold is devoted to the existence theory of equilibria for generalized abstract economy with
a lower semicontinuous constraint correspondence and a fuzzy constraint correspondence defined on a noncompact/nonparacompact
strategy set. In the second fold, we consider systems of generalized vector quasi-equilibrium problems for multivalued maps (for short,
SGVQEPs) which contain systems of vector quasi-equilibrium problems, systems of generalized mixed vector quasi-variational
inequalities and Debreu-type equilibrium problems for vector valued functions as special cases. By using the results of first fold,
we establish some existence results for solutions of SGVQEPs.
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1. Introduction

The notion of an abstract economy (social system) was introduced by Debreu [10]. He proved the existence of an
equilibrium point for abstract economy. For the finite number of agents, Shafer and Sonnenschein [19] and Borglin
and Keiding [8] extended Debreu’s result to abstract economy without order preferences. During the last two decades,
many authors studied the existence of equilibrium of an abstract economy with infinite number of agents but under
the compactness/paracompactness of strategy set; See for example [24,26] and references therein. In 1990, Tian [23]
proved an equilibrium existence theorem for noncompact abstract economy with a countable number of agents. In the
recent past, many authors studied the existence of equilibria for abstract economy with infinite number of agents; See
for example [11–13,28] and references therein for paracompact/compact strategy set; for noncompact/nonparacompact
strategy set we refer to [6,12,13,17] and references therein. Recently, Kim and Tan [15] and Lin et al. [18] considered
abstract economy with a fuzzy constraint correspondence, known as generalized abstract economy. They established
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some existence results for an equilibrium point of generalized abstract economy under the assumption of open lower
section of correspondences involved. This notion of generalized abstract economy generalizes the concept of abstract
economies considered in the references given in this paper and references therein.

System of vector (quasi-) equilibrium problems (for short, SV(Q-)EP) is a unified model of several problems, for
instance, system of vector (quasi-) variational inequalities (for short, SV(Q-)VI), system of vector (quasi-) optimization
problems and Debreu-type equilibrium problem, also known as noncooperative game, for vector valued functions (for
short, Debreu VEP). Recently, Ansari et al. [1] used SVQEP as a tool to study the existence of a solution of (Debreu
VEP)(I) (See Section 3.1). They also used SVQVI to prove the existence of a solution of Debreu VEP for nonconvex but
differentiable (in some sense) vector valued functions. In [2], system of generalized vector quasi-variational inequalities
is used to establish the existence of solution of (Debreu VEP)(I) (See Section 3.1) for nondifferentiable and nonconvex
vector valued functions.

The present paper is divided into two folds. The first fold deals with the study of existence of equilibria for general-
ized abstract economy with a lower semicontinuous constraint correspondence and a fuzzy constraint correspondence
defined on noncompact/nonparacompact strategy set. In the second fold, we consider systems of generalized vec-
tor quasi-equilibrium problems for multivalued trifunction (for short, SGVQEPs) which contain systems of vector
quasi-equilibrium problems for trifunctions, systems of mixed vector quasi-variational inequalities and Debreu-type
equilibrium problems for vector valued functions as special cases. As applications of results of first fold, we establish
some existence results for solutions of SGVQEPs.

2. Generalized abstract economy

For a subset � of a vector space, we denote by co� the convex hull of �. If � and � are subsets of a topological
space X such that � ⊆ �, then the closure (respectively, interior) of � in � is denoted by cl�� (respectively, int��);
In case � = X, we write cl� and int � instead of clX� and intX�, respectively. Let X and Y be topological vector
spaces and �, � : X → 2Y be correspondences. Then co�, � ∩ � : X → 2Y are defined as (co�)(x) = co�(x) and
(�∩�)(x)=�(x)∩�(x) for all x ∈ X, respectively. For a nonempty subset V ofY, �−1(V )={x ∈ Y : �(x)∩V �= ∅}
and also x ∈ �−1(y) if and only if y ∈ �(x). � is said to have an open lower section if for each y ∈ Y, �−1(y) is
open in X. We also define �, cl� : X → 2Y by

�(x) = {y ∈ Y : (x, y) ∈ clX×Y Gr(�)},

where Gr(�) = {(x, y) ∈ X × Y : y ∈ �(x)} denotes the graph of �, and

cl�(x) = clY(�(x)) for all x ∈ X, respectively.

It is easy to see that cl�(x) ⊆ �(x) for all x ∈ X.
In a real market, any preference of a real agent could be unstable because of the fuzziness of consumers’ behavior or

market situations. Thus, Kim and Tan [15] introduced the fuzzy constraint correspondences in defining the following
generalized abstract economy.

Let I be any set of agents (countable or uncountable). For each i ∈ I , let Xi be a nonempty set of actions available
to the agent i in a topological vector space Ei and X = ∏

i∈IXi . A generalized abstract economy (or generalized
game) � = (Xi, Ai, Fi, Pi)i∈I [15] is defined as a family of ordered quadruples (Xi, Ai, Fi, Pi) where Ai : X → 2Xi

is a constraint correspondence such that Ai(x) is the state attainable for the agent i at x, Fi : X → 2Xi is a fuzzy
constraint correspondence such that Fi(x) is the unstable state for the agent i, and Pi : X × X → 2Xi is a preference
correspondence such that Pi(x, y) is the state preference by the agent i at (x, y). An equilibrium for � is a point

(x̂, ŷ) ∈ X × X such that for each i ∈ I , x̂i ∈ Ai(x̂), ŷi ∈ Fi(x̂) and Pi(x̂, ŷ) ∩ Ai(x̂) = ∅.
This problem is further considered and studied in [18] with or without involving �-condensing correspondences.
If for each i ∈ I and for all x ∈ X, Fi(x) = Xi and the preference correspondence Pi is independent of y, that

is, Pi(x, y) = Pi(x) for all x, y ∈ X, our definitions of a generalized abstract economy and an equilibrium coincide
with the usual definitions of an abstract economy and an equilibrium due to Shafer and Sonnenschein [19]; See also
[11,21,27] and references therein.



L.-J. Lin et al. / Journal of Computational and Applied Mathematics 208 (2007) 341–353 343

Furthermore, if Ai(x̂) = clAi(x̂), our definition of an equilibrium point coincides with the standard definition in
[8,22,25,26].

2.1. Preliminaries

In this section, we collect together some known definitions and results which will be needed in the sequel. Throughout
the paper, unless otherwise specified, we assume that I is any (countable or uncountable) index set.

Lemma 2.1.1 (Tan and Yuan [20]). Let X be a topological space, D a nonempty subset of a topological vector space
E, B a base for neighborhoods of zero in E and B : X → 2D a multivalued map with nonempty values. For each
V ∈ B, let BV : X → 2D be defined by BV (x) = (B(x) + V ) ∩ D for all x ∈ X. If x̂ ∈ X and ŷ ∈ D are such that
ŷ ∈ ⋂

V ∈B BV (x̂), then ŷ ∈ B(x̂).

The following results are the main tools to study the existence of equilibria of generalized abstract economy.

Theorem 2.1.1 (Kim and Yuan [16]). For each i ∈ I , let Xi be a nonempty convex subset of a Hausdorff topological
vector space Ei . For each i ∈ I , let Si : X = ∏

i∈I Xi → 2Xi be a multivalued map such that

(i) for all x = (xi)i∈I ∈ X, xi /∈ coSi(x);
(ii) for all yi ∈ Xi , S−1

i (yi) is open in X; and
(iii) there exist a nonempty compact subset K of X and a nonempty compact convex subset Di of Xi for each i ∈ I

with the property that for each x ∈ X\K there exists j ∈ I such that Sj (x) ∩ Dj �= ∅.

Then there exists x̂ ∈ K such that Si(x̂) = ∅ for each i ∈ I .

Definition 2.1.1 (Border [7]). Let E be a topological vector space and X be a subset of E such that X = ⋃∞
n=1Gn,

where {Gn}∞n=1 is an increasing (in the sense that Gn ⊆ Gn+1) sequence of nonempty compact sets.A sequence {yn}∞n=1

in X is said to be escaping from X (relative to {Gn}∞n=1) if for each n ∈ N, there exists M > 0 such that yk /∈ Gn for all
k�M .

Theorem 2.1.2 (Yuan et al. [27]). For each i ∈ I , let Xi be a subset of a topological vector space (not necessarily
Hausdorff) Ei such that Xi = ⋃∞

j=1Gi,j , where {Gi,j }∞j=1 is an increasing sequence of nonempty compact convex

subsets of Ei . For each i ∈ I , let Si : X = ∏
i∈IXi → 2Xi be a multivalued map such that

(i) for all x = (xi)i∈I ∈ X, xi /∈ coSi(x);
(ii) for all yi ∈ Xi , S−1

i (yi) is open in X;
(iii) {x ∈ X : Si(x) �= ∅} = intX{x ∈ X : Si(x) �= ∅}; and
(iv) for any sequence {yn}∞n=1 in X with yn ∈ Gn for each n ∈ N, which is escaping from X relative to {Gn}∞n=1 where

Gn =�i∈IGi,n for each n ∈ N, there exist m ∈ N and xm ∈ Gm such that �i (xm) ∈ coSi(ym) for each i ∈ I (ym),
where I (x) = {i ∈ I : Si(x) �= ∅} and �i (xm) is the projection of xm onto Xi .

Then there exists x̂ ∈ X such that Si(x̂) = ∅ for each i ∈ I .

2.2. Existence of equilibria for generalized abstract economy

In this section, we establish some existence results for equilibria of generalized abstract economy and abstract
economy with lower semicontinuous correspondences.

Theorem 2.2.1. Let � = (Xi, Ai, Fi, Pi)i∈I be a generalized abstract economy and X = ∏
i∈IXi . For each i ∈ I ,

assume that the following conditions are satisfied.

(i) Xi is a nonempty convex subset of a locally convex Hausdorff topological vector space Ei ;
(ii) Ai : X → 2Xi and Fi : X → 2Xi are lower semicontinuous multivalued maps with nonempty convex values;

(iii) Pi : X × X → 2Xi has an open graph and xi /∈ coPi(x, y) for all (x, y) ∈ X × X;
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(iv) There exist nonempty compact subsets K and M of X and nonempty compact convex subsets D̃i and Di of
Xi for each i ∈ I with the property that for each (x, y) ∈ X × X\K × M , there exists j ∈ I such that
(Aj (x) ∩ Pj (x, y)) ∩ D̃j �= ∅ and Fj (x) ∩ Dj �= ∅.

Then there exists an equilibrium point (x̂, ŷ) = ((x̂i)i∈I , (ŷi)i∈I ) ∈ K × M of generalized abstract economy.

Proof. For each i ∈ I , let Bi be the collection of all open convex neighborhoods of zero in Ei and B = ∏
i∈IBi . For

any given V ∈ B, let V = ∏
i∈I Vi , where Vi ∈ Bi for each i ∈ I . For any fixed i ∈ I , define AVi

, FVi
: X → 2Xi

by AVi
(x) = (Ai(x) + Vi) ∩ Xi and FVi

(x) = (Fi(x) + Vi) ∩ Xi for all x ∈ X. Since Ai and Fi are convex valued
and lower semicontinuous, from [9, Lemma 4.1], we obtain that AVi

and FVi
are convex valued and have open graph

in X × Xi . By [26, Corollary 4.1], AVi
and FVi

have open lower sections. For each i ∈ I , let WVi
= {(x, y) ∈ X × X :

(xi, yi) ∈ AVi
(x) × FVi

(x)}, then each WVi
is closed in X × X. Define a multivalued map QVi

: X × X → 2Xi×Xi by

QVi
(x, y) =

{
(AVi

(x) ∩ coPi(x, y)) × FVi
(x) if (x, y) ∈ WVi

AVi
(x) × FVi

(x) if (x, y) /∈ WVi
.

For each i ∈ I and for all (x, y) ∈ X × X, it is easy to see that QVi
(x, y) is convex and (xi, yi) /∈ QVi

(x, y). Since
each Pi has an open graph, again by Corollary 4.1 and Lemma 5.1 both in [26], we have coPi has open lower section.
We note that for each i ∈ I and for each (x′

i , y
′
i ) ∈ Xi × Xi , the set

Q−1
Vi

(x′
i , y

′
i ) = {(x, y) ∈ X × X : (x′

i , y
′
i ) ∈ QVi

(x, y)}
= {(x, y) ∈ WVi

: (x′
i , y

′
i ) ∈ (AVi

(x) ∩ coPi(x, y)) × FVi
(x)}

∪ {(x, y) ∈ X × X\WVi
: (x′

i , y
′
i ) ∈ AVi

(x) × FVi
(x)}

= {(x, y) ∈ X × X : (x′
i , y

′
i ) ∈ (AVi

(x) ∩ coPi(x, y)) × FVi
(x)}

∪ {(x, y) ∈ X × X\WVi
: (x′

i , y
′
i ) ∈ AVi

(x) × FVi
(x)}

= [(A−1
Vi

(x′
i ) × X) ∩ (coPi)

−1(x′
i ) ∩ (F−1

Vi
(y′

i ) × X)]
∪ [(X × X\WVi

) ∩ (A−1
Vi

(x′
i ) × X) ∩ (F−1

Vi
(y′

i ) × X)]
is open in X×X. By (iv), for each (x, y) ∈ X×X\K ×M there exists j ∈ I such that QVj

(x, y)∩ (D̃j ×Di) �= ∅. By
Theorem 2.1.1, there exists a point (xV , yV ) ∈ K × M such that QVi

(xV , yV ) = ∅ for each i ∈ I , where xV = (xVi
)i∈I

and yV = (yVi
)i∈I . Since for each i ∈ I and for all x ∈ X, Ai(x) and Fi(x) are nonempty, we must have (xVi

, yVi
) ∈

AVi
(xV ) × FVi

(xV ) and Ai(xV ) ∩ Pi(xV , yV ) = ∅.
Since for each i ∈ I , Ai : X → 2Xi is lower semicontinuous and Pi : X × X → 2Xi has open graph, we have that

Ai ∩ Pi : X × X → 2Xi is lower semicontinuous [7, pp. 59–61]. Then it is easy to see that the set H = {(x, y) ∈
X × X : Ai(x) ∩ Pi(x, y) �= ∅} is open.

Indeed, let (x, y) ∈ H, then Ai(x) ∩ Pi(x, y) �= ∅. For each fixed i ∈ I , let O be any open set such that
O ∩ Ai(x) ∩ Pi(x, y) �= ∅. Since Ai ∩ Pi is lower semicontinuous, there exist neighborhoods U(x) of x and W(y)

of y such that O ∩ Ai(u) ∩ Pi(u, v) �= ∅ for all (u, v) ∈ U(x) × W(y). Therefore, Ai(u) ∩ Pi(u, v) �= ∅ for all
(u, v) ∈ U(x) × W(y). Hence (u, v) ∈ H and thus U(x) × W(y) ⊆ H. This shows that H is open and the set
{(x, y) ∈ X × X : Ai(x) ∩ Pi(x, y) = ∅} is closed.

Let QV = {(x, y) ∈ K × M : xi ∈ AVi
(x), yi ∈ FVi

(y) and Ai(x) ∩ Pi(x, y) = ∅}. Then QV is a nonempty closed
subset of K × M .

Following the same argument as in [16, Proof of Theorem 4.3] and applying Lemma 2.1.1, we get the
conclusion. �

Remark 2.2.1. Conditions (ii) and (iii) of Theorem 2.2.1 can be replaced, respectively, by the following conditions.
For each i ∈ I ,

(ii)′ Ai : X → 2Xi is a multivalued map with nonempty convex values and has open lower section, and Fi : X → 2Xi

is a lower semicontinuous multivalued map with nonempty convex values.
(iii)′ Pi : X × X → 2Xi has open lower section and xi /∈ coPi(x, y) for all (x, y) ∈ X × X.
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If for each i ∈ I and for all x ∈ X, Fi(x) = Xi and Pi(x, y) is independent of the variable y, then from Theorem
2.2.1, we obtain the following existence result for equilibria of abstract economy.

Corollary 2.2.1. Let � = (Xi, Ai, Pi)i∈I be an abstract economy and X = ∏
i∈IXi . For each i ∈ I , assume that the

following conditions are satisfied:

(i) Xi is a nonempty convex subset of a locally convex Hausdorff topological vector space Ei ;
(ii) Ai : X → 2Xi is a lower semicontinuous multivalued map with nonempty convex values;

(iii) Pi : X → 2Xi has an open graph and xi /∈ coPi(x) for all x ∈ X;
(iv) There exist a nonempty compact subset K of X and a nonempty compact convex subset Di of Xi for each i ∈ I

with the property that for each x ∈ X\K , there exists j ∈ I such that (Aj ∩ Pj )(x) ∩ Dj �= ∅.

Then there exists an equilibrium point x̂ = (x̂i)i∈I ∈ K of abstract economy, that is, for each i ∈ I , x̂i ∈ Ai(x̂) and
Ai(x̂) ∩ Pi(x̂) = ∅.

Remark 2.2.2. Conditions (ii) and (iii) of Corollary 2.2.1 can be replaced, respectively, by the following conditions.
For each i ∈ I ,

(ii)′ Ai : X → 2Xi is a multivalued map with nonempty convex values and has open lower section.
(iii)′ Pi : X → 2Xi has open lower section such that xi /∈ coPi(x) for all x ∈ X and the set {x ∈ X : Ai(x)∩Pi(x) �= ∅}

is open.

Remark 2.2.3. (1) If for each i ∈ I , clAi is an upper semicontinuous multivalued map, then Corollary 2.2.1 with
Remark 2.2.2 generalizes [23, Theorem 2, 24, Theorem 2.5] and [26, Theorem 6.1].

(2) Corollary 2.2.1 improves Corollaries 4.5 and 4.4 of Kim and Yuan [16] in the following ways:

(a) The set X is neither perfectly normal nor paracompact;
(b) The mapping Ai ∩ Pi is L-majorized is replaced by conditions (ii) and (iii).

If for each i ∈ I , Ei is not necessarily Hausdorff, we have the following existence result for equilibria of generalized
abstract economy.

Theorem 2.2.2. For each i ∈ I , let Xi be a nonempty subset of a locally convex topological vector space Ei and
X=∏

i∈IXi . Let �=(Xi, Ai, Fi, Pi)i∈I be a generalized abstract economy such that for each i ∈ I , Xi×Xi=⋃∞
j=1Gi,j

where {Gi,j }∞j=1 is an increasing sequence of nonempty compact convex subset of a locally convex topological vector

space Ei × Ei . For each i ∈ I , assume that the following conditions are satisfied:

(i) Ai : X → 2Xi and Fi : X → 2Xi are lower semicontinuous multivalued maps with nonempty convex values;
(ii) Pi : X × X → 2Xi has an open graph and xi /∈ coPi(x, y) for each (x, y) ∈ X × X; and

(iii) For each sequence {(xn, yn)}∞n=1 in X × X with (xn, yn) ∈ Gn = ∏
i∈IGi,n for each n ∈ N, which is escaping

from X × X relative to {Gn}∞n=1, there exist m ∈ N and (x̃m, ỹm) ∈ Gm such that �i (x̃m) ∈ Ai(xm) ∩ Pi(xm, ym)

and �i (ỹm) ∈ Fi(xm) for each i ∈ I , where �i (x) is the projection of x ∈ X onto Xi .

Then there exists an equilibrium point (x̂, ŷ) = ((x̂i)i∈I , (ŷi)i∈I ) ∈ X × X of generalized abstract economy.

Proof. For each i ∈ I , let Bi be the collection of all open convex neighborhoods of zero in Ei and B = ∏
i∈IBi . For

any given V ∈ B, let V = ∏
i∈I Vi , where Vi ∈ Bi for each i ∈ I . For any fixed i ∈ I , define AVi

, FVi
, WVi

, and QVi

as in Proof of Theorem 2.2.1. Following the same argument as in Proof of Theorem 2.2.1, we have that for each i ∈ I

and for all (x, y) ∈ X × X, QVi
(x, y) is convex and (xi, yi) /∈ QVi

(x, y), and the set Q−1
Vi

(x′
i , y

′
i ) is open in X × X for

all (x′
i , y

′
i ) ∈ Xi × Xi . Since

{(x, y) ∈ X × X : QVi
(x, y) �= ∅} =

⋃
{Q−1

Vi
(x′

i , y
′
i ) ⊆ X × X : (x′

i , y
′
i ) ∈ QVi

(x, y)}
is open in X × X, we get

{(x, y) ∈ QVi
(x, y) �= ∅} = intX{(x, y) ∈ QVi

(x, y) �= ∅}.
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Thus, condition (iii) of Theorem 2.1.2 is satisfied. Therefore by Theorem 2.1.2, there exists a point (xV , yV ) ∈ X × X

such that QVi
(xV , yV ) = ∅ for each i ∈ I , where xV = (xVi

)i∈I and yV = (yVi
)i∈I . Since for each i ∈ I and each

x ∈ X, Ai(x) and Fi(x) are nonempty, we must have (xVi
, yVi

) ∈ AVi
(xV ) × FVi

(xV ) and Ai(xV ) ∩ Pi(xV , yV ) = ∅.
As in Proof of Theorem 2.2.1, the set {(x, y) ∈ X × X : Ai(x) ∩ Pi(x, y) �= ∅} is open and the set QV = {(x, y) ∈

X × X : xi ∈ AVi
(x), yi ∈ FVi

(y) and Ai(x) ∩ Pi(x, y) = ∅} is nonempty and closed. Following the same argument
as in [27, Proof of Theorem 4.3] and applying Lemma 2.1.1, we get the conclusion. �

If for each i ∈ I and for all x ∈ X, Fi(x) = Xi and Pi(x, y) is independent of the variable y, then from Theorem
2.2.2, we obtain the following existence result for equilibria of abstract economy.

Corollary 2.2.2 (Yuan et al. [27]). Let � = (Xi, Ai, Pi)i∈I be an abstract economy such that for each i ∈ I , Xi =⋃∞
j=1Gi,j where {Gi,j }∞j=1 is an increasing sequence of nonempty compact convex subset of a locally convex topological

vector space Ei . For each i ∈ I , assume that the following conditions are satisfied:

(i) Ai : X → 2Xi is a lower semicontinuous multivalued map with nonempty convex values;
(ii) Pi : X → 2Xi has an open graph and xi /∈ coPi(x) for each x ∈ X;

(iii) For each sequence {xn}∞n=1 in X with xn ∈ Gn = �i∈IGi,n for each n ∈ N, which is escaping from X relative to
{Gn}∞n=1, there exist m ∈ N and x̃m ∈ Gm such that �i (x̃m) ∈ (Ai ∩ Pi)(xm) for all i ∈ I , where �i (x) is the
projection of x ∈ X onto Xi .

Then there exists x̂ = (x̂i)i∈I ∈ X such that for each i ∈ I , x̂i ∈ Ai(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅.

Remark 2.2.4. If for each i ∈ I , Xi is compact and clAi is an upper semicontinuous multivalued map, Corollary 2.2.2
reduces Theorem 4.1 in [8].

3. Systems of generalized vector quasi-equilibrium problems

This section divided into two subsections. In the first subsection, we introduce four types of systems of generalized
vector quasi-equilibrium problems (for short, SGVQEPs) and present systems of vector quasi-equilibrium problems,
systems of mixed vector quasi-variational inequalities and Debreu-type equilibrium problems for vector valued func-
tions as special cases of SGVQEPs. Some applications of results of Section 2 to establish some existence results for
solutions of SGVQEPs are given in the second subsection.

3.1. Formulations

For each i ∈ I , let Xi be a nonempty subset of a topological vector space Ei , Yi a topological vector space and let
X =∏

i∈IXi . For each i ∈ I , let Ai : X → 2Xi , Ci : X → 2Yi and Fi : X → 2Xi be multivalued maps with nonempty
values, and let fi : X×X×Xi → 2Yi be a multivalued map with nonempty values. We consider the following systems
of generalized vector quasi-equilibrium problems (in short, SGVQEPs):

(SGVQEP)(I)

{
Find (x̂, ŷ) ∈ X × X such that for each i ∈ I,

x̂i ∈ Ai(x̂), ŷi ∈ Fi(x̂) and fi(x̂, ŷ, ui) ⊆ Ci(x̂) for all ui ∈ Ai(x̂).

(SGVQEP)(II)

{
Find (x̂, ŷ) ∈ X × X such that for each i ∈ I,

x̂i ∈ Ai(x̂), ŷi ∈ Fi(x̂) and fi(x̂, ŷ, ui) ∩ Ci(x̂) �= ∅ for all ui ∈ Ai(x̂).

(SGVQEP)(III)

{
Find (x̂, ŷ) ∈ X × X such that for each i ∈ I,

x̂i ∈ Ai(x̂), ŷi ∈ Fi(x̂) and fi(x̂, ŷ, ui) ∩ (−int Ci(x̂)) = ∅ for all ui ∈ Ai(x̂).

(SGVQEP)(IV)

{
Find (x̂, ŷ) ∈ X × X such that for each i ∈ I,

x̂i ∈ Ai(x̂), ŷi ∈ Fi(x̂) and fi(x̂, ŷ, ui)� − int Ci(x̂) for all ui ∈ Ai(x̂).
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It is clear that every solution of (SGVQEP)(I) (respectively, (SGVQEP)(III)) is a solution of (SGVQEP)(II) (respectively,
(SGVQEP)(IV)) but converse assertion does not hold.

A problem similar to (SGVQEP)(I) and some other types of systems of generalized vector quasi-equilibrium problems
are studied in [14] in the setting of locally G-convex uniform spaces.

If for each i ∈ I , Fi ≡ Ai and fi(x, y, ui) is independent of the variable y, that is, fi(x, y, ui) is a multivalued map
of two variables x and ui , then (SGVQEP)(IV) is introduced and studied by Ansari and Khan [2]. They established the
existence results for a solution of such problem. As an application of their problem, they derived existence results for a
solution of (Debreu VEP)(II) (see below) for nonconvex and nondifferentiable (in some sense) vector valued functions.
Furthermore, if for each i ∈ I and for all x ∈ X, Fi(x)=Ai(x)=X. Then (SGVQEP)(IV) is considered and studied by
Ansari et al. [4]. Some existence results for solutions of such problem are established. By using these results, existence
of solutions of Nash equilibrium problem for vector valued functions are derived.

Special Cases: (a) If for each i ∈ I , fi is a single valued map, then (SGVQEP)(I) and (SGVQEP)(II), and
(SGVQEP)(III) and (SGVQEP)(IV), respectively, reduce to the following systems of vector quasi-equilibrium
problems (for short, SVQEPs):

(SVQEP)(I)

{
Find (x̂, ŷ) ∈ X × X such that for each i ∈ I,

x̂i ∈ Ai(x̂), ŷi ∈ Fi(x̂) and fi(x̂, ŷ, ui) ∈ Ci(x̂) for all ui ∈ Ai(x̂).

(SVQEP)(II)

{
Find (x̂, ŷ) ∈ X × X such that for each i ∈ I,

x̂i ∈ Ai(x̂), ŷi ∈ Fi(x̂) and fi(x̂, ŷ, ui) /∈ − int Ci(x̂) for all ui ∈ Ai(x̂).

Of course, (SVQEP)(I) is more general than (SVQEP)(II) as every solution of (SVQEP)(I) is a solution of (SVQEP)(II)
but converse assertion is not true.

If for each i ∈ I , Fi ≡ Ai and fi(x, y, ui) is independent of the variable y, that is, fi(x, y, ui) is a single valued map
of two variables x and ui , then the existence of solutions of (SVQEP)(II) is studied in [1] with application to (Debreu
VEP)(II).

Furthermore, if for each i ∈ I and for all x ∈ X, Fi(x) = Ai(x) = X. Then (SVQEP)(II) is studied in [3].
(b) We denote by L(Ei, Yi) the space of all continuous linear operators from Ei into Yi . For each i ∈ I , let

Hi : X → 2L(Ei,Yi ) be a multivalued map with nonempty values, and let gi : X × Xi → Yi and 	i : Xi × Xi → Xi be
vector valued mappings. For each i ∈ I , let fi(x, y, ui)=〈Hi(x), 	i (ui, xi)〉+gi(x, ui) for all (x, y, ui) ∈ X×X×Xi

and let Fi ≡ Ai . Then SGVQEPs become the following systems of mixed vector quasi-variational-like inequalities (in
short, SMVQVLIs).

(SMVQVLIP)(I)

{
Find x̂ = (x̂i)i∈I ∈ X such that for each i ∈ I, x̂i ∈ Ai(x̂) and

〈ĥi , 	i (ui, x̂i )〉 + gi(x̂, ui) ∈ Ci(x̂) for all ui ∈ Ai(x̂) and ĥi ∈ Hi(x̂).

(SMVQVLIP)(II)

⎧⎨
⎩

Find x̂ = (x̂i)i∈I ∈ X such that for each i ∈ I, x̂i ∈ Ai(x̂) and

for each ui ∈ Ai(x̂), there exists ĥi ∈ Hi(x̂) satisfying

〈ĥi , 	i (ui, x̂i )〉 + gi(x̂, ui) ∈ Ci(x̂).

(SMVQVLIP)(III)

{
Find x̂ = (x̂i)i∈I ∈ X such that for each i ∈ I, x̂i ∈ Ai(x̂) satisfying

〈ĥi , 	i (ui, x̂i )〉 + gi(x̂, ui) /∈ − int Ci(x̂) for all ui ∈ Ai(x̂) and ĥi ∈ Hi(x̂).

(SMVQVLIP)(IV)

⎧⎨
⎩

Find x̂ = (x̂i)i∈I ∈ X such that for each i ∈ I, x̂i ∈ Ai(x̂) and

for each ui ∈ Ai(x̂), there exists ĥi ∈ Hi(x̂) satisfying

〈ĥi , 	i (ui, x̂i )〉 + gi(x̂, ui) /∈ − int Ci(x̂).

(SMVQVLIP)(IV) is considered and studied by Ansari and Khan [2] for the case gi ≡ 0 for each i ∈ I . It is also
considered in [4] for the case Ai(x) = Xi for each i ∈ I and for all x ∈ X. For further detail and other particular cases,
see for example [1–4,14] and references therein.

(c) For each i ∈ I , let 
i : X → Yi be a vector valued map and let Xi =∏
j∈I,j �=iXj . We write X=Xi ×Xi . For each

x = (xi)i∈I ∈ X, let xi = (xj )j∈I,j �=i , we write x = (xi, xi). If for each i ∈ I , 	i ≡ 0 and gi(x, ui)=
i (x
i, ui)−
i (x)

for all (x, ui) ∈ X ×Xi , then the above four kinds of SMVQVLIPs reduce to the following two classes of Debreu-type
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equilibrium problems [10] for vector valued maps:

(Debreu VEP)(I)

{
Find x̂ ∈ X such that for each i ∈ I, x̂i ∈ Ai(x̂) and


i (x̂
i , ui) − 
i (x̂) ∈ Ci(x̂) for all ui ∈ Ai(x̂).

(Debreu VEP)(II)

{
Find x̂ ∈ X such that for each i ∈ I, x̂i ∈ Ai(x̂) and


i (x̂
i , ui) − 
i (x̂) /∈ − int Ci(x̂) for all ui ∈ Ai(x̂).

From the above special cases, it is clear that our SGVQEPs are more general and unifying models of several problems
studied in the literature.

3.2. Existence results for solutions of SGVQEPs

First, we recall the following definitions.

Definition 3.2.1. Let X be a nonempty convex subset of a topological vector space E andY be a topological vector space.
A multivalued map � : X → 2Y is said to be concave if for any x1, x2 ∈ X and � ∈ [0, 1], ��(x1) + (1 − �)�(x2) ⊆
�(�x1 + (1 − �)x2).

Definition 3.2.2. Let X be a nonempty convex subset of a topological vector space E and Y be a topological vector
space. Let � : X × X → 2Y and C : X → 2Y be multivalued maps such that for each x ∈ X, �(x) �= ∅ and C(x) is a
closed convex cone with intC(x) �= ∅. Let x ∈ X be arbitrary, then � is called

(i) C(x)-quasi-convex if for all y1, y2 ∈ X and � ∈ [0, 1], we have either

�(x, y1) ⊆ �(x, �y1 + (1 − �)y2) + C(x)

or

�(x, y2) ⊆ �(x, �y1 + (1 − �)y2) + C(x);

(ii) C(x)-quasi-convex-like [5] if for all y1, y2 ∈ X and � ∈ [0, 1], we have either

�(x, �y1 + (1 − �)y2) ⊆ �(x, y1) − C(x)

or

�(x, �y1 + (1 − �)y2) ⊆ �(x, y2) − C(x);

(iii) natural C(x)-quasi-concave if for any y1, y2 ∈ X, � ∈ [0, 1] and z1 ∈ �(x, y1), z2 ∈ �(x, y2), there exists
z ∈ �(x, �y1 + (1 − �)y2) such that z ∈ co{z1, z2} − C(x);

(iv) C(x)-convex on X if for any y1, y2 ∈ X and � ∈ [0, 1],
�(x, �y1 + (1 − �)y2) ⊆ ��(x, y1) + (1 − �)�(x, y2) − C(x).

From now onward, unless otherwise specified, for each i ∈ I , let Xi be a nonempty convex subset of a locally
convex Hausdorff topological vector space Ei and let X =∏

i∈IXi . For each i ∈ I , let Yi be a topological vector space
and Ci : X → 2Yi be a multivalued map such that for each x ∈ X, Ci(x) is a proper, closed and convex cone with
int Ci(x) �= ∅.

Theorem 3.2.1. For each i ∈ I , let fi : X×X×Xi → 2Yi be a lower semicontinuous multivalued map with nonempty
values. For each i ∈ I , assume that

(i) Fi, Ai : X → 2Xi are lower semicontinuous multivalued maps with nonempty convex values;
(ii) Ci : X → 2Yi is an upper semicontinuous multivalued map;

(iii) for all x = (xi)i∈I , y ∈ X, fi(x, y, xi) ⊆ Ci(x);
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(iv) for all x, y ∈ X, the multivalued map ui �→ fi(x, y, ui) is Ci(x)-quasi-convex; and
(v) there exist nonempty compact subsets K and M of X and nonempty compact convex subsets D̃i and Di of Xi for

each i ∈ I with the property that for each (x, y) ∈ X × X\K × M , there exist j ∈ I and ũj ∈ D̃j , ṽj ∈ Dj such
that ũj ∈ Aj(x), ṽj ∈ Fj (x) and fj (x, y, ũj )�Cj (x).

Then there exists a solution (x̂, ŷ) = ((x̂i)i∈I , (ŷi)i∈I ) ∈ K × M of (SGVQEP)(I).

Proof. For each i ∈ I , let Pi : X × X → 2Xi be defined by

Pi(x, y) = {ui ∈ Xi : fi(x, y, ui)�Ci(x)} for all (x, y) ∈ X × X.

By condition (iv), for each i ∈ I and for all (x, y) ∈ X × X, Pi(x, y) is convex.
Indeed, let ui1 , ui2 ∈ Pi(x, y) and � ∈ [0, 1], then fi(x, y, uij )�Ci(x) for j = 1, 2. Let u� = �ui1 + (1 −

�)ui2 , then we have to show that fi(x, y, u�)�Ci(x). Suppose on the contrary that there exists a �0 ∈ [0, 1] such
that fi(x, y, u�0) ⊆ Ci(x). Since the multivalued map ui �→ fi(x, y, ui) is Ci(x)-quasi-convex, we have either
fi(x, y, ui1) ⊆ fi(x, y, u�) + Ci(x) or fi(x, y, ui2) ⊆ fi(x, y, u�) + Ci(x) for all � ∈ [0, 1]. Therefore, in particular,
we have either fi(x, y, ui1) ⊆ fi(x, y, u�0) + Ci(x) or fi(x, y, ui2) ⊆ fi(x, y, u�0) + Ci(x). Since fi(x, y, u�0) ⊆
Ci(x), we have fi(x, y, uij ) ⊆ Ci(x)+Ci(x)=Ci(x), i=1, 2 which contradicts to our assumption that uij ∈ Pi(x, y).
Hence, Pi(x, y) is convex.

Since for all x = (xi)i∈I , y ∈ X, fi(x, y, xi) ⊆ Ci(x) we have xi /∈ Pi(x, y) = coPi(x, y).

For each i ∈ I , Pi has an open graph in X × Xi . Indeed, let (x, y, ui) ∈ cl[GrPi]c, then there exists a net
{(x�, y�, u�

i )}�∈
 in [GrPi]c such that (x�, y�, u�
i ) → (x, y, ui) ∈ X × X × Xi , where 
 is an index set. Then

fi(x
�, y�, u�

i ) ⊆ Ci(x
�) for all � ∈ 
. For any z ∈ fi(x, y, ui), the lower semicontinuity of fi on X ×X ×Xi implies

that there exists a net {z�} in Xi such that z� → z and z� ∈ fi(x
�, y�, u�

i ) for all � ∈ 
. Hence z� ∈ Ci(x
�) for all

� ∈ 
and (x�, z�) → (x, z). Since Ci is upper semicontinuous with closed values, it follows that Ci is closed and hence
z ∈ Ci(x). This shows that fi(x, y, ui) ⊆ Ci(x). Therefore, (x, y, ui) ∈ [GrPi]c and hence [GrPi]c the complement
of GrPi in X × X × Xi is closed.

Condition (v) implies for each (x, y) ∈ X ×X ⊆ K ×M , there exists j ∈ I such that (Aj (x)∩Pj (x, y))∩ D̃j �= ∅
and Fj (x)∩Dj �= ∅. Then by Theorem 2.2.1 there exists (x̂, ŷ)= ((x̂i)i∈I , (ŷi)i∈I ) ∈ K ×M such that for each i ∈ I ,
x̂i ∈ Ai(x̂), ŷi ∈ Fi(x̂) and Pi(x̂, ŷ) ∩ Ai(x̂) = ∅, that is, fi(x̂, ŷ, ui) ⊆ Ci(x̂) for all ui ∈ Ai(x̂). �

Theorem 3.2.2. For each i ∈ I , let fi : X × X × Xi → 2Yi be an upper semicontinuous multivalued map with
nonempty compact values. For each i ∈ I , assume that

(i) Fi, Ai : X → 2Xi are lower semicontinuous multivalued maps with nonempty convex values;
(ii) Ci : X → 2Yi is an upper semicontinuous multivalued map;

(iii) for all x = (xi)i∈I , y ∈ X, fi(x, y, xi) ∩ Ci(x) �= ∅;
(iv) for all (x, y) ∈ X × X, the multivalued map ui �→ fi(x, y, ui) is Ci(x)-quasi-convex-like; and
(v) there exist nonempty compact subsets K and M of X and nonempty compact convex subsets D̃i and Di of Xi for

each i ∈ I with the property that for each (x, y) ∈ X × X\K × M , there exist j ∈ I and ũj ∈ D̃j , ṽj ∈ Dj such
that ũj ∈ Aj(x),ṽj ∈ Fj (x) and fj (x, y, ũj ) ∩ Cj (x) = ∅.

Then there exists a solution (x̂, ŷ) = ((x̂i)i∈I , (ŷi)i∈I ) ∈ K × M of (SGVQEP)(II).

Proof. For each i ∈ I , let Pi : X × X → 2Xi be defined by

Pi(x, y) = {ui ∈ Xi : fi(x, y, ui) ∩ Ci(x) = ∅} for all (x, y) ∈ X × X.

Following the approach of Theorem 3.2.1 and by using condition (iv), we have that Pi(x, y) is convex for each i ∈ I

and for all (x, y) ∈ X × X.
Condition (iii) implies that xi /∈ Pi(x, y) = coPi(x, y) for all x = (xi)i∈I , y ∈ X.
Since each fi is upper semicontinuous with nonempty compact values and each Ci is also upper semicontinuous, by

using the same argument as in [5], we obtain that GrPi is open.
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By Theorem 2.2.1, there exists (x̂, ŷ)= ((x̂i)i∈I , (ŷi)i∈I ) ∈ K ×M such that for each i ∈ I , x̂i ∈ Ai(x̂), ŷi ∈ Fi(x̂)

and Pi(x̂, ŷ) ∩ Ai(x̂) = ∅, that is, fi(x̂, ŷ, ui) ∩ Ci(x̂) �= ∅ for all ui ∈ Ai(x̂). �

Theorem 3.2.3. For each i ∈ I , let fi : X×X×Xi → 2Yi be a lower semicontinuous multivalued map with nonempty
values. For each i ∈ I , assume that

(i) Fi, Ai : X → 2Xi are lower semicontinuous multivalued maps with nonempty convex values;
(ii) Wi : X → 2Yi is an upper semicontinuous multivalued map defined as Wi(x) = Yi\(−int Ci(x)) for all x ∈ X;

(iii) for all x = (xi)i∈I , y ∈ X, fi(x, y, xi) ∩ (−int Ci(x)) = ∅;
(iv) for all (x, y) ∈ X × X, the multivalued map ui �→ fi(x, y, ui) is natural Ci(x)-quasi-concave;
(v) there exist nonempty compact subsets K and M of X and nonempty compact convex subsets D̃i and Di of Xi for

each i ∈ I with the property that for each (x, y) ∈ X × X\K × M , there exist j ∈ I and ũj ∈ D̃j , ṽj ∈ Dj such
that ũj ∈ Aj(x), ṽj ∈ Fj (x) and fj (x, y, ũj ) ∩ (−int Cj (x)) �= ∅.

Then there exists a solution (x̂, ŷ) = ((x̂i)i∈I , (ŷi)i∈I ) ∈ K × M of (SGVQEP)(III).

Proof. For each i ∈ I , let Pi : X × X → 2Xi be defined by

Pi(x, y) = {ui ∈ Xi : fi(x, y, ui) ∩ (−int Ci(x)) �= ∅} for all (x, y) ∈ X × X.

By condition (iv), for each i ∈ I and for all (x, y) ∈ X × X, Pi(x, y) is convex. Indeed, let ui1 , ui2 ∈ Pi(x, y) and
� ∈ [0, 1], then fi(x, y, uij ) ∩ (−int Ci(x)) �= ∅ for j = 1, 2. Let zij ∈ fi(x, y, uij ) ∩ (−int Ci(x)) for j = 1, 2,
thus zij ∈ fi(x, y, uij ) and zij ∈ −int Ci(x) for j = 1, 2. Since (−int Ci(x)) is convex, so that co{zi1 , zi2} ⊆
−int Ci(x). Since for each fixed (x, y) ∈ X × X, ui �→ fi(x, y, ui) is natural Ci(x)-quasi-concave, it is easy to see
that �ui1 + (1 − �)ui2 ∈ Pi(x, y) and hence Pi(x, y) is convex.

Condition (iii) implies that xi /∈ Pi(x, y) = coPi(x, y) for all x = (xi)i∈I , y ∈ X.
Since fi is lower semicontinuous on X × X × Xi and Wi is upper semicontinuous on X and by following the

same argument as in Proof of Theorem 3.2.1, we have that GrPi is open. By Theorem 2.2.1, there exists (x̂, ŷ) =
((x̂i)i∈I , (ŷi)i∈I ) ∈ K × M such that for each i ∈ I , x̂i ∈ Ai(x̂), ŷi ∈ Fi(x̂) and Pi(x̂, ŷ) ∩ Ai(x̂) = ∅, that is,
fi(x̂, ŷ, ui) ∩ (−int Ci(x̂)) = ∅ for all ui ∈ Ai(x̂). �

Remark 3.2.1. The condition (iv) of Theorem 3.2.3 can be replaced by the following assumption.

(iv)′ for each i ∈ I and for each (x, y) ∈ X × X, the multivalued map ui �→ fi(x, y, ui) is concave.

Indeed, we only remain to show that for each i ∈ I and for all (x, y) ∈ X × X, Pi(x, y) is convex.
Let ui1 , ui2 ∈ Pi(x, y) and � ∈ [0, 1], then fi(x, y, uij ) ∩ (−int Ci(x)) �= ∅ for j = 1, 2. Let zij ∈ fi(x, y, uij ) ∩

(−int Ci(x)) for j = 1, 2. Then zij ∈ fi(x, y, uij ) and zij ∈ −int Ci(x) for j = 1, 2. Since −int Ci(x) is convex,
�zi1 + (1 − �)zi2 ∈ −int Ci(x). Since the multivalued map ui �→ fi(x, y, ui) is concave, �zi1 + (1 − �)zi2 ∈
�fi(x, y, ui1) + (1 − �)fi(x, y, ui2) ⊆ fi(x, y, �ui1 + (1 − �)ui2). Thus, fi(x, y, �ui1 + (1 − �)ui2) ∩ (−int Ci(x)) �=
∅, it follows that �ui1 + (1 − �)ui2 ∈ Pi(x, y) and hence Pi(x, y) is convex.

Theorem 3.2.4. Foreach i ∈ I , let fi : X × X × Xi → 2Yi be an upper semicontinuous multivalued map with
nonempty compact values. For each i ∈ I , assume that

(i) Fi, Ai : X → 2Xi are lower semicontinuous multivalued maps with nonempty convex values;
(ii) Wi : X → 2Yi is an upper semicontinuous multivalued map defined as Wi(x) = Yi\(−int Ci(x)) for all x ∈ X;

(iii) for all x = (xi)i∈I , y ∈ X, fi(x, y, xi)� − int Ci(x);
(iv) for all (x, y) ∈ X × X, the multivalued map ui �→ fi(x, y, ui) is Ci(x)-quasi-convex-like;
(v) there exist nonempty compact subsets K and M of X and nonempty compact convex subsets D̃i and Di of Xi for

each i ∈ I with the property that for each (x, y) ∈ X × X\K × M , there exist j ∈ I and ũj ∈ D̃j , ṽj ∈ Dj such
that ũj ∈ Aj(x), ṽj ∈ Fj (x) and fj (x, y, ũj ) ⊆ −int Cj (x).

Then there exists a solution (x̂, ŷ) = ((x̂i)i∈I , (ŷi)i∈I ) ∈ K × M of (SGVQEP)(IV).
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Proof. For each i ∈ I , let Pi : X × X → 2Xi be defined by

Pi(x, y) = {ui ∈ Xi : fi(x, y, ui) ⊆ −int Ci(x)} for all (x, y) ∈ X × X.

By condition (iv), for each i ∈ I and for all (x, y) ∈ X × X, Pi(x, y) is convex (see, for example [5, Proof of
Theorem 2.1]).

Condition (iii) implies that xi /∈ Pi(x, y) = coiP (x, y) for all x = (xi)i∈I , y ∈ X.
Since Wi is upper semicontinuous on X and fi is upper semicontinuous with nonempty compact values, by using

the same argument as in Proof of Theorem 3.2.2, we have that GrPi is open. By Theorem 2.2.1, there exists (x̂, ŷ) =
((x̂i)i∈I , (ŷi)i∈I ) ∈ K × M such that for each i ∈ I , x̂i ∈ Ai(x̂), ŷi ∈ Fi(x̂) and Pi(x̂, ŷ) ∩ Ai(x̂) = ∅, that is,
fi(x̂, ŷ, ui)� − int Ci(x̂)for all ui ∈ Ai(x̂). �

Remark 3.2.2. Condition (iv) of Theorem 3.2.4 can be replaced by the following condition:

(iv)′ for each i ∈ I and for all (x, y) ∈ X × X, the multivalued map ui �→ fi(x, y, ui) is Ci(x)-convex.

Remark 3.2.3. Theorem 3.2.4 generalizes Theorem 2.1 in [3] by several ways.

Theorem 3.2.5. For each i ∈ I , let Xi = ⋃∞
j=1Gi,j , where {Gi,j }∞j=1 is an increasing sequence of nonempty compact

convex subset of Ei , and fi : X × X × Xi → 2Yi be a l.s.c. multivalued map with nonempty values. Assume that the
conditions (i)–(iv) of Theorem 3.2.1 and the following condition hold:

(v)′ for each sequence {(xn, yn)}∞n=1 in X×X with (xn, yn) ∈ Gn =∏
i∈IGi,n for each n ∈ N, which is escaping from

X × X relative to {Gn}∞n=1, there exist m ∈ N and (x̃m, ỹm) ∈ Gm such that �i (x̃m) ∈ Ai(xm),�i (ỹm) ∈ Fi(xm)

and fi(xm, ym, �i (x̃m))�Ci(xm) for all i ∈ I , where �i (x) is the projection of x ∈ X onto Xi .

Then (SGVQEP)(I) has a solution.

Proof. For each i ∈ I , let Pi be the same as defined in Proof of Theorem 3.2.1. By using Theorem 2.2.2, assumption
(v)′ and following the same argument as in Proof of Theorem 3.2.1, we get the conclusion. �

Theorem 3.2.6. For each i ∈ I , let Xi , Ei , {Gi,j }∞j=1 be the same as in Theorem 3.2.5 and fi be an u.s.c. multivalued
map with noncompact values. Assume that conditions (i)–(iv) of Theorem 3.2.2 and the following condition hold:

(v)′ for each sequence {(xn, yn)}∞n=1 in X×X with (xn, yn) ∈ Gn =∏
i∈IGi,n for each n ∈ N, which is escaping from

X × X relative to {Gn}∞n=1, there exist m ∈ N and (x̃m, ỹm) ∈ Gm such that �i (x̃m) ∈ Ai(xm), �i (ỹm) ∈ Fi(xm)

and fi(xm, ym, �i (x̃m)) ∩ Ci(xm) = ∅ for all i ∈ I , where �i (x) is the projection of x ∈ X onto Xi .

Then (SGVQEP)(II) has a solution.

Proof. For each i ∈ I , let Pi be the same as defined in Proof of Theorem 3.2.2. By using Theorem 2.2.2, assumption
(v)′ and following the same argument as in Theorem 3.2.2, we get the conclusion. �

Theorem 3.2.7. For each i ∈ I , let Xi , Ei , {Gi,j }∞j=1 and fi be the same as in Theorem 3.2.5. Assume that conditions
(i)–(iv) of Theorem 3.2.3 and the following condition hold:

(v)′ for each sequence {(xn, yn)}∞n=1 in X ×X with (xn, yn) ∈ Gn =�i∈IGi,n for each n ∈ N, which is escaping from
X × X relative to {Gn}∞n=1, there exist m ∈ N and (x̃m, ỹm) ∈ Gm such that �i (x̃m) ∈ Ai(xm), �i (ỹm) ∈ Fi(xm)

and fi(xm, ym, �i (x̃m)) ∩ (−int Ci(xm)) �= ∅ for all i ∈ I , where �i (x) is the projection of x ∈ X onto Xi .

Then (SGVQEP)(III) has a solution.

Proof. For each i ∈ I , let Pi be the same as defined in Proof of Theorem 3.2.3. By using Theorem 2.2.2, assumption
(v)′ and following the same argument as in Theorem 3.2.3, we obtain the conclusion. �
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Theorem 3.2.8. For each i ∈ I , let Xi , Ei , {Gi,j }∞j=1 and fi be the same as in Theorem 3.2.5. Assume that conditions
(i)–(iv) of Theorem 3.2.4 and following condition hold:

(v)′ for each sequence {(xn, yn)}∞n=1 in X ×X with (xn, yn) ∈ Gn =�i∈IGi,n for each n ∈ N, which is escaping from
X × X relative to {Gn}∞n=1, there exist m ∈ N and (x̃m, ỹm) ∈ Gm such that �i (x̃m) ∈ Ai(xm), �i (ỹm) ∈ Fi(xm)

and fi(xm, ym, �i (x̃m)) ⊆ −int Ci(xm) for all i ∈ I , where �i (x) is the projection of x ∈ X onto Xi .

Then (SGVQEP)(IV) has a solution.

Proof. For each i ∈ I , let Pi be the same as defined in Proof of Theorem 3.2.4. By using Theorem 2.2.2, assumption
(v)′ and following the same argument as in Proof of Theorem 3.2.4, we get the conclusion. �

4. Conclusions

In this paper, we first considered generalized abstract economy which generalizes the concept of an abstract economy
studied in the literature. By using a known maximal element theorem for a family of multivalued maps, we proved the
existence of an equilibrium for generalized abstract economy with lower semicontinuous constraint correspondence and
a fuzzy constraint correspondence defined on a noncompact/nonparacompact strategy set. As a particular case, we also
derived the existence results for an equilibrium of abstract economy. Secondly, we considered systems of generalized
vector quasi-equilibrium problems (for short, SGVQEPs) which contain system of vector quasi-equilibrium problems,
system of generalized mixed vector quasi-variational inequalities and Debreu-type equilibrium problems for vector
valued functions as special cases. As applications of results of Section 2.2, we established some existence results for
solutions of SGVQEPs. The existence results for solutions of the problems which are special cases of our SGVQEPs can
be easily derived from the results of Section 3.2. By using the technique of Ansari et al. [1–4], it is easy to establish the
existence of solutions of (Debreu VEP)(I) and (Debreu VEP)(II) for nondifferentiable (in some sense) and nonconvex
vector valued functions. To best of our knowledge, no study has been done on the existence of solutions of (Debreu
VEP)(I). This paper can be seen as an effort in this direction.
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