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Abstract In this paper, we study an existence theorem of systems of generalized
quasivariational inclusions problem. By this result, we establish the existence theo-
rems of solutions of systems of generalized equations, systems of generalized vector
quasiequilibrium problem, collective variational fixed point, systems of generalized
quasiloose saddle point, systems of minimax theorem, mathematical program with
systems of variational inclusions constraints, mathematical program with systems of
equilibrium constraints and systems of bilevel problem and semi-infinite problem with
systems of equilibrium problem constraints.

Keywords Variational inclusion · Saddle point · Minimax theorem · Mathematical
program with systems of equilibrium constraints · Bilevel problem · Semi-infinite
problem · Upper (lower) semicontinuous multivalued map

1 Introduction

In 1979, Robinson [30] studied the following variational inclusions problem:
For each x ∈ Rn, find y ∈ Rm such that

0 ∈ g(x, y) + Q(x, y) (1a)

where g : Rn × Rm → Rp is a single valued function and Q : Rn × Rm � Rp is a
multivalued map. It is known that (1a) covers a vast of variational system important
in applications. For example, model (1a) can be reduced to a parametric variational
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inequality: Find y ∈ � such that

〈q(x, y), u − y〉 ≥ 0 for allu ∈ �.

Since then, various types of variational inclusions problems have been extended and
generalized by Hassouni and Moudafi [14], Adly [1], Ahmad and Ansan [2], Chang
[9], Ding [10], Huang [16], Ahmad et al. [3], etc. Very recently, Morduckhovich [29]
study equilibrium problem with various inclusions constraint of model (1a). For fur-
ther references on variational inclusions, one can refer to Mordukhovich [28,29] and
references therein.

Let X be a topological vector space, let K ⊆ X be a nonempty set and f: K×K → R

be a bifunction with f (x, x) = 0 for all x ∈ X. Then the equilibrium problem (EP)
Blum et al. [8] is to find x̄ ∈ X such that f (x̄, y) ≥ 0 for all y ∈ K.

It is known that equilibrium problem and systems of equilibrium problem contain
variational inequalities problem, optimization problems, fixed point problem, com-
plementary problems, saddle point problems and Nash equilibrium as special cases.
For detail, one can refer to Ansari et al. [4], Blum and Oettli [8], Lin [18–20], Lin et al.
[21–25] and references therein.

Generalized semi-infinite problems are programs of the type

SIP: min
x

f (x) s.t. φ(x, t) ≥ 0 ∀t ∈ H(x) , (1b)

where H(x) ⊂ R
m is the index set defined by a set-valued mapping H : R

n � R
m.

Bilevel problems are of the form

BL: min
x,y

f (x, y) s.t. g(x, y) ≥ 0,

and y is a solution of Q(x): min
t

F(x, t) s.t. t ∈ H(x). (2)

We also consider mathematical programs with equilibrium constraints

MPEC: min
x,y

f (x, y) s.t. g(x, y) ≥ 0 , y ∈ H(x)

and φ(x, y, t) ≥ 0 ∀t ∈ H(x). (3)

These programs represent three important classes of optimization problems which
have been investigated in a large number of papers and books (see Refs. [6,7,13,
27] and the references therein). As usual in linear and nonlinear optimization, these
papers mainly deal with optimality conditions and numerical methods to solve the
problems. Typically the existence of a feasible point is tacitly assumed (see Lin and
Still [24]). Recently, Lin et al. [21,22,24], Lin [18,19] investigate under which assump-
tions the existence of feasible points can be assumed in advanced.

One can easily see that the above problems also have many relations with the
following problems.

Let I be an index set. For each i ∈ I, let Zi be a real topological vector space (in
short, t.v.s.), Xi and Yi be nonempty closed convex subsets of locally convex t.v.s. Ei and
Vi, respectively. Let X = ∏

i∈IXi and Y = ∏
i∈IYi. For each i ∈ I, let Ai: X × Y � Xi,

Ti: X � Yi, Gi: X × Y × Yi � Zi and Ci, Di : X � Zi be multivalued maps. In this
paper, we study the following type of systems of variational inclusions problems:

(SVIP) Find x̄ = (x̄i)i∈I ∈ X, ȳ = (ȳi)i∈I ∈ Y such that x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄), and
0 ∈ Gi(x̄, ȳ, vi) for all vi ∈ Ti(x̄); (i.e. 0 ∈ Gi(x̄, ȳ, Ti(x̄))) for all i ∈ I.
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(SVIP) contains the following problems as special cases:

(i) If Hi: X ×Y � Zi, Qi: X ×Y ×Yi � Zi and Gi(x, y, vi) = Hi(x, y)+Qi(x, y, vi),
then (SVIP) will be reduced to the following problem:
Find x̄ = (x̄i)i∈I ∈ X, ȳ = (ȳi)i∈I ∈ Y such that x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and
0 ∈ Hi(x̄, ȳ) + Qi(x̄, ȳ, vi) for all vi ∈ Ti(x̄). That is 0 ∈ Hi(x̄, ȳ) + Qi(x̄, ȳ, Ti(x̄))

for all i ∈ I.
(ii) If Gi(x, y, vi) = −Di(x)+Qi(x, y, vi), then (SVIP) will be reduced to the systems

of equilibrium problem:
Find x̄ = (x̄i)i∈I ∈ X, ȳ = (ȳi)i∈I ∈ Y such that x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and
Gi(x̄, ȳ, vi) ∩ Di(x̄) 
= ∅ for all vi ∈ Ti(x̄) for all i ∈ I.

(iii) If Gi(x, y, vi) = [Zi \ (−intDi(x))] + Qi(x, y, vi), then (SVIP) will be reduced to
the systems of equilibrium problem:
Find (x̄, ȳ) ∈ X × Y, x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄), Qi(x̄, ȳ, vi) � −intDi(x̄) for all
vi ∈ Ti(x̄) and all i ∈ I.

(iv) If H: X ×Y � X and Qi: X ×Y ×Yi � X and if Hi(x, y) = {−x} for each i ∈ I,
then (SVIP) will be reduced to the systems of variational fixed point problem:
Find x̄ = (x̄i)i∈I ∈ X, ȳ = (ȳi)i∈I ∈ Y such that x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄) and
x̄ ∈ Qi(x̄, ȳ, vi) for all vi ∈ Ti(x̄) and all i ∈ I. That is x̄ ∈ Qi(x̄, ȳ, Ti(x̄)) for all
i ∈ I.

(v) If Gi: X × Y × Yi → Zi is a single valued function, then (SVIP) will be reduced
to the systems of generalized quasivariational equation problem:
Find x̄ = (x̄i)i∈I ∈ X, ȳ = (ȳi)i∈I ∈ Y such that x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and
0 = Gi(x̄, ȳ, vi) for all vi ∈ Ti(x̄) for all i ∈ I.
(SVIP) also have many applications.

(vi) If Si: X � Xi, Fi: X ×Y×Xi � Zi and let Ai(x, y) = {wi ∈ Si(x): 0 ∈ Fi(w, y, ui)

for all ui ∈ Si(x)}, then (SVIP) will be reduced to the following problem:
Find (x̄, ȳ) ∈ X × Y such that x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),

0 ∈ Fi(x̄, ȳ, ui) for all ui ∈ Si(x̄)

and

0 ∈ Gi(x̄, ȳ, vi) for all vi ∈ Ti(x̄), for all i ∈ I.

(vi) contains (vii), (viii), (ix) and (x) as special cases.
(vii) Find (x̄, ȳ) ∈ X × Y such that x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),

Fi(x̄, ȳ, ui) ∩ Ci(x̄) 
= ∅ for all ui ∈ Si(x̄)

and

Gi(x̄, ȳ, vi) ∩ Di(x̄) 
= ∅ for all vi ∈ Ti(x̄), for all i ∈ I.

(viii) Find (x̄, ȳ) ∈ X × Y such that x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),

Fi(x̄, ȳ, ui) ⊂/ − intCi(x̄) for all ui ∈ Si(x̄)

and

Gi(x̄, ȳ, vi) ∩ Di(x̄) 
= ∅ for all vi ∈ Ti(x̄) and for all i ∈ I.

(ix) Find (x̄, ȳ) ∈ X × Y such that x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),

Fi(x̄, ȳ, ui) ⊂/ − intCi(x̄) for all ui ∈ Si(x̄)
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and

Gi(x̄, ȳ, vi) ⊂/ − intDi(x̄) 
= ∅ for all vi ∈ Ti(x̄) and for all i ∈ I.

(x) Find (x̄, ȳ) ∈ X × Y such that x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄) and

Fi(x̄, ȳ, ui) ∩ Ci(x̄) 
= ∅ for all ui ∈ Si(x̄)

and

Gi(x̄, ȳ, vi) � −intDi(x̄) for all vi ∈ Ti(x̄) and for all i ∈ I.

As applications of our results, we study the mathematical program with equilibrium
constraint, bilevel problem and semi-infinite problems, our approach are different
from Fukushima and Pang [13], Bard [6], Luo et al. [27] and Lin et al. [18,22,24].

If Fi: X × Y � Zi and h: X × Y � Z0, where Z0 is a real t.v.s. ordered by proper
closed conve cone C0 in Z0, (SVIP) can be applied to studied the following problem:

(xi) mathematical program with systems of variational inclusions constraints:
min(x,y) h(x, y), x = (xi)i∈I ∈ X, y = ( yi)i∈I ∈ Y such that xi ∈ Si(x), yi ∈ Ti(x),
Fi(x, y) ⊆ Ci(x) and 0 ∈ Gi(x, y, vi) for all vi ∈ Ti(x) and for all i ∈ I.

(xii) mathematical program with systems of equilibrium constraints:
(SMPEC 1) min(x,y) h(x, y), x = (xi)i∈I ∈ X, y = ( yi)i∈I ∈ Y such that xi ∈ Si(x),
yi ∈ Ti(x), Fi(x, y) ⊆ Di(x) and Gi(x, y, vi)∩ Di(x) 
= ∅ for all vi ∈ Ti(x) and for
all i ∈ I.
or
(SMPEC 2) min(x,y) h(x, y), x = (xi)i∈I ∈ X, y = ( yi)i∈I ∈ Y such that xi ∈ Si(x),
yi ∈ Ti(x), Fi(x, y) ⊆ −int Di(x) and Gi(x, y, vi) � −int Di(x) for all vi ∈ Ti(x)

and for all i ∈ I.

If Zi = R for all i ∈ I, Z0 = R and Ci(x) = R
+ = [0, ∞) for all x ∈ X and i ∈ I, then

(SMPEC 1) and (SMPEC 2) will be reduced to the following problem:

(xiii) min(x,y) h(x, y), x = (xi)i∈I ∈ X, y = ( yi)i∈I ∈ Y such that xi ∈ Si(x), yi ∈ Ti(x),
Fi(x, y) ≥ 0 and Gi(x, y, vi) ≥ 0 for all vi ∈ Ti(x) and for all i ∈ I.

(ixv) If Qi: X × Yi → R and Gi(x, y, vi) = Qi(x, vi) − Qi(x, yi), then (SMPEC 1) and
(SMPEC 2) will reduce to the systems of bilevel problem:
min(x,y) h(x, y), x = (xi)i∈I ∈ X, y = ( yi)i∈I ∈ Y such that xi ∈ Si(x), yi ∈ Ti(x),
Fi(x, y) ≥ 0 and yi is a solution to the problem minvi∈Ti(x) Qi(x, vi) for all i ∈ I.

(xv) For the special cases of systems of bilevel problem is the semi-infinite problem
with systems of equilibrium constraints:
min(x,y) h(x, y), x = (xi)i∈I ∈ X, y = ( yi)i∈I ∈ Y such that xi ∈ Si(x), yi ∈ Ti(x),
Fi(x, y) ≥ 0 and Gi(x, vi) ≥ 0 for all vi ∈ Ti(x) and for all i ∈ I.

(xvi) In (i), if Hi(x, y) = (−∞, 0], Bi: X → W∗
i , ηi: Y × Yi → Yi, and Gi(x, y, vi) =

〈Bi(x), η( y, vi)〉, where W∗
i is the dual space of Wi, then (i) will reduce to the

following mixed variational-like inequality problem:
Find x̄ = (x̄i)i∈I ∈ X, ȳ = (ȳi)i∈I ∈ Y such that for x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and
〈Bi(x̄), η(ȳ, vi)〉 ≥ 0 for all vi ∈ Ti(x̄) and for all i ∈ I.

In this paper, we first study the existence theorem of systems of generalized
quasivariational inclusions, from which we study the existence theorems of systems
of generalized quasiequilibrium problems, systems of variational fixed point prob-
lems, systems of generalized quasivariational equations. As applications, we study the
existence theorems of two family of variational inclusions, systems of simultaneous
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quasiequilibrium problems. We also study the existence theorems of mathematical
program with systems of generalized quasivariational inclusions constraints, mathe-
matical program with systems of equilibrium constraints, systems of bilevel problems
and semi-infinite problem with systems of equilibrium constraints. Our results on sys-
tem of generalized quasiequilibrium problems are different from Lin [18,23] and Lin
et al. [22,23,25]. Our results on systems on simultaneous quasiequilibrium problems
are different from Ansari et al. [4] and Chang [19]. Our results on mathematical prob-
lem with systems of equilibrium constraints are different from Bard [6], Birbil et al.
[7], Fukushima and Pang [13], Lin et al. [22,24], Lin [18], and Luo et al. [27].

2 Preliminaries

Let X and Y be topological spaces (in short t.s.), T : X � Y be a multivalued map.
T is said to be upper semicontinuous (in short u.s.c.) (respectively lower semicon-
tinuous (in short l.s.c.) at x ∈ X, if for every open set U in Y with T(x) ⊆ U (resp.
T(x) ∩ U 
= ∅) there exists an open neighborhood V(x) of x such that T(x′) ⊆ U
(resp. T(x′) ∩ U 
= ∅) for all x′ ∈ T(x); T is said to be u.s.c. (resp. l.s.c.) on X if T is
u.s.c. (resp. l.s.c.) at every point of X; T is continuous at x if T is both u.s.c. and l.s.c.
at x; T is compact if there exists a compact set K such that T(X) ⊆ K; T is closed if
GrT = {(x, y) ∈ X × Y: y ∈ T(x), x ∈ X} is a closed set in X × Y.

Let Z be a real t.v.s., D a proper convex cone in Z. A point ȳ ∈ A is called a vector
minimal point of A if for any y ∈ A, y − ȳ /∈ −D \ {0}. The set of vector minimal point
of A is denoted by MinDA.

The following Lemmas and theorems are need in this paper.

Lemma 2.1 ([31]) Let X and Y be topological spaces, T : X � Y be a multivalued
map. Then T is l.s.c. at x ∈ X if and only if for any y ∈ T(x) and any net {xα} in X
converges to x, there exists a net {yα}α∈�, yα ∈ T(xα) for all α ∈ A with yα → y.

Lemma 2.2 ([26]) Let Z be a Hausdorff t.v.s., C be a closed convex cone in Z. If A is a
nonempty compact subset of Z, then MinCA 
= ∅.

Theorem 2.1 ([5]) Let X and Y be Hausdorff topological spaces, T : X � Y be a
multivalued map.

(i) If T is an u.s.c. multivalued map with closed values, then T is closed.
(ii) If Y is a compact space and T is closed, then T is u.s.c.
(iii) If X is compact and T is an u.s.c. multivalued map with compact values, then

T(X) is compact.

Definition 2.1 ([11]) Let E be a vector space and X ⊆ E an arbitrary subset. A
multivalued map F: X � E is said to be a KKM map provided

conv{x1, x2, . . . , xn} ⊆
n⋃

i=1

F(xi)

for each finite subset {x1, . . . , xn} ⊆ X, where conv{x1, x2, . . . , xn} denotes the convex
hull of {x1, x2, . . . , xn}.

The basic property of KKM map is given in Theorem 2.2.
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Definition 2.2 Let X be a nonempty convex subset of a vector space E, Y be a non-
empty convex subset of a vector space H and Z be a real t.v.s. Let F : Y � Z and
C: X � Z be multivalued maps such that for each x ∈ X, C(x) is a closed convex
cone.

(i) F is C(x)-quasiconvex if for any y1, y2 ∈ Y and λ ∈ [0, 1], either

F( y1) ⊆ F(λy1 + (1 − λ)y2) + C(x)

or

F( y2) ⊆ F(λy1 + (1 − λ)y2) + C(x)

(ii) F is C(x)-quasiconvex-like if for any y1, y2 ∈ Y and λ ∈ [0, 1], either

F(λy1 + (1 − λ)y2) ⊆ F( y1) − C(x)

or

F(λy1 + (1 − λ)y2) ⊆ F( y2) − C(x)

(iii) F is {0}-quasiconvex-like if for any y1, y2 ∈ Y and λ ∈ [0, 1], either

F(λy1 + (1 − λ)y2) ⊆ F( y1)

or

F(λy1 + (1 − λ)y2) ⊆ F( y2)

(iv) F is affine if for any y1, y2 ∈ Y and λ ∈ [0, 1],
F(λy1 + (1 − λ)y2) = λF(x, y1) + (1 − λ)F(x, y2).

(v) F is concave if for any y1, y2 ∈ Y and λ ∈ [0, 1], we have

λF( y1) + (1 − λ)F( y2) ⊆ F(λy1 + (1 − λ)y2).

(vi) F is {0}-quasiconvex if for any y1, y2 ∈ Y and λ ∈ [0, 1], either

F( y1) ⊆ F(λy1 + (1 − λ)y2)

or

F( y2) ⊆ F(λy1 + (1 − λ)y2)

Theorem 2.2 ([11]) Let E be a t.v.s, X be an arbitrary subset of E, and F : X � E a
KKM map. If G(x) is closed for each x ∈ X and if G(x0) is compact for some x0 ∈ X,
then ∩{G(x): x ∈ X} 
= ∅.

Theorem 2.3 ([15]) Let X be a convex subset of a locally convex t.v.s. and D be a
nonempty compact subset of X, T: X � D be an u.s.c. multivalued map such that for
each x ∈ X, T(x) is a nonempty closed convex subset of D. Then there exists a point
x̄ ∈ X such that x̄ ∈ T(x̄).

Theorem 2.4 ([25]) Let E1, E2, and Z be Hausdorff t.v.s., X and Y be nonempty subsets
of E1 and E2, respectively. Let F: X × Y � Z, S: X � Z be multivalued maps, and let
T: X � Y be defined by T(x) = ∪y∈S(x)F(x, y) = F(x, S(x)).
(a) If both S and F are l.s.c., then T is l.s.c. on X.
(b) If both S and F are u.s.c. multivalued maps with compact values, then T is an u.s.c.

multivalued map with compact values.

Throughout this paper, we assume that all topological spaces are Hausdorff.
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3 Existence results for a solution of system of generalized quasivariational inclusions
problems

The following theorem is the main result of this paper.

Theorem 3.1 Let I be any index set. For each i ∈ I, let Xi be a nonempty convex subset
of a locally convex t.v.s. Ei, Zi be a t.v.s., and Yi be a nonempty convex subset of a t.v.s.
Wi. Let X = ∏

i∈I Xi and Y = ∏
i∈I Yi. For each i ∈ I, suppose that

(i) Ai: X ×Y � Xi is a compact u.s.c. multivalued map with nonempty closed convex
values;

(ii) Ti : X � Yi is a compact continuous multivalued map with nonempty closed
convex values;

(iii) Gi: X × Y × Yi � Zi is a closed multivalued map with nonempty values and for
each (x, vi) ∈ X × Yi, y � Gi(x, y, vi) is concave or {0}-quasiconvex;

(iv) for each (x, y) ∈ X × Y with y = ( yi)i∈I , vi � Gi(x, y, vi) is {0}-quasiconvex-like
and 0 ∈ Gi(x, y, yi).

Then there exists (x̄, ȳ) ∈ X × Y with x̄ = (x̄i)i∈I and ȳ = (ȳi)i∈I such that for each
i ∈ I, x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and 0 ∈ Gi(x̄, ȳ, vi) for all vi ∈ Ti(x̄).

Proof For each i ∈ I, let Hi: X � Ti(X) be defined by

Hi(x) = {yi ∈ Ti(x): 0 ∈ Gi(x, y, vi) for all vi ∈ Ti(x), and for y = ( yi)i∈I}.
Then Hi(x) is nonempty for each x ∈ X and i ∈ I. Indeed, for each i ∈ I and x ∈ X,
let Qi(x): Ti(x) � Ti(x) be defined by

Qi(x)(vi) = {yi ∈ Ti(x) : 0 ∈ Gi(x, y, vi)}.
Then Qi(x) is a KKM map. Indeed, suppose that Qi(x) is not a KKM map, then there
exists a finite set {v1

i , v2
i , . . . , vn

i } in Ti(x) such that co{v1
i , . . . , vn

i } �
⋃n

k=1 Qi(x)(vk
i ).

Hence there exists vλ
i = λ1v1

i +· · ·+λnvn
i ∈ co{v1

i , v2
i , . . . , vn

i } such that vλ
i /∈ Qi(x)(vk

i )

for all k = 1, 2, . . . , n, where λj ≥ 0, j = 1, 2, . . . , n and
∑n

j=1 λj = 1. Since Ti(x) is

convex, vλ
i ∈ co{v1

i , v2
i , . . . , vn

i } ⊆ Ti(x). But vλ
i /∈ Qi(x)(vk

i ) for all k = 1, 2, . . . , n, we
see that 0 /∈ Gi(x, vλ, vk

i ) for all k = 1, 2, . . . , n where vλ = (vλ
i )i∈I . By (iv), there exists

1 ≤ j ≤ n such that

0 ∈ Gi(x, vλ, vλ
i ) ⊆ Gi(x, vλ, vj

i).

This leads to a contradiction. Therefore Qi(x) is a KKM map. For each i ∈ I and
vi ∈ Yi, Qi(x)(vi) is a closed set. Indeed, if yi ∈ Qi(x)(vi), then there exists a net {yα

i }
in Qi(x)(vi) such that yα

i → yi. Let yα = ( yα
i )i∈I and y = ( yi)i∈I . One has yα

i ∈ Ti(x)

and 0 ∈ Gi(x, yα , vi). Since Ti(x) is a closed set and Gi is closed, yi ∈ Ti(x) and
0 ∈ Gi(x, y, vi). This shows that yi ∈ Qi(x)(vi) and Qi(x)(vi) is a closed set for each
i ∈ I and vi ∈ Yi. By (ii), Ti(X) is compact and Qi(x)(vi) ⊆ Ti(X), we see that Qi(x)(vi)

is compact for each vi ∈ Yi and i ∈ I. Then by KKM Theorem,
⋂

vi∈Ti(x) Qi(x)(vi) 
= ∅.
Let yi ∈ ⋂

vi∈Ti(x) Qi(x)(vi), then 0 ∈ Gi(x, y,vi) for all vi ∈ Ti(x) and Hi(x) is non-
empty for each x ∈ X and i ∈ I. Hi is closed for each i ∈ I. Indeed, if (x, yi) ∈ GrHi,
then there exists a net (xα , yα

i ) ∈ GrHi such that (xα , yα
i ) → (x, yi). Let yα = ( yα

i )i∈I
and y = ( yi)i∈I . One has yα

i ∈ Ti(xα) and 0 ∈ Gi(xα , yα , vi) for all vi ∈ Ti(xα). By
(ii) and Theorem 2.1, Ti is closed and yi ∈ Ti(x). Let vi ∈ Ti(x). Since Ti is l.s.c., it
follows from Lemma 2.1 that there exists a net {vα

i } such that vα
i ∈ Ti(xα) and vα

i → vi.
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We have 0 ∈ Gi(xα , yα , vα
i ). Since Gi is closed, 0 ∈ Gi(x, y, vi) for all vi ∈ Ti(x). This

shows that (x, yi) ∈ GrHi and GrHi is a closed set. Therefore Hi is closed for each
i ∈ I. But Hi(X) ⊆ Ti(X) and Ti(X) is compact, it follows from Theorem 2.1 that
Hi: X � Yi is a compact u.s.c. multivalued map. Hi(x) is convex for each x ∈ X and
i ∈ I. Indeed, let y1

i , y2
i ∈ Hi(x) and λ ∈ [0, 1]. Let y1 = ( y1

i )i∈I and y2 = ( y2
i )i∈I ,

then y1
i , y2

i ∈ Ti(x), 0 ∈ Gi(x, y1, vi) and 0 ∈ Gi(x, y2, vi) for all vi ∈ Ti(x). Therefore
λy1

i + (1 − λ)y2
i ∈ Ti(x). By (iii),

0 ∈ Gi(x, λy1 + (1 − λ)y2, vi)

for all vi ∈ Ti(x). This shows that λy1
i + (1 − λ)y2

i ∈ Hi(x) and Hi(x) is convex.
Since Hi is closed, it is easy to see that Hi(x) is a closed set for each x ∈ X. Let
Q: X × Y � X × Y be defined by

Q(x, y) =
[
∏

i∈I

Ai(x, y)

]

×
[
∏

i∈I

Hi(x)

]

.

It follows from Lemma 3 [12] that
∏

i∈I Ai(x, y),
∏

i∈I Hi(x) and Q are compact u.s.c.
multivalued maps with nonempty closed convex values. Then by Himmelberg fixed
point Theorem that there exists (x̄, ȳ) ∈ X × Y such that (x̄, ȳ) ∈ Q(x̄, ȳ). Hence for
each i ∈ I, x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and 0 ∈ Gi(x̄, ȳ, vi) for all vi ∈ Ti(x̄). ��

For the particular cases of Theorem 3.1, we have the following Theorems and
Corollaries.

Theorem 3.2 In Theorem 3.1, if conditions (iii) and (iv) are replaced by (iii)1 and (iv)1
respectively, where

(iii)1 Hi : X × Y � Zi is a closed multivalued map with nonempty values and
Qi : X × Y × Yi � Zi is an u.s.c. multivalued map with nonempty compact
values;

(iv)1 for each (x, vi) ∈ X × Yi, y � Hi(x, y) and y � Qi(x, y, vi) are concave or
{0}-quasiconvex; for each (x, y) ∈ X × Y, vi � Qi(x, y, vi) is {0}-quasiconvex-
like and 0 ∈ Hi(x, y) + Qi(x, y, yi), where y = ( yi)i∈I .

Then there exists (x̄, ȳ) ∈ X × Y with x̄ = (x̄i)i∈I and ȳ = (ȳi)i∈I such that for each
i ∈ I, x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and 0 ∈ Hi(x̄, ȳ) + Qi(x̄, ȳ, vi) for all vi ∈ Ti(x̄).

Proof For each i ∈ I, let Gi: X × Y × Yi � Zi be defined by

Gi(x, y, vi) = Hi(x, y) + Qi(x, y, vi).

Then Gi is a closed multivalued map. Indeed, if (x, y, vi,wi) ∈ GrGi, then there exists
a net {(xα , yα , vα

i , wα
i )}α∈� in GrGi such that (xα , yα , vα

i , wα
i ) → (x, y, vi,wi). One has

wα
i ∈ Gi(xα , yα , vα

i ) = Hi(xα , yα) + Qi(xα , yα , vα
i ). There exist uα

i ∈ Hi(xα , yα) and
zα

i ∈ Qi(xα , yα , vα
i ) such that wα

i = uα
i +zα

i . Let K = {xα}α∈�∪{x}, L = {yα}α∈�∪{y} and
Mi = {vα

i }α∈�∪{vi}. Then K is a compact set in X, L and Mi are compact sets in Y and Yi
respectively. By (iii)1 and Theorem 2.1 that Qi(K×L×Mi) is a compact set. There exists
a subnet {zαλ

i } of {zα
i } such that zαλ

i → ti. Since Qi is an u.s.c. multivalued map with non-
empty closed values, it follows from Theorem 2.1 that Qi is closed and ti ∈ Qi(x, yi, vi).
But wα

i −zα
i = uα

i ∈ Hi(xα , yα) and wα
i −zα

i → wi − ti. By assumption, Hi is closed. We
have ui ∈ Hi(x, y) and wi = ti + ui ∈ Hi(x, y) + Qi(x, y, vi). Hence (x, y, vi,wi) ∈ GrGi
and Gi is closed. It is easy to see that conditions (iii) and (iv) of Theorem 3.1 hold.
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Then by Theorem 3.1 that there exist x̄ = (x̄i)i∈I ∈ X, ȳ = (ȳi)i∈I ∈ Y such that for
each i ∈ I, x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and 0 ∈ Gi(x̄, ȳ, vi) = Hi(x̄, ȳ) + Qi(x̄, ȳ, vi) for all
vi ∈ Ti(x̄). ��

Remark 3.1 Theorem 3.2 implies that there exists (x̄, ȳ) ∈ X × Y with x̄ = (x̄)i∈I , ȳ =
(ȳ)i∈I , such that for each i ∈ I, x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and 0 ∈ Hi(x̄, ȳ)+Qi(x̄, ȳ, Ti(x̄));

For the special case of Theorem 3.2, we establish the following existence theorems
of systems of generalized vector equilibrium problem.

Corollary 3.1 In Theorem 3.1, if conditions (iii) and (iv) are replaced by (iii)2 and (iv)2
respectively, where

(iii)2 Ci: X � Zi is a closed multivalued map and Qi: X × Y × Yi � Zi is an u.s.c.
multivalued map with nonempty compact values;

(iv)2 for each (x, vi) ∈ X × Yi, y � Qi(x, y, vi) is concave or {0}-quasiconvex, and for
each (x, y) ∈ X × Y, vi � Qi(x, y, vi) is {0}-quasiconvex-like and Qi(x, y, yi) ∩
Ci(x) 
= ∅.

Then there exists (x̄, ȳ) ∈ X × Y with x̄ = (x̄i)i∈I and ȳ = (ȳi)i∈I such that for each i ∈ I,
x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and Qi(x̄, ȳ, vi) ∩ Ci(x̄) 
= ∅ for all vi ∈ Ti(x̄).

Proof For each i ∈ I, let Hi: X×Y � Zi be defined by Hi(x, y) = −Ci(x) for all x ∈ X.
Then Hi is a closed multivalued map with nonempty values. For each (x, y) ∈ X × Y,
vi � Qi(x, y, vi) − Ci(x) is {0}-quasiconvex-like. Since Gi(x, y, yi) ∩ Ci(x) 
= ∅ for each
(x, y) ∈ X × Y, 0 ∈ −Ci(x) + Qi(x, y, yi) for each (x, y) ∈ X × Y with y = ( yi)i∈I .

Then by Theorem 3.2 that there exists (x̄, ȳ) ∈ X × Y, x̄ = (x̄i)i∈I , ȳ = (ȳi)i∈I ,
such that for each i ∈ I, x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and 0 ∈ −Ci(x̄) + Qi(x̄, ȳ, vi) for all
vi ∈ Ti(x̄). Hence Qi(x̄, ȳ, vi) ∩ Ci(x̄) 
= ∅ for all vi ∈ Ti(x̄). ��

Following the same argument as in Corollary 3.1, we have the following Corollary.

Corollary 3.2 In Corollary 3.1, if conditions (iii)2 and (iv)2 are replaced by (iii)3 and
(iv)3, respectively, where

(iii)3 Ci: X � Zi is a multivalued map such that intCi(x) is nonempty for each x ∈ X
and Wi : X � Zi defined by Wi(x) = Zi \ (−intCi(x)) is an u.s.c. multivalued
map;

(iv)3 Qi : X × Y × Yi � Zi is an u.s.c. multivalued map with nonempty compact
values. For each (x, vi) ∈ X × Yi, y � Qi(x, y, vi) is concave or {0}-quasicon-
vex, and for each (x, y) ∈ X × Y, vi � Qi(x, y, vi) is {0}-quasiconvex-like and
Qi(x, y, yi) � −intCi(x), where y = ( yi).i∈I .

Then there exists (x̄, ȳ) ∈ X × Y with x̄ = (x̄i)i∈I and ȳ = (ȳi)i∈I such that for each
i ∈ I, x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and Qi(x̄, ȳ, vi) � −intCi(x̄) for all vi ∈ Ti(x̄).

Proof It follows from Theorem 3.2 that there exists (x̄, ȳ) ∈ X × Y, x̄ = (x̄i)i∈I ,
ȳ = (ȳi)i∈I such that for each i ∈ I, x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and 0 ∈ −Wi(x̄)+Qi(x̄, ȳ, vi)

for all vi ∈ Ti(x̄). From this, we obtain Qi(x̄, ȳ, vi) � −intCi(x̄) for all vi ∈ Ti(x̄). ��
Remark 3.2

(i) In Corollaries 3.1 and 3.2, we do not assume that Ci(x) is a convex cone for each
x ∈ X.
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(ii) Corollary 3.1 is true if the condition “for each (x, y) ∈ X × Y, vi � Qi(x, y, vi) is
0-quasiconvex-like” is replaced by “for each (x, y) ∈ X × Y, vi � Qi(x, y, vi) is
Ci(x)-quasiconvex-like and Ci(x) is a nonempty convex cone.”

Proof Let Gi(x, y, vi) = −Ci(x) + Qi(x, y, vi). Let v(1)
i , v(2)

i ∈ Yi and λ ∈ (0, 1). By
assumption, either

Qi(x, y, λv(1)
i + (1 − λ)v(2)

i ) ⊆ Qi(x, y, v(1)
i ) − Ci(x).

or

Qi(x, y, λv(1)
i + (1 − λ)v(2)

i ) ⊆ Qi(x, y, v(2)
i ) − Ci(x).

Since Ci(x) is a convex cone, either

Gi(x, y, λv(1)
i + (1 − λ)v(2)

i ) = Qi(x, y, λv(1)
i + (1 − λ)v(2)

i ) − Ci(x)

⊆ Qi(x, y, v(1)
i ) − Ci(x) − Ci(x) = Qi(x, y, v(1)

i ) − Ci(x)

= Gi(x, y, v(1)
i ).

or

Gi(x, y, λv(1)
i + (1 − λ)v(2)

i ) = Qi(x, y, λv(1)
i + (1 − λ)v(2)

i ) − Ci(x)

⊆ Qi(x, y, v(2)
i ) − Ci(x) = Gi(x, y, v(2)

i ).

This shows that for each (x, yi) ∈ X × Yi, vi � Gi(x, y, vi) is 0-quasiconvex-like. Then
by Theorem 3.1, Corollary 3.1 is true if the condition “for each (x, yi) ∈ X × Yi,
vi � Qi(x, y, vi) is 0-quasiconvex-like” is replaced by “Ci(x) is a convex cone and
vi � Qi(x, y, vi) is Ci(x)-quasiconvex-like.”

Remark 3.3 Theorem 3.2 is true if conditions (iii)1 and (iv)1 are replaced by (iii)4 and
(iv)4, respectively, where

(iii)4 Hi: X × Y → Zi is a continuous function and Qi: X × Y × Yi � Zi is an u.s.c.
multivalued map with nonempty compact values;

(iv)4 for each (x, vi) ∈ X × Yi, y → Hi(x, y) and y � Qi(x, y, vi) are concave or
{0}-quasiconvex, and for each (x, y) ∈ X × Y, vi � Qi(x, y, vi) is {0}-quasicon-
vex-like and 0 ∈ Hi(x, y) + Qi(x, y, yi).

Corollary 3.3 In Theorem 3.1, if conditions (iii) and (iv) are replaced by (iii)5 and (iv)5,
respectively, where

(iii)5 Qi, Pi : X × Y × Yi � Zi are u.s.c. multivalued map with nonempty compact
values;

(iv)5 for each (x, vi) ∈ X × Yi, y � Pi(x, y, vi) and yi � Qi(x, y, vi) are concave or
{0}-quasiconvex; for each (x, y) ∈ X×Yi, vi � Qi(x, y, vi) is {0}-quasiconvex-like
and 0 ∈ Pi(x, y, Ti(x)) + Qi(x, y, yi).

Then there exists (x̄, ȳ) ∈ X × Y with x̄ = (x̄i)i∈I and ȳ = (ȳi)i∈I such that for each i ∈ I,
x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and 0 ∈ Pi(x̄, ȳ, wi) + Qi(x̄, ȳ, vi) for all vi ∈ Ti(x̄) and for all
wi ∈ Ti(x̄).
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Proof For each i ∈ I, let Hi: X ×Y � Zi be defined by Hi(x, y) = Pi(x, y, Ti(x)). Since
both Ti and Pi are u.s.c. multivalued maps with nonempty compact values, it follows
from Theorem 2.4 that Hi: X × Y � Zi is an u.s.c. multivalued map with nonempty
compact values. Again, by Theorem 2.1 that Hi: X × Y � Zi is a closed multivalued
map. Then Corollary 3.3 follows from Theorem 3.2. ��
Theorem 3.3 In Theorem 3.1, if condition (i) is replaced by (i′), where

(i′) Si : X � Xi is a compact continuous multivalued map with nonempty closed
convex values.

And we assume further that

(v) Fi: X × Y × Xi � Zi is a closed multivalued map with nonempty values and for
each ( y, ui) ∈ Y × Xi, w � Fi(w, y, ui) is concave or {0}-quasiconvex;

(vi) for each (x, y) ∈ X × Y, ui � Fi(x, y, ui) is {0}-quasiconvex-like and 0 ∈ Fi(x, y, xi)

for x = (xi)i∈I .

Then there exists (x̄, ȳ) ∈ X × Y with x̄ = (x̄i)i∈I and ȳ = (ȳi)i∈I such that for each
i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄), 0 ∈ Fi(x̄, ȳ, ui) for all ui ∈ Si(x̄) and 0 ∈ Gi(x̄, ȳ, vi) for all
vi ∈ Ti(x̄).

Proof For each i ∈ I, let Ai: X × Y � Xi be defined by
Ai(x, y) = {wi ∈ Si(x) : 0 ∈ Fi(w, y, ui) for all ui ∈ Si(x), for w = (wi)i∈I}.

Then we follow the same argument as in Theorem 3.1, we can prove that Ai :
X ×Y � Xi is a compact u.s.c. multivalued map with nonempty closed convex values.
Then it follows from Theorem 3.1 that there exists (x̄, ȳ) ∈ X × Y with x̄ = (x̄i)i∈I and
ȳ = (ȳi)i∈I such that for each i ∈ I, x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and 0 ∈ Gi(x̄, ȳ, vi) for all
vi ∈ Ti(x̄). Therefore x̄i ∈ Si(x̄), 0 ∈ Fi(x̄, ȳ, ui) for all ui ∈ Si(x̄). ��

For the another special cases of Theorem 3.2, we have the following Corollaries.

Corollary 3.4 In Theorem 3.1, if conditions (iii) and (iv) are replaced by (iii)6 and (iv)6,
respectively, where

(iii)6 Qi : X × Y × Yi � X is an u.s.c. multivalued map with nonempty compact
values;

(iv)6 for each (x, vi) ∈ X × Yi, y � Qi(x, y, vi) is concave or {0}-quasiconvex, and for
each (x, y) ∈ X × Y, vi � Qi(x, y, vi) is {0}-quasiconvex-like and x ∈ Qi(x, y, yi).

Then there exists (x̄, ȳ) ∈ X × Y with x̄ = (x̄i)i∈I and ȳ = (ȳi)i∈I such that for each i ∈ I,
x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and x̄ ∈ Qi(x̄, ȳ, vi) for all vi ∈ Ti(x̄).

Proof For each i ∈ I, let Hi : X × Y � Xi be defined by Hi(x, y) = {−x} for all
(x, y) ∈ X × Y. Then Hi is a closed multivalued map with nonempty convex values
and Corollary 3.4 follows from Theorem 3.2. ��

The following Corollary is an existence theorem of systems of variational equations.

Corollary 3.5 In Theorem 3.1 and Remark 3.1, if conditions (iii) and (iv) are replaced
by (iii)7 and (iv)7, respectively, where

(iii)7 Gi : X × Y × Yi → Zi is a continuous function and for each (x, vi) ∈ X × Yi,
y → Gi(x, y, vi) is concave or {0}-quasiconvex;
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(iv)7 for each (x, y) ∈ X × Y, vi → Gi(x, y, vi) is {0}-quasiconvex and Gi(x, y, yi) = 0,
where y = ( yi)i∈I .

Then there exists (x̄, ȳ) ∈ X × Y with x̄ = (x̄i)i∈I and ȳ = (ȳi)i∈I such that for each i ∈ I,
x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and 0 = Gi(x̄, ȳ, vi) for all vi ∈ Ti(x̄).

Corollary 3.6 In Theorem 3.1, suppose conditions (i) and (ii) and suppose that

(a) W∗
i is the dual space of Wi, Bi: X → W∗

i , ηi: Y × Yi → Yi;
(b) For each (x, vi) ∈ X × Yi, y → η( y, vi) is affine, for each (x, y) ∈ X × Y, vi →

〈Bi(x), ηi( y, vi)〉 is {0}-quasiconvex and η( y, yi) = 0 for all y = ( yi)i∈I .

Then there exist x̄ = (x̄i)i∈I ∈ X, ȳ = (ȳi)i∈I ∈ Y such that for each i ∈ I, x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄) and 〈Bi(x̄), ηi(ȳ, vi)〉 ≥ 0 for all vi ∈ Ti(x̄).

Proof Let Hi(x, y) = (−∞, 0] and Qi(x, y, vi) = 〈Bi(x), ηi( y, vi)〉. Then Corollary 3.8
follows from Theorem 3.2. ��

4 Systems of simultaneous equilibrium problems

As applications of Theorem 3.3, we have the following systems of simultaneous equi-
librium problems.

Theorem 4.1 Let I, Xi, X, Yi, Y, Ei, Vi and Zi be the same as in Theorem 3.1. For each
i ∈ I, suppose that

(i) Si : X � Xi is a compact continuous multivalued map with nonempty closed
convex values;

(ii) Ti : X � Yi is a compact continuous multivalued map with nonempty closed
convex values;

(iii) Ci: X � Zi and Di : X � Zi are closed multivalued maps with nonempty values;
(iv) Gi: X × Y × Yi � Zi is an u.s.c. multivalued map with nonempty compact values

and Gi(x, y, yi)∩ Di(x) 
= ∅ and Fi: X × Y × Xi � Zi is an u.s.c. multivalued map
with nonempty compact values and Fi(x, y, xi)∩Ci(x) 
= ∅ for each x = (xi)i∈I ∈ X,
y = ( yi)i∈I ∈ Y;

(v) for each (x, vi) ∈ X × Yi, y � Gi(x, y, vi) is concave or {0}-quasiconvex; for each
( y, ui) ∈ Y × Xi, w � Fi(w, y, ui) is concave or {0}-quasiconvex;

(vi) for each (x, y) ∈ X × Y, vi � Gi(x, y, vi) and ui � Fi(x, y, ui) are {0}-quasicon-
vex-like.

Then there exists (x̄, ȳ) ∈ X × Y such that x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄), Fi(x̄, ȳ, ui) ∩ Ci(x̄) 
= ∅
and Gi(x̄, ȳ, vi) ∩ Di(x̄) 
= ∅ for all ui ∈ Si(x̄), vi ∈ Ti(x̄) and all i ∈ I.

Proof As in Theorem 3.2, we see (x, y, ui) � −Ci(x) + Fi(x, y, ui) and (x, y, vi) �
−Di(x)+Gi(x, y, vi) are closed multivalued maps. Then by Theorem 3.3 that there exist
x̄ = (x̄i)i∈I ∈ X, ȳ = (ȳi)i∈I ∈ Y such that x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄), 0 ∈ −Ci(x̄)+Fi(x̄, ȳ, ui),
and 0 ∈ −Di(x̄) + Gi(x̄, ȳ, vi) for all ui ∈ Si(x̄), vi ∈ Ti(x̄) and all i ∈ I. Therefore,
Fi(x̄, ȳ, ui) ∩ Ci(x̄) 
= ∅ and Gi(x̄, ȳ, vi) ∩ Di(x̄) 
= ∅ for all ui ∈ Si(x̄), vi ∈ Ti(x̄) and all
i ∈ I. ��

Following the same arguments as in Theorem 4.1, we have the following theorems.
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Theorem 4.2 In Theorem 4.1, if condition (iii) and (iv) are replaced by (iii′) and (iv′),
respectively, where

(iii′) Ci: X � Zi is a multivalued map such that intCi(x) is nonempty for each x ∈ X,
Wi: X � Zi with Wi(x):= Zi\(−intCi(x)) and Di: X � Zi are closed multivalued
maps with nonempty values;

(iv′) Gi: X × Y × Yi � Zi and Fi: X × Y × Xi � Zi are u.s.c. multivalued maps with
nonempty compact values and Gi(x, y, yi)∩Di(x) 
= ∅ and Fi(x, y, xi) � −intCi(x)

for each x = (xi)i∈I ∈ X, y = ( yi)i∈I ∈ Y.

Then there exists x̄ = (x̄i)i∈I ∈ X, ȳ = (ȳi)i∈I ∈ Y such that x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),
Fi(x̄, ȳ, ui) � −intCi(x̄) and Gi(x̄, ȳ, vi) ∩ Di(x̄) 
= ∅ for all ui ∈ Si(x̄), vi ∈ Ti(x̄) and all
i ∈ I.

Theorem 4.3 In Theorem 4.1, if condition (iii) and (iv) are replaced by (iii′) and (iv′),
respectively, where

(iii′) Di: X � Zi is a multivalued map such that intDi(x) is nonempty for each x ∈ X,
x � Zi\(−intDi(x)) and Ci: X � Zi are closed multivalued maps with nonempty
values;

(iv′) Gi: X × Y × Yi � Zi and Fi: X × Y × Xi � Zi are u.s.c. multivalued maps with
nonempty compact values and Gi(x, y, yi) � −intDi(x) and Fi(x, y, xi)∩Ci(x) 
= ∅
for each x = (xi)i∈I ∈ X, y = ( yi)i∈I ∈ Y.

Then there exists x̄ = (x̄i)i∈I ∈ X, ȳ = (ȳi)i∈I ∈ Y such that x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄) and
Fi(x̄, ȳ, ui) ∩ Ci(x̄) 
= ∅ and Gi(x̄, ȳ, vi) � −intDi(x̄) for all ui ∈ Si(x̄), vi ∈ Ti(x̄) and all
i ∈ I.

Theorem 4.4 In Theorem 4.1, if condition (iii) and (iv) are replaced by (iii′) and (iv′),
respectively, where

(iii′) Ci, Di: X � Zi are multivalued maps such that intCi(x) 
= ∅ and intDi(x) for each
x ∈ X, x � Zi \ (−intCi(x)) and x � Zi \ (−intDi(x)) are closed multivalued
maps;

(iv′) Gi : X × Y × Yi � Zi and Fi : X × Y × Xi � Zi are u.s.c. multivalued maps
with nonempty compact values and Gi(x, y, yi) � −intDi(x) and Fi(x, y, xi) �

−intCi(x) for each x = (xi)i∈I ∈ X, y = ( yi)i∈I ∈ Y.

Then there exists x̄ = (x̄i)i∈I ∈ X, ȳ = (ȳi)i∈I ∈ Y such that x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄) and
Fi(x̄, ȳ, ui) � −intCi(x̄) and Gi(x̄, ȳ, vi) � −intDi(x̄) for all ui ∈ Si(x̄), vi ∈ Ti(x̄) and
all i ∈ I.

Remark 4.1 If we put Fi = 0 for all i ∈ I or Gi = 0 for all i ∈ I, then we obtain
existence theorems of generalized vector quasiequilibrium problems.

5 Applications to optimization theory

In this section, we first establish the existence theorem of mathematical program with
systems of variational inclusion constraints. From this result, we establish the existence
theorems of mathematical programming with systems of equilibrium constraints, sys-
tems of bilevel problems and semi-infinite problems.
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Theorem 5.1 In Theorem 3.1. If X and Y are closed sets and condition (i) is replaced
by

(i′) S : X � Xi is a compact u.s.c. multivalued map with nonempty closed convex
values;

and we suppose further that

(v) Ci : X � Zi is a closed multivalued map such that for each x ∈ X, Ci(x) is a
nonempty convex cone;

(vi) Fi : X × Y � Zi is a l.s.c. multivalued map with nonempty values and for each
x ∈ X, y � Fi(x, y) is Ci(x)-quasiconcave-like;

(vii) for each x ∈ X and y ∈ Y, there exists ui ∈ Si(x) such that Fi(u, y) ⊆ Ci(x), where
u = (ui)i∈I .

If h: X × Y � Z0 is an u.s.c. multivalued map with nonempty compact values, where
Z0 is a real t.v.s. ordered by a proper closed cone D in Z0, then there exists an solution
to the problem:

min
(x,y)

h(x, y), x = (xi)i∈I , y = ( yi)i∈I such that for each i ∈ I, xi ∈ Si(x),

yi ∈ Ti(x), Fi(x, y) ⊆ Ci(x) and 0 ∈ Gi(x, y, vi) for all vi ∈ Ti(x).

Proof For each i ∈ I, let Ai: X × Y � Xi be defined by

Ai(x, y) = {ui ∈ Si(x): Fi(u, y) ⊆ Ci(x)}.
By assumption, Ai(x, y) is nonempty for each x ∈ X and y ∈ Y. Ai is closed. Indeed, if
(x, y, ui) ∈ GrAi, then there exists a net {(xα , yα , uα

i )} in GrAi such that (xα , yα , uα
i ) →

(x, y, ui). Let uα = (uα
i )i∈I and u = (ui)i∈I . One has uα

i ∈ Si(xα) and Fi(uα , yα) ⊆ Ci(xα).
By assumption and Theorem 2.1 that Si is closed and ui ∈ Si(x). Let zi ∈ Fi(u, y).
Since Fi is l.s.c., there exists a net zα

i ∈ Fi(uα , yα) such that zα
i → zi. We see that

zα
i ∈ Ci(xα). By assumption, Ci is closed, zi ∈ Ci(x). Hence Fi(x, y) ⊆ Ci(x). Therefore

(x, y, ui) ∈ GrAi and GrAi is closed. This shows that Ai is closed. It is easy to see
that Ai(x, y) is a closed set for each x ∈ X and y ∈ Y. Since Ai(X × Y) ⊆ Si(X) and
Si(X) is compact, it follows from Theorem 2.1 that Ai : X × Y � Xi is a compact
u.s.c. multivalued map with nonempty closed values. Ai(x, y) is convex for each x ∈ X,
y ∈ Y and i ∈ I. Indeed, let u1

i , u2
i ∈ Ai(x, y), λ ∈ (0, 1), u1 = (u1

i )i∈I , u2 = (u2
i )i∈I , then

u1
i , u2

i ∈ Si(x), Fi(u1, y) ⊆ Ci(x) and Fi(u2, y) ⊆ Ci(x). By assumption, either

Fi(λu1 + (1 − λ)u2, y) ⊆ Fi(u1, y) + Ci(x) ⊆ Ci(x) + Ci(x) ⊆ Ci(x)

or

Fi(λu1 + (1 − λ)u2, y) ⊆ Fi(u2, y) + Ci(x) ⊆ Ci(x).

Since Si(x) is convex for each x ∈ X, λu1
i + (1 − λ)u2

i ∈ Si(x) and λu1
i + (1 − λ)u2

i ∈
Ai(x, y) for each (x, y) ∈ X × Y. Therefore Ai: X × Y � Xi is a compact u.s.c. mul-
tivalued map with nonempty closed convex values. Then by Theorem 3.1 that there
exists (x̄, ȳ) ∈ X × Y, x̄ = (x̄i)i∈I , ȳ = (ȳi)i∈I such that for each i ∈ I, x̄i ∈ Ai(x̄, ȳ),
ȳi ∈ Ti(x̄) and 0 ∈ Gi(x̄, ȳ, vi) for all vi ∈ Ti(x̄). Hence there exists (x̄, ȳ) ∈ X × Y,
x̄ = (x̄i)i∈I , ȳ = (ȳi)i∈I such that for each i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄), Fi(x̄, ȳ) ⊆ Ci(x̄)

and 0 ∈ Gi(x̄, ȳ, vi) for all vi ∈ Ti(x̄). For each i ∈ I, let

Mi = {(x, y) ∈ X × Y : x = (xi)i∈I , y = ( yi)i∈I , xi ∈ Si(x), yi ∈ Ti(x),

Fi(x, y) ⊆ Ci(x) and 0 ∈ Gi(x, y, vi) for all vi ∈ Ti(x)}
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and M = ∩i∈IMi. Then (x̄, ȳ) ∈ M and M 
= ∅. We see that

Mi = {(x, y) ∈ X × Y: x = (xi)i∈I , y = ( yi)i∈I , xi ∈ Si(x), Fi(x, y) ⊆ Ci(x) and yi ∈ Hi(x)},

where Hi is defined as in Theorem 3.1. Mi is closed for each i ∈ I. Indeed, if (x, y) ∈ Mi,
then there exists a net {(xα , yα)} in Mi such that (xα , yα) → (x, y). Let xα = (xα

i )i∈I and
yα = ( yα

i )i∈I . One has xα
i ∈ Si(xα), Fi(xα , yα) ⊆ Ci(xα) and yα

i ∈ Hi(xα). Since Si is
u.s.c. multivalued map with nonempty closed values, Si is closed. We see in Theorem
3.1 that Hi is closed. Let x = (xi)i∈I and y = ( yi)i∈I . Since x and Y are closed sets,
(x, y) ∈ X × Y. We also have xi ∈ Si(x) and yi ∈ Hi(x). We prove Fi(x, y) ⊆ Ci(x) in
the first part of this theorem. Therefore (x, y) ∈ Mi and Mi is closed for each i ∈ I.
Hence M = ∩i∈IMi is closed. Note that

M ⊆
[
∏

i∈I

Si(X)

]

×
[
∏

i∈I

Ti(X)

]

.

By assumption, Si(X) and Ti(X) are compact, it follows from Lemma 3 [12 ] that[∏
i∈I Si(X)

]
×

[∏
i∈I Ti(X)

]
is compact. Therefore M is compact. Since h : X × Y �

Z0 is an u.s.c. multivalued map with nonempty compact values, it follows from Theo-
rem 2.1 that h(M) is compact. Then by Lemma 2.2 that minD h(M) 
= ∅. That is there
exists a solution to the problem:

min
(x,y)

h(x, y), x = (xi)i∈I , y = ( yi)i∈I such that for each i ∈ I, xi ∈ Si(x),

yi ∈ Ti(x), Fi(x, y) ⊆ Ci(x) and 0 ∈ Gi(x, y, vi) for all vi ∈ Ti(x). ��
Theorem 5.2 In Theorem 5.1, if we assume that h: X × Y → R is an l.s.c. function,
then there exists a solution to the problem:

min(x,y) h(x, y), x = (xi)i∈I , y = ( yi)i∈I , such that for each i ∈ I, xi ∈ Si(x), yi ∈ Ti(x),
Fi(x, y) ⊆ Ci(x) and 0 ∈ Gi(x, y, vi) for all vi ∈ Ti(x).

Proof Since h : X × Y → R is l.s.c. and M is compact, there exists (x̄, ȳ) ∈ M such
that h(x̄, ȳ) = min h(M). This completes the proof. ��

If we assume further conditions on Theorem 5.1, we have the following existence
theorems of mathematical program with system of equilibrium constraints.

Theorem 5.3 Let X, Y, conditions (i′), (v), (vi) and (vii) be the same as in Theorem
5.1, if we assume further that

(viii) Di: X � Zi is a closed multivalued map and Gi: X × Y × Yi � Zi is an u.s.c.
multivalued map with nonempty compact values;

(viiii) for each (x, vi) ∈ X × Yi, y � Gi(x, y, vi) is concave or {0}-quasiconvex,
and for each (x, y) ∈ X × Y, vi � Gi(x, y, vi) is {0}-quasiconvex-like and
Gi(x, y, yi) ∩ Di(x) 
= ∅, where y = ( yi)i∈I .

(x) Ti: X � Yi is a compact continuous multivalued map with nonempty closed
convex values.

Then there exists a solution to the problem:
min(x,y) h(x, y), x = (xi)i∈I , y = ( yi)i∈I such that for each i ∈ I, xi ∈ Si(x), yi ∈ Ti(x),
Fi(x, y) ⊆ Ci(x) and Gi(x, y, vi) ∩ Di(x) 
= ∅ for all vi ∈ Ti(x).
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Proof Let Ai be defined as in Theorem 5.1. We show in Theorem 5.1 that Ai : X×Y �
Xi is compact u.s.c. multivalued map with compact values. It follows from Corollary 3.1
and Theorem 5.1 that there exists (x̄, ȳ) ∈ X × Y with x̄ = (x̄i)i∈I and ȳ = (ȳi)i∈I such
that for each i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄), Fi(x̄, ȳ) ⊆ Ci(x̄) and Gi(x̄, ȳ, vi) ∩ Di(x̄) 
= ∅
for all vi ∈ Ti(x̄). For each i ∈ I, let

Mi = {(x, y) ∈ X × Y : x = (xi)i∈I , y = ( yi)i∈I , xi ∈ Si(x), yi ∈ Ti(x),

Fi(x, y) ⊆ Ci(x) and Gi(x, y, vi) ∩ Di(x) 
= ∅ for all vi ∈ Ti(x)}.
Mi is closed for each i ∈ I. Indeed, if (x, y) ∈ Mi, then there exists a net {(xα , yα)}α∈� in
Mi such that (xα , yα) → (x, y). Let xα = (xα

i )i∈I and yα = ( yα
i )i∈I . One has xα

i ∈ Si(xα),
yα

i ∈ Ti(xα), Fi(xα , yα) ⊆ Ci(xα) and Gi(xα , yα , vi) ∩ Di(xα) 
= ∅ for all vi ∈ Ti(xα).
Let vi ∈ Ti(x), then there exists a net {vα

i }α∈�, vα
i ∈ Ti(xα) for all α ∈ � such that

vα
i → vi. Let uα

i ∈ Gi(xα , yα , vα
i ) ∩ Di(xα). Then uα

i ∈ Gi(xα , yα , vα
i ) and uα

i ∈ Di(xα).
Let A = {xα : α ∈ �} ∪ {x}, B = {yα : α ∈ �}, L = {vα

i : α ∈ �} ∪ {vi}. Then A, B, C
are compact sets.

Since Gi is an u.s.c. multivalued map with nonempty compact values, it follows
from Theorem 2.1, Gi(A × B × C) is a compact set and {uα

i } has s subnet {uαλ
i } in

Gi(A×B×B×C) such that uαλ
i → ui. By Theorem 2.1, Gi is closed, and ui ∈ Gi(x, y, vi).

By assumption, Di is closed and ui ∈ Di(x). As before, we see that xi ∈ Si(x), yi ∈ Ti(x)

and Fi(x, y) ⊆ Ci(x). This shows that Mi is a closed set. Let M = ∩i∈IMi. Then we
follow the same argument as in Theorem 5.1, we can prove Theorem 5.3. ��

Following the same argument as in Theorem 5.3, we have the following theorem.

Theorem 5.4 In Theorem 5.3, if conditions (viii) and (viiii) are replaced by (iii′) and
(ix′), respectively, where

(viii′) Di : X � Zi is a multivalued map such that int Di(x) 
= ∅ for each x ∈ X
and Wi : X � Zi which is defined by Wi(x) = Zi \ (−intDi(x)) is a closed
multivalued map and Gi: X × Y × Yi � Zi is an u.s.c. multivalued map with
nonempty compact values;

(ix′) for each (x, vi) ∈ X × Yi, y � Gi(x, y, vi) is concave or {0}-quasiconvex and
for each (x, y) ∈ X × Y, vi � Gi(x, y, vi) is {0}-quasiconvex-like and

Gi(x, y, yi) � −intDi(x), where y = ( yi)i∈I .

Then there exists a solution to the problem:

min(x,y) h(x, y), x = (xi)i∈I , y = ( yi)i∈I such that for each i ∈ I, xi ∈ Si(x), yi ∈ Ti(x),
Fi(x, y) ⊆ Ci(x) and Gi(x, y, vi) � −int Di(x) for all vi ∈ Ti(x).

If Zi = R for all i ∈ I, we have the following theorem.

Theorem 5.5 Let h : X × Y → R be a l.s.c. function. In Theorem 3.1, if we assume
condition (i) is replaced by (i′), and conditions (ii) and (iii) are replaced by (iv)9, where

(i′) Si : X → Xi is a compact u.s.c. multivalued map with nonempty closed convex
values;

(iv)9 Gi : X × Y × Yi � R is a continuous multivalued map with nonempty compact
values such that for each (x, vi) ∈ X ×Yi, y � Gi(x, y, vi) is concave or {0}-quasi-
convex and for each (x, y) ∈ X × Y, vi � Gi(x, y, vi) is R

+-quasiconvex-like and
Gi(x, y, yi) ∩ R

+ 
= ∅.



J Glob Optim (2007) 38:21–39 37

Suppose further that (iii)9 Fi : X × Y � R is a l.s.c. multivalued map with nonempty
values and for each x ∈ X, y � Fi(x, y) is R+-quasiconcave-like.

Then there exists a solution to the problem:

min
(x,y)

h(x, y), x = (xi)i∈I , y = ( yi)i∈I such that for each i ∈ I,

xi ∈ Si(x), yi ∈ Ti(x), Fi(x, y) ⊆ R
+ and Gi(x, y, vi) ∩ R

+ 
= ∅ for all vi ∈ Ti(x).

Proof If we let Ci(x) = R
+ and Di(x) = R

+ for all x ∈ X and for all i ∈ I. It is easy to
see that if for each (x, y) ∈ X × Y, vi � Gi(x, y, vi) is R

+-quasiconvex-like, then for
each (x, y) ∈ X × Y, vi � −R

+ + Gi(x, y, vi) is {0}-quasiconvex-like. We also see that

Gi(x, y, yi) ∩ R
+ 
= ∅ ⇔ 0 ∈ −R

+ + Gi(x, y, yi).

We follow the first part of Theorem 5.3 that there exists (x̄, ȳ) ∈ X × Y, x̄ = (x̄i)i∈I ,
ȳ = (ȳi)i∈I such that for each i ∈ I, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄), Fi(x̄, ȳ) ⊆ R

+ and Gi(x̄, ȳ, vi)∩
R

+ 
= ∅ for all vi ∈ Ti(x̄). For each i ∈ I, let

Mi = {(x, y) ∈ X × Y : x = (xi)i∈I , y = ( yi)i∈I , xi ∈ Si(x), yi ∈ Ti(x),

Fi(x, y) ⊆ R
+ and Gi(x, y, vi) ∩ R

+ 
= ∅ for all vi ∈ Ti(x)}
and M = ∩i∈IMi. Then M is compact. Since h is l.s.c. on M, there exists (x̄, ȳ) ∈ X × Y
such that h(x̄, ȳ) = min h(M). Theorem 5.5 follows. ��
Corollary 5.1 In Theorem 5.5, if conditions (iii)9 and (iv)9 are replaced by (iii)10 and
(iv)10, respectively, where

(iii)10 Fi: X × Y → R is a continuous function such that for each xi ∈ Xi, y → Fi(x, y)

is quasiconcave;
(iv)10 Gi : X ×Y ×Yi → R is a continuous function such that for each (x, vi) ∈ X ×Yi,

y → Gi(x, y, vi) is affine or {0}-quasiconvex and for each (x, y) ∈ X × Y, vi →
Gi(x, y, vi) is quasiconvex and Gi(x, y, yi) ≥ 0.

Then there exists a solution to the problem:

min
(x,y)

h(x, y), x = (xi)i∈I , y = ( yi)i∈I such that for each i ∈ I, xi ∈ Si(x),

yi ∈ Ti(x), Fi(x, y) ≥ 0 and Gi(x, y, vi) ≥ 0 for all vi ∈ Ti(x).

For another special case of Corollary 5.1, we have the following existence theorem
of bilevel problem.

Corollary 5.2 In Corollary 5.1, if condition (iv)9 is replaced by (a), where

(a) Qi : X × Yi → R is a continuous function such that for each x ∈ X, yi → Qi(x, yi)

is affine or {0}-quasiconvex.

Then there exists a solution to the problem:

min
(x,y)

h(x, y), x = (xi)i∈I , y = ( yi)i∈I such that for each i ∈ I, xi ∈ Si(x),

yi ∈ Ti(x), Fi(x, y) ≥ 0 and yi is a solution to the problem: min
vi∈Ti(x)

Qi(x, vi).
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Proof Let Gi(x, y, vi) = Qi(x, vi) − Qi(x, yi) for all i ∈ I and for y = ( yi)i∈I . By
assumption, for each x ∈ X, vi → Qi(x, vi) is affine or {0}-quasiconvex, it is easy to
see that for each (x, vi) ∈ X × Yi, y → Gi(x, y, vi) is affine or {0}-quasiconvex and for
each (x, y) ∈ X × Y, vi → Gi(x, y, vi) is quasiconvex. Then by Corollary 5.1 that there
exists a solution to the problem:

min(x,y) h(x, y), x = (xi)i∈I , y = ( yi)i∈I , such that for each i ∈ I, xi ∈ Si(x), yi ∈ Ti(x),
Fi(x, y) ≥ 0 and Gi(x, y, vi) ≥ 0 for all vi ∈ Ti(x).

That is, yi is a solution to the problem: minvi∈Ti(x) Qi(x, vi). ��
Remark 5.1 In Corollary 5.2, if we assume further that Qi(x, yi) ≥ 0 for x = (xi)i∈I ,
y = ( yi)i∈I with xi ∈ Si(x) and yi ∈ Ti(x), then there exists a solution to the semi-infi-
nite problem with systems of equilibrium constraints:

min
(x,y)

h(x, y), x = (xi)i∈I , y = ( yi)i∈I such that for each i ∈ I, xi ∈ Si(x),

yi ∈ Ti(x), Fi(x, y) ≥ 0 and Qi(x, vi) ≥ 0 for all vi ∈ Ti(x).

References

1. Adly, S.: Perturbed algorithm and senstivity analysis for a generalized class of variational
inclusions. J. Math. Anal. 201, 609–630 (1996)

2. Ahmad, R., Ansari, Q.H.: An iterative for generalized nonlinear variational inclusion. Appl.
Math. Lett. 13(5), 23–26 (2000)

3. Ahmad, R., Ansari, Q.H., Irfan, S.S.: Generalized variational inclusions and generalized resolvent
equations in Banach spaces. Comput. Math. Appl. 49, 1825–1835 (2005)

4. Ansari, Q.H., Lin, L.J., Su, L.B.: Systems of simultaneous generalized vector quasiequilibrium
problems and applications. J. Optim. Theory Appl. 127, 27–44 (2005)

5. Aubin, J.P., Cellina, A.: Differential Inclusion. Springer Verlag, Berlin, Germany (1994)
6. Bard, J.F.: Pratical Bilevel Optimization, Algorithms and Applications, Nonconvex Optimization

and its Applications. Kluwer Academic Publishers, Dordrechlt (1998)
7. Birbil, S., Bouza, G., Frenk, J.B.G., Still, G.: Equilibrium constrained optimization problems. Eur.

J. Operat. Res. 169, 1108–1127 (2006)
8. Blum, E., Oettli, W.: From optimilization and variational inequalities to equilibrium problems.

Math. Students 63, 123–146 (1994)
9. Chang, S.S.: Set-valued variational inclusion in Banach spaces. J. Math. Anal. Appl. 248, 438–454

(2000)
10. Ding, X.P.: Perturbed proximal point algorithm for generalized quasivariational inclusions.

J. Math. Anal. Appl. 210, 88–101 (1997)
11. Fan, K.: A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961)
12. Fan, K.: Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Natl.

Acad. Sci. USA 38, 121–126 (1952)
13. Fukushima, M., Pang, J.S.: Some feasible issues in mathematical programs with equilibrium

constraints. SIMA J. Optim. 8, 673–681 (1998)
14. Hassouni, A., Moudafi, A.: A peturbed algorithm for variational inclusions. J. Math. Anal. Appl.

185, 705–712 (1994)
15. Himmelberg, C.J.: Fixed point of compact multifunctions. J. Math. Anal. Appl. 38, 205–207 (1972)
16. Huang, N.J.: Mann and Isbikawa type perturbed iteration algorithm for nonlinear generalized

variational inclusions. Comput. Math. Appl. 35(10), 1–7 (1998)
17. Lin, L.J.: Existence theorems of simultaneous equilibrium problems and generalized quasi-saddle

points. J. Global Optim. 32, 603–632 (2005)
18. Lin, L.J.: Existence results for primal and dual generalized vector equilibrium problems with

applications to generalized semi-infinite programming. J. Global Optim. 32, 579–597 (2005)
19. Lin, L.J.: Mathematical program with system of equilibrium constraint. J. Global Optim. (to

appear)
20. Lin, L.J.: System of generalized vector quasi-equilibrium problems with applications to fixed point

theorems for a family of nonexpansive multivalued mappings. J. Global Optim. 34, 15–32 (2006)



J Glob Optim (2007) 38:21–39 39

21. Lin, L.J., Hsu, H.W.: Existence theorems of vector quasi-equilibrium problems and mathematical
programs with equilibrium constraints. J. Global Optim. (to appear)

22. Lin, L.J., Huang, Y.J.: Generalized vector quasi-equilibrium problems with applications to
common fixed point theorems and optimization problems. Nonlinear Anal. (2006) (to appear).

23. Lin, L.J., Liu, Y.H.: Existence theorems of systems of generalized vector quasi-equilibrium
problems. J. Optim. Theory Appl. 130(3), (2006)

24. Lin, L.J., Still, G.: Mathematical programs with equilibrium constraints: the existence of feasible
points. Optimization 55, 205–219 (2006)

25. Lin, L.J., Yu, Z.T.: On some equilibrium problems for multimaps. J. Comput. Appl. Math.
129, 171–183 (2001)

26. Luc, D.T.: Theory of Vector Optimization. Lectures Notes in Economics and Mathematical
Systems, vol. 319, Springer Verlag, Berlin, Germany (1989)

27. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Program with Equilibrium Constraint. Cambridge
University Press, Cambridge (1997)

28. Mordukhovich, B.S.: Equilibrium problems with equilibrium constraints via multiobjective
optimization. Optim. Methods Soft 19, 479–492 (2004)

29. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, vol. I,II. Springer,
Herlin, Heidelberg, New York (2005)

30. Robinson, S.M.: Generalized equation and their solutions, part I: basic theory. Math Program.
Study 10, 128–141 (1979)

31. Tan, N.X.: Quasi-variational inequalities in topological linear locally convex Hausdorff spaces.
Math. Nachrichten 122, 231–245 (1985)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


