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Abstract In this paper, we introduce systems of vector quasi-equilibrium problems
and prove the existence of their solutions. As applications of our results, we derive the
existence theorems for solution of system of vector quasi-saddle point problem, the
existences theorems of a solution of system of generalized quasi-minimax inequali-
ties, the mathematical program with equilibrium constraint, semi-infinite and bilevel
problems.
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1 Introduction

Let X be a convex subset of a real topological vector space E (in short t.v.s.) and
f : X × X → R be a given function with f (x, x) ≥ 0 for all x ∈ X. By equilibrium
problem, Blum and Oettli [8] understood the problem of finding x̄ ∈ X such that
f (x̄, y) ≥ 0 for all y ∈ X. This problem contains optimization problems, Nash type
equilibria problems, complementary problems, variational inequality problems and
fixed point problems as special case.

In the recent past, systems of scalar (vector) equilibrium problems and scalar (vec-
tor) generalized equilibrium problems, systems of scalar (vector) quasi-equilibrium
problems and scalar (vector) generalized quasi-equilibrium problems are used as tools
to solve Nash equilibrium (for vector-valued functions) and Debreu type equilibrium
problem (for vector-valued functions), system of optimization problems, system of
mixed variational inequalities problems, system of saddle point problems and collec-
tive fixed point problems (see, e.g. [2–6, 10–12] and references therein.).
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The study of equilibrium problem is a new direction for the researchers (see,
e.g. [2, 12, 13, 18] and references therein). There are many generalizations of this
problems.

Let I be any index set. For each i ∈ I, let Xi and Yi be nonempty convex subsets of
locally convex topological vector space Di and Ei, respectively, and Zi, L be two real
t.v.s.. Let X =

∏
i∈I

Xi and Y =
∏

i∈I
Yi. Let h : X × Y � L be a multivalued map.

For each i ∈ I, let Ci : Xi � Zi be a multivalued map such that Ci(xi) is a convex cone
for all xi ∈ Xi. For each i ∈ I, let Si : X × Y � Xi, Ti : X � Yi, fi : Xi × Yi × Xi � Zi
and gi : Xi × Yi × Yi � Zi be multivalued maps. We consider the following problems
of system of generalized vector quasi-equilibrium problems:

Find (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si(x̄, ȳ), ȳi ∈ Ti(x̄), such that one
of the following relations hold:

(1) gi(x̄i, ȳi, vi) ⊆ Ci(x̄i) for all vi ∈ Ti(x̄).

(2) gi(x̄i, ȳi, vi) ∩ Ci(x̄i) �= ∅ for all vi ∈ Ti(x̄).

(3) gi(x̄i, ȳi, vi) ∩ −intCi(x̄i) = ∅ for all vi ∈ Ti(x̄i).

(4) gi(x̄i, ȳi, vi) � −intCi(x̄i) for all vi ∈ Ti(x̄).

As application of our results, we establish of the following four types of system of
simultaneous generalized vector quasi-equilibrium problems:

(5) Find (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si(x̄, ȳ), ȳi ∈ Ti(x̄),

fi(x̄i, ȳi, ui) ⊆ Ci(x̄i) for all ui ∈ Si(x̄, ȳ)

and

gi(x̄i, ȳi, vi) ⊆ Ci(x̄i) for all vi ∈ Ti(x̄).

(6) Find (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si(x̄, ȳ), ȳi ∈ Ti(x̄),

fi(x̄i, ȳi, ui) ∩ Ci(x̄i) �= ∅ for all ui ∈ Si(x̄, ȳ)

and

gi(x̄i, ȳi, vi) ∩ Ci(x̄i) �= ∅ for all vi ∈ Ti(x̄).

(7) Find (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si(x̄, ȳ), ȳi ∈ Ti(x̄),

fi(x̄i, ȳi, ui) ∩ −intCi(x̄i) = ∅ for all ui ∈ Si(x̄, ȳ)

and

gi(x̄i, ȳi, vi) ∩ −intCi(x̄i) = ∅ for all vi ∈ Ti(x̄i).

(8) Find (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si(x̄, ȳ), ȳi ∈ Ti(x̄),

fi(x̄i, ȳi, ui) � −intCi(x̄i) for all ui ∈ Si(x̄, ȳ)

and

gi(x̄i, ȳi, vi) � −intCi(x̄i) for all vi ∈ Ti(x̄).
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We derive several existence results for solutions of above mentioned problems
and other similar problems. As applications in Sect. 4, we can obtain the systems of
quasi-saddle point problem (in short, SVQSPP):

(SVQSPP): find x̄ = (x̄i)i∈I ∈ X and ȳ = (ȳi)i∈I ∈ Y such that for each i ∈ I, x̄i ∈
Si(x̄, ȳ), ȳi ∈ Ti(x̄),

ϕi(xi, ȳi) − ϕ(x̄i, ȳi) ∈ Ci(x̄i) for all xi ∈ Si(x̄, ȳ)

and
ϕi(x̄i, ȳi) − ϕi(x̄i, yi) ∈ Ci(x̄i) for allyi ∈ Ti(x̄).

For each i ∈ I, let fi be a real-valued map. We also consider the following system
of quasi-minimax problem:

Find x̄ = (x̄i)i∈I ∈ X and ȳ = (ȳi)i∈I ∈ Y with x̄i ∈ Si(x̄, ȳ) and ȳi ∈ Ti(x̄) such that

min
ui∈Si(x̄,ȳ)

max
Vi∈Ti(x̄)

fi(ui, vi) = fi(x̄i, ȳi) = max
Vi∈Ti(x̄)

min
ui∈Si(x̄,ȳ)

fi(ui, vi).

Our approach are different from Lin [10] and Ansari et al. [2]. Moreover, in Sect. 5,
we use the existence of the problems in Sect. 3 to study the mathematical programs
with equilibrium constraint, semi-infinite and bilevel problems as following:

(MI) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y),
yi ∈ Ti(x), gi(xi, yi) ⊆ Ci(xi), and fi(xi, yi, ui) ⊆ Ci(xi) for all ui ∈ Si(x, y)}.

(MII) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y),
yi ∈ Ti(x), fi(xi, yi) ⊆ Ci(xi), and gi(xi, yi, vi) ⊆ Ci(xi) for all vi ∈ Ti(x)}.

(MIII) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y),
yi ∈ Ti(x), gi(xi, yi) � −intCi(xi), and fi(xi, yi, ui) � −intCi(xi) for all
ui ∈ Si(x, y)}.

(MIV) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y),
yi ∈ Ti(x), fi(xi, yi) � −intCi(xi), and gi(xi, yi, vi) � −intCi(xi) for all
vi ∈ Ti(x)}.

(MV) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y),
yi ∈ Ti(x), gi(xi, yi) ⊆ Ci(xi), and ϕi(xi, ui) ⊆ Ci(xi)for all ui ∈ Si(x, y)}.

(MVI) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y),
yi ∈ Ti(x), gi(xi, yi) � −intCi(xi), and ϕi(xi, ui) � −intCi(xi) for all
ui ∈ Si(x, y)}.

If Zi = R, Ci(xi) = [0, ∞), h, fi, gi are single valued functions. (MI) and (MIII) will
reduce to the following problem:

Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y), yi ∈
Ti(x), gi(xi, yi) ≥ 0, and fi(xi, yi, ui) ≥ 0 for all ui ∈ Si(x, y)}.

(MII) and (MIV) will reduced to the following problem: Min h(K), where K =
{(x, y) ∈ X×Y | for each i ∈ I, xi ∈ Si(x, y), yi ∈ Ti(x), fi(xi, yi) ≥ 0, and gi(xi, yi, vi) ≥
0 for all vi ∈ Ti(x)}.

(MV) and (MVI) will reduce to the following problem:
Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y), yi ∈ Ti(x),

gi(xi, yi) ≥ 0, and ϕi(xi, ui) ≥ 0 for all ui ∈ Si(x, y)}.
For the special case of our results, we also study the bilevel problem:

Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y), yi ∈ Ti(x),
fi(xi, yi) ≥ 0, ϕi(xi, yi) ≤ ϕi(xi, vi) for all vi ∈ Ti(x)}.

Recently Luo et al. [16], Lin and Still [14] and Lin [12] and references therein
studied the mathematical program with equilibrium constraint problem, semi-infinite
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problem and bilevel problem, but our results and approach are different from [12,
14, 16]. In this paper, we study the existence theorems of various types of mathemat-
ical program with equilibrium constraint and semi-infinite problems with system of
generalized vector quasi-equilibrium constraint.

2 Preliminaries

Let X and Y be nonempty subsets of a topological space E. We denote by 2X the fam-
ily of all subsets of the set X. A multivalued map F :X � Y is a function from X into
2Y . Let X and Y be topological spaces and T :X � Y be a multivalued map. We call
that T is upper semicontinuous (in short u.s.c.) (resp. lower semicontinuous, in short
l.s.c.) at x ∈ X if for every open set V containing T(x) (resp. T(x)

⋂
V �= ∅), there is

an open set U containing x such that T(u) ⊆ V (resp. T(u) ∩ V �= ∅) for all u ∈ U; T
is u.s.c.(resp. l.s.c.) on X if T is u.s.c. (resp. l.s.c.) at every point of X; T is continuous
at x if T is both u.s.c. and l.s.c. at x; T is closed if GrT={(x, y) ∈ X × Y | y ∈ T(x)} is
closed in X × Y; T is compact if there exists a compact set K such that T(X) ⊆ K.

Throughout this paper, all topological spaces are assumed to be Hausdorff. The
following definitions and theorems are need in this paper.

Definition 2.1 Let X and Y be convex subset of a topological vector space. Let g :
X × Y � Z, h : X � Z and C : X � Z be multivalued maps. h is said to be convex
(resp. concave) if for all x1, x2 ∈ X, λ ∈ [0, 1], g(λx1+(1−λ)x2) ⊆ λg(x1)+(1−λ)g(x2);
(resp. λg(x1) + (1 − λ)g(x2) ⊆ g(λx1 + (1 − λ)x2)); g is said to be C(x)−quasiconvex if
for any x ∈ X, yi, y2 ∈ Y, λ ∈ [0, 1], either

g(x, y1) ⊆ g(x, λy1 + (1 − λ)y2) + C(x)

or

g(x, y2) ⊆ g(x, λy1 + (1 − λ)y2) + C(x);

g is said to be C(x)-quasiconcave-like if for any x ∈ X, y1, y2 ∈ Y and λ ∈ [0, 1], either

g(x, λy1 + (1 − λ)y2) ⊆ g(x, y1) + C(x)

or

g(x, λy1 + (1 − λ)y2) ⊆ g(x, y2) + C(x);

g is said to be C(x)−quasiconcave if for any x ∈ X, y1, y2 ∈ Y and λ ∈ [0, 1], either

g(x, y1) ⊆ g(x, λy1 + (1 − λ)y2) − C(x)

or

g(x, y2) ⊆ g(x, λy1 + (1 − λ)y2) − C(x).

Definition 2.2 [9] Let X be a convex subset of a t.v.s. and Z be a t.v.s. Let f :X×X � Z
and C : X � Z be multivalued maps. Given any finite set � = {x1, x2, . . . , xn} and
any x ∈ co{x1, x2, . . . , xn}. f is said to be strong type I C-diagonally quasiconvex (SIC-
DQC, in short) in the second argument if for some xi ∈ �, f (x, xi) ⊆ C(x); f is said
to be strong type II C-diagonally quasiconvex (SIIC-DQC, in short) in the second
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argument if for some xi ∈ �, f (x, xi) ∩ C(x) �= ∅; f is said to be weak type I C−diago-
nally quasiconvex (WIC-DQC, in short) in the second argument if for some xi ∈ �,
f (x, xi)∩ (−intC(x)) = ∅; f is said to be weak type II C-diagonally quasiconvex (WIIC-
DQC, in short) in the second argument if for some xi ∈ �, f (x, xi) � −intC(x).

Theorem 2.1 [1] Let X and Y be Hausdorff topological spaces and T : X � Y be a
multivalued map.

(1) If T is an u.s.c. multivalued map with closed values, then T is closed.
(2) If T is closed and Y is compact, then T is an u.s.c. multivalued map.
(3) If X is compact and T is an u.s.c. multivalued map with compact values, then

T(X) is compact.

Theorem 2.2 [17] Let T be a multivalued map of a topological space X into a topo-
logical space Y. Then T is l.s.c. at x ∈ X if and only if for any y ∈ T(x) and for any
net {xα} in X converges to x, there is a net {yα} such that yα ∈ T(xα) for every α and yα

converges to y.

Theorem 2.3 [7] Let K be a convex space, Z be a t.v.s., F :K × K � Z and C : K � Z
be multivalued maps such that C(x) is a convex cone. Then F is C(x)-quaisconvex if
and only if for any x ∈ K, yi ∈ K, ti > 0, i = 1, 2, . . . , n,

∑n
i=1 ti = 1, then there exists

1 ≤ j ≤ n such that F(x, yi) ⊆ F
(
x,

∑n
i=1 tiyi

) + C(x).

Theorem 2.4 [15] Let A be a nonempty compact subset of real t.v.s. Z, D a closed
convex cone in Z such that D �= Z, then MinDA �= ∅.

3 The existence results for a solution of system of simultaneous generalized vector
quasi-equilibrium problems

Let I be any index set. For each i ∈ I, let Zi be a real t.v.s. and Xi, Yi be nonempty
closed convex subsets in locally convex t.v.s. Di and Ei, respectively. Suppose that
Ci : X � Zi is a closed multivalued map and Ci(xi) is a nonempty convex cone
for each xi ∈ Xi and Ti : X � Yi is a compact continuous multivalued map with
nonempty closed convex values. Throughout this paper we use these notations unless
otherwise specified.

Theorem 3.1 For each i ε I, suppose that

(1) Ai : X × Y � Xi is a compact u.s.c. multivalued map with nonempty closed convex
values;

(2) gi :Xi × Yi × Yi � Zi is a l.s.c multivalued map such that gi(xi, yi, yi) ⊆ Ci(xi) and
for each (xi, vi) ∈ Xi × Yi, yi � gi(xi, yi, vi) is Ci(xi)-quasiconcave-like, and for
each (xi, yi) ∈ Xi × Yi, vi � gi(xi, yi, vi) is Ci(xi)-quasiconvex.

Then there exists (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and

gi(x̄i, ȳi, vi) ⊆ Ci(x̄i) for all vi ∈ Ti(x̄).

Proof For each i ∈ I, defined Hi :X � Ti(X) by

Hi(x) = {yi ∈ Ti(x) | gi(xi, yi, vi) ⊆ Ci(xi) ∀vi ∈ Ti(x)}.



200 J Glob Optim (2007) 37:195–213

For each i ∈ I and x ∈ X, let Qi : Ti(x) � Ti(x) be defined by Qi(vi) = {yi ∈
Ti(x) | gi(xi, yi, vi) ⊆ Ci(xi)}. Suppose there exists i ∈ I and a finite set {v1

i , v2
i , . . . , vn

i }
in Ti(x) such that co{v1

i , v2
i , . . . , vn

i } �
⋃n

k=1 Qi(vk
i ). Then there exists a vλ

i = λ1v1
i +

λ2v2
i + · · · + λnvn

i ∈ co{v1
i , v2

i , . . . , vn
i }, where λj ≥ 0 for j = 1, 2, . . . , n and

∑n
j=1 λj = 1,

but vλ
i /∈ ⋃n

k=1 Qi(vk
i ). Since Ti(x) is convex, vλ

i ∈ co{v1
i , v2

i , . . . , vn
i } ⊆ Ti(x). But

vλ
i /∈ Qi(vk

i ) for all k = 1, 2, . . . , n. So gi(xi, vλ
i , vk

i ) � Ci(xi) for all k = 1, 2, . . . , n. By (2)

and Theorem 2.3, there exists 1 ≤ j ≤ n such that gi(xi, vλ
i , vj

i) ⊆ gi(xi, vλ
i , vλ

i )+Ci(xi) ⊆
Ci(xi) + Ci(xi) ⊆ Ci(xi). This leads to a contradiction. So Qi is a KKM map. For each
i ∈ I, let yi ∈ Qi(vi), then there exists a net {yα

i } in Qi(vi) such that yα
i → yi. So yα

i ∈
Ti(x) and gi(xi, yα

i , vi) ⊆ Ci(xi). Since Ti(x) is closed, yi ∈ Ti(x). Let zi ∈ gi(xi, yi, vi).
Since gi is l.s.c., there exists a net {zα

i } such that zα
i → zi and zα

i ∈ gi(xi, yα
i , vi) ⊆ Ci(xi).

Since Ci(xi) is closed, zi ∈ Ci(xi). So gi(xi, yi, vi) ⊆ Ci(xi), i.e., yi ∈ Qi(vi). Therefore,
Qi(vi) is closed. Qi(vi) is closed in a compact set Ti(X), so Qi(vi) is also compact.
Then by KKM Theorem,

⋂
vi∈Ti(x) Qi(vi) �= ∅, then we have Hi(x) �= ∅. For each

i ∈ I, let y1
i , y2

i ∈ Hi(x) and λ ∈ [0, 1], then y1
i ,y2

i ∈ Ti(x), gi(xi, y1
i , vi) ⊆ Ci(xi) for all

vi ∈ Ti(x) and gi(xi, y2
i , vi) ⊆ Ci(xi) for all vi ∈ Ti(x). Let yλ

i = λy1
i + (1 − λ)y2

i . Since
Ti(x) is convex, yλ

i ∈ Ti(x). By (2), we have either gi(xi, yλ
i , vi) ⊆ gi(xi, y1

i , vi)+Ci(xi) ⊆
Ci(xi)+Ci(x) ⊆ Ci(xi) or gi(xi, yλ

i , vi) ⊆ gi(xi, y2
i , vi)+Ci(xi) ⊆ Ci(xi)+Ci(xi) ⊆ Ci(xi).

Therefore, yλ
i ∈ Hi(x), hence Hi(x) is convex.

For each i ∈ I, let (x, yi) ∈ GrHi, then there exists a net {(xα , yα
i )} in GrHi such

that (xα , yα
i ) → (x, yi). So we have yα

i ∈ Ti(xα) and gi(xα , yα , vi) ⊆ Ci(xα) for all
vi ∈ Ti(xα). By Theorem 2.1 (1), yi ∈ Ti(x). Let vi ∈ Ti(x). Since Ti is l.s.c., there
exists a net {vα

i } such that vα
i → vi and vα

i ∈ Ti(xα). Let zi ∈ gi(xi, yi, vi). Since gi is
l.s.c., there exists a net {zα

i } such that zα
i → zi and zα

i ∈ gi(xα
i , yα

i , vα
i ) ⊆ Ci(xα

i ). Then
zi ∈ Ci(xi). Therefore, gi(xi, yi, vi) ⊆ Ci(xi) for all vi ∈ Ti(x), so we have yi ∈ Hi(x)

and then Hi is closed. Hi :X � Ti(X) is closed and Ti(X) is compact, so Hi is an u.s.c.
multivalued map with nonempty closed convex values.

Now, defined F : X × Y � X × Y by F(x, y) = ∏
i∈I

[
Ai(x, y) × Hi(x)

]
. Then F

is an u.s.c. with nonempty closed convex values. By Himmelberg fixed point theo-
rem, there exists (x̄, ȳ) ∈ X × Y such that (x̄, ȳ) ∈ F(x̄, ȳ). It means that there exists
(x̄, ȳ) ∈ X × Ysuch that for each i ∈ I, x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄),

gi(x̄i, ȳi, vi) ⊆ Ci(x̄i) for all vi ∈ Ti(x̄). ��

Corollary 3.1 Suppose conditions (3)–(5) in Theorem 3.1 hold and for each i ∈ I,

(i) Si : X × Y � Xi is a compact continuous multivalued map with nonempty closed
convex values;

(ii) (a) fi : Xi × Yi × Xi � Zi is a l.s.c. multivalued map and convex in the first
argument;

(b) for each yi ∈ Yi, the function fi(·, yi, ·) is strong type I Ci-diagonally quasi-
convex in the third argument and

(iii) Ci : Xi � Zi is a concave closed multivalued map and Ci(xi) is a nonempty convex
cone for each xi ∈ Xi.

Then there exists (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si(x̄, ȳ), ȳi ∈ Ti(x̄),

fi(x̄i, ȳi, ui) ⊆ Ci(x̄i) for all ui ∈ Si(x̄, ȳ)
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and

gi(x̄i, ȳi, vi) ⊆ Ci(x̄i) for all vi ∈ Ti(x̄).

Proof For each i ∈ I, define a multivalued map Mi :X × Y � Si(X × Y) by

Mi(x, y) = {wi ∈ Si(x, y) | fi(wi, yi, ui) ⊆ Ci(wi) ∀ ui ∈ Si(x, y)}.
Let Gi : Si(x, y) � Si(x, y) be defined by

Gi(ui) = {wi ∈ Si(x, y) | fi(wi, yi, ui) ⊆ Ci(wi)}.
With the same argument as in Theorem 3.1, we can show that Gi is a KKM map and
Gi(ui) is closed. Since Gi(ui) is closed in the compact set Si(x, y), Gi(ui) is also com-
pact. Then by KKM Theorem, ∩ui∈Si(x,y)Gi(ui) �= ∅, and hence Mi(x, y) �= ∅. For each
i ∈ I, let w1

i , w2
i ∈ Mi(x, y) and λ ∈ [0, 1], then w1

i , w2
i ∈ Si(x, y), fi(w1

i , yi, ui) ⊆ Ci(w1
i )

and fi(w2
i , yi, ui) ⊆ Ci(w2

i ) for all ui ∈ Si(x, y). Let wλ
i = λw1

i + (1 − λ)w2
i , then by (2a)

and (3), fi(wλ
i , yi, ui) ⊆ λfi(w1

i , yi, ui)+ (1−λ)fi(w2
i , yi, ui) ⊆ λCi(w1

i )+ (1−λ)Ci(w2
i ) ⊆

Ci(λw1
i + (1 − λ)w2

i ) = Ci(wλ
i ). ��

Since Si(x, y) is convex, wλ
i ∈ Si(x, y). So Mi(x, y) is convex.

Let ((x, y), wi) ∈ GrMi, then there exist a net {((xα , yα), wα
i )} in GrMi such that

(xα , yα) → (x, y) and wα
i → wi, so wα

i ∈ Si(xα , yα) and fi(wα
i , yα

i , ui) ⊆ Ci(wα
i ) for all

ui ∈ Si(xα , yα). By Theorem 2.1 (1), wi ∈ Si(x, y). Let ui ∈ Si(x, y). Since Si is l.s.c.,
there exists a net {uα

i } such that uα
i → ui and uα

i ∈ Si(xα , yα). Let zi ∈ fi(wi, yi, ui). Since
fi is l.s.c., there exists a net {zα

i } such that zα
i → zi and zα

i ∈ fi(wα
i , yα

i , uα
i ) ⊆ Ci(wα

i ).
Then we have zi ∈ Ci(wi). So fi(wi, yi, ui) ⊆ Ci(wi) for all ui ∈ Si(x, y). It means that
wi ∈ Mi(x, y), so Mi is closed. By Theorem 2.1, Mi is a compact u.s.c. multivalued map
with nonempty closed convex value. Then by Theorem 3.1, there exists (x̄, ȳ) ∈ X × Y
such that for each i ∈ I, x̄i ∈ Mi(x̄, ȳ), ȳi ∈ Ti(x̄) and gi(x̄i, ȳi, vi) ⊆ Ci(x̄i) for all vi ∈
Ti(x̄). i.e., there exists (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si(x̄, ȳ), ȳi ∈ Ti(x̄),
fi(x̄i, ȳi, ui) ⊆ Ci(x̄i) for all ui ∈ Si(x̄, ȳ) and gi(x̄i, ȳi, vi) ⊆ Ci(x̄i) for all vi ∈ Ti(x̄).

The following corollary will have some applications to study the mathematical
program with equilibrium constraint.

Corollary 3.2 In Corollary 3.1, we replace (2a) and (2b) by

(2a′) Si :X ×Y � Xi is a compact u.s.c. multivalued map with nonempty closed convex
values;

(2b′) fi : Xi × Yi � Zi is a l.s.c. multivalued map and convex in the first argument;
for each x = (xi)i∈I ∈ X and y = (yi)i∈I ∈ Y, there exists wi ∈ Si(x, y) such that
fi(wi, yi) ⊆ Ci(wi).

Then there exists (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si(x̄, ȳ), ȳi ∈
Ti(x̄), fi(x̄i, ȳi) ⊆ Ci(x̄i) and gi(x̄i, ȳi, vi) ⊆ Ci(x̄i) for all vi ∈ Ti(x̄).

Proof For each i ∈ I, defined Mi :X × Y � Si(X × Y) by

Mi(x, y) = {wi ∈ Si(x, y) | fi(wi, yi) ⊆ Ci(wi)}.
Following the similarly argument as in Corollary 3.1, we can show that Mi is a compact
u.s.c. multivalued map with nonempty closed convex values. And then we obtain the
result by Theorem 3.1. ��
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Theorem 3.2 Suppose that conditions (i), (ii) and (iii) of Corollary 3.1. For each i ∈ I,
suppose that Bi : X � Yi is a compact u.s.c. multivalued map with nonempty closed
convex values. Then there exists (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si(x̄, ȳ),
ȳi ∈ Bi(x̄),

fi(x̄i, ȳi, ui) ⊆ Ci(x̄i) for all ui ∈ Si(x̄, ȳ).

Proof For each i ∈ I, define a multivalued map Mi :X × Y � Si(X × Y) by

Mi(x, y) = {wi ∈ Si(x, y) | fi(wi, yi, ui) ⊆ Ci(wi) ∀ ui ∈ Si(x, y)}.
Then following the same argument as in Corollary 3.1, we have Mi is a compact u.s.c.
multivalued map with nonempty closed convex values. Now, define F : X×Y � X×Y
by F(x, y) = ∏

i∈I[Mi(x, y)×Bi(x)], then F is an u.s.c. multivalued map with nonempty
closed convex values. By Himmelberg fixed point, we have the result.

Corollary 3.3 For each i ∈ I, suppose that conditions (i) and (iii) of Corollary 3.1 and

(1) (a) fi : Xi × Yi × Xi � Zi is a l.s.c. multivalued map and convex in the first argu-
ment; (b) for each yi ∈ Yi, the function fi(·, yi, ·) is strong type I Ci−diagonally
quasiconvex ;

(2) gi : Xi × Yi � Zi is a l.s.c. and for each xi ∈ Xi, yi � gi(xi, yi) is Ci(xi)−quasicon-
cave-like;

(3) for each x = (xi)i∈I ∈ X, there exists yi ∈ Ti(x) such that gi(xi, yi) ⊆ Ci(xi).

Then there exists (x̄, ȳ) ∈ X×Y with x̄i ∈ Si(x̄, ȳ), ȳi ∈ Ti(x̄) such that gi(x̄i, ȳi) ⊆ Ci(x̄i)

and fi(x̄i, ȳi, ui) ⊆ Ci(x̄i) for all ui ∈ Si(x̄, ȳ).

Proof For each i ∈ I, define Hi :X � Ti(X) by

Hi(x) = {yi ∈ Ti(x) | gi(xi, yi) ⊆ Ci(xi)}.
Then Hi(x) �= ∅ by (iv). Let (x, yi) ∈ GrHi, then there exists a net {(xα , yα

i )} in GrHi
such that (xα , yα

i ) → (x, yi). So we have yα
i ∈ Ti(xα) and gi(xα

i , yα
i ) ⊆ Ci(xα

i ). By Theo-
rem 2.1 (1), yi ∈ Ti(x). Let zi ∈ gi(xi, yi). Since gi is l.s.c., there exists a net {zα

i } such
that zα

i → zi and zα
i ∈ gi(xα

i , yα
i ) ⊆ Ci(xα

i ) and zi ∈ Ci(xi). So gi(xi, yi) ⊆ Ci(xi), hence
Hi is closed. Let y1

i , y2
i ∈ Hi(x) and λ ∈ [0, 1]. Then y1

i , y2
i ∈ Ti(x), gi(xi, y1

i ) ⊆ Ci(xi)

and gi(xi, y2
i ) ⊆ Ci(xi). By (2), we have either

gi(xi, λy1
i + (1 − λ)y2

i ) ⊆ gi(xi, y1
i ) + Ci(xi) ⊆ Ci(xi) + Ci(xi) ⊆ Ci(xi)

or

gi(xi, λy1
i + (1 − λ)y2

i ) ⊆ gi(xi, y2
i ) + Ci(xi) ⊆ Ci(xi) + Ci(xi) ⊆ Ci(xi)

and Ti(x) is convex, so λy1
i +(1−λ)y2

i ∈ Ti(x). Therefore Hi(x) is convex. By Theorem
2.1 (3), Hi is a compact u.s.c. multivalued map with nonempty closed convex values.
By Theorem 3.2, there exists (x̄, ȳ) ∈ X × Y with x̄i ∈ Si(x̄, ȳ) and ȳi ∈ Hi(x̄) such that
fi(x̄i, ȳi, ui) ⊆ Ci(x̄i) for all ui ∈ Si(x̄, ȳ). ��

Remark 3.1 Corollary 3.1 holds, if we replayed (2b) by (2b′) for each (xi, yi) ∈ Xi ×Yi,
ui � fi(xi, yi, ui) is Ci(xi)−quasiconvex with fi(xi, y, xi) ⊆ Ci(xi).
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Theorem 3.3 For each i ∈ I, suppose that

(1) Ai :X × Y � Xi is a compact u.s.c. multivalued map with nonempty closed convex
values;

(2) Ci : Xi � Zi is a closed multivalued map such that Ci(xi) is a proper convex cone
and intCi(x) is nonempty; Pi : Xi � Zi defined by Pi(xi) = Zi\(−intCi(xi)) is an
u.s.c. multivalued map;

(3) gi : Xi × Yi × Yi � Zi is an u.s.c multivalued map with compact values such that
gi(xi, yi, yi) ⊆ Ci(xi);

(4) for each (xi, vi) ∈ Xi × Yi, yi � gi(xi, yi, vi) is Ci(xi)−quasiconcave, and for each
(xi, yi) ∈ Xi × Yi, vi � gi(xi, yi, vi) is Ci(xi)−quasiconvex.

Then there exists (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and

gi(x̄i, ȳi, vi) � −intCi(x̄i) for all vi ∈ Ti(x̄).

Proof For each i ∈ I, let Hi :X � Ti(X) be defined by

Hi(x) = {yi ∈ Ti(x) | gi(xi, yi, vi) � −intCi(xi) ∀ vi ∈ Ti(x)}
and Qi :Ti(x) � Ti(x) be defined by

Qi(vi) = {yi ∈ Ti(x)| gi(xi, yi, vi) � −intCi(xi)}
Suppose there exists a finite set {v1

i , v2
i , . . . , vn

i } in Ti(x) such that
co{v1

i , v2
i , . . . , vn

i } �
⋃n

k=1 Qi(vk
i ). So we can find a vλ

i = λ1v1
i + λ2v2

i + · · · + λnvn
i ∈

co{v1
i , v2

i , . . . , vn
i } where λk ≥ 0 for k = 1, 2, . . . , n and

∑n
k=1 λk = 1, but vλ

i /∈
∪n

k=1Qi(vk
i ). Since Ti(x) is convex, vλ

i ∈ Ti(x). So gi(xi, vλ
i , vk

i ) ⊆ −intCi(xi) for all
k = 1, 2, . . . , n. By (3), (4) and Theorem 2.3, there exists 1 ≤ j ≤ n such that

gi(xi, vλ
i , vj

i) ⊆ gi(xi, vλ
i , vλ

i ) + Ci(xi) ⊆ Ci(xi) + Ci(xi) ⊆ Ci(xi).

By (2), Ci(xi) is a proper cone in Zi, so Ci(xi) ∩ (−intC(xi)) = ∅. Then we have
gi(xi, vλ

i , vj
i) ∩ (−intCi(xi)) = ∅. This leads to a contradiction. Therefore, Qi is a KKM

map. Let yi ∈ Qi(vi), then there exists a net {yα
i }αε∧ in Qi(vi) such that yα

i → yi.
Then yα

i ∈ Ti(x) and gi(xi, yα
i , vi) � −intCi(xi), so gi(xi, yα

i , vi) ∩ Pi(xi) �= ∅. Let
zα

i ∈ gi(xi, yα
i , vi)∩Pi(xi) and Ki = {(xi, yα

i , vi) : αε∧}∪{(xi, yi, vi)}, then Ki is compact.
By (3) and Theorem 2.1, gi is closed and gi(Ki) is compact. Moreover, Pi is closed, so
we have {zα

i } has a subnet {zαλ
i } such that zαλ

i → zi and zi ∈ gi(xi, yi, vi)∩Pi(xi). There-
fore gi(xi, yi, vi) � −intCi(xi). Since Ti(x) is closed, yi ∈ Ti(x). This shows that Qi(vi)

is closed. Qi(vi) is closed in a compact set Ti(X), hence Qi(vi) is also compact. Then
∩vi∈Ti(x)Qi(vi) �= ∅, then we have Hi(x) �= ∅. Let y1

i , y2
i ∈ Hi(x) and λ ∈ [0, 1]. Then

y1
i , y2

i ∈ Ti(x), gi(xi, y1
i , vi) � −intCi(xi) and gi(xi, y2

i , vi) � −intCi(xi) for all vi ∈ Ti(x).
Since Ti(x) is convex, λy1

i + (1 − λ)y2
i ∈ Ti(x). Suppose that there exist a λ0 ∈ [0, 1]

and vi ∈ Ti(x) such that gi(xi, yλ0
i , vi) ⊆ −intCi(xi) where yλ0

i = λ0y1
i + (1 − λ0)y2

i . By
(4), either ��

gi(xi, y1
i , vi) ⊆ gi(xi, yλ0

i , vi) − Ci(xi) ⊆ −intCi(xi) − Ci(xi) ⊆ −intCi(xi)

or

gi(xi, y2
i , vi) ⊆ gi(xi, yλ0

i , vi) − Ci(xi) ⊆ −intCi(xi) − Ci(xi) ⊆ −intCi(xi).
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This leads to a contradiction. Therefore Hi(x) is convex. Let (x, yi) ∈ GrHi, then
there exists a net {(xα , yα

i )} in GrHi such that (xα , yα
i ) → (x, yi). So yα

i ∈ Ti(xα) and
gi(xα

i , yα
i , vi) � −intCi(xα

i ) for all vi ∈ Ti(xα). By Theorem 2.1, yi ∈ Ti(x). And we
have gi(xα

i , yα
i , vi)

⋂
Pi(xα

i ) �= ∅ for all vi ∈ Ti(xα). For each vi ∈ Ti(x), since Ti
is l.s.c., then there exists a net {vα

i }αε∧ such that vα
i → vi and vα

i ∈ Ti(xα). Then
gi(xα

i , yα
i , vα

i ) ∩ Pi(xα
i ) �= ∅. Let zα

i ∈ gi(xα
i , yα

i , vα
i ) ∩ Pi(xα

i ) and Ki ≡ {(xα
i , yα

i , vα
i ):

αε∧} ∪ {(xi, yi, vi)} which is compact, so gi(Ki) is compact and gi is closed by Theorem
2.1. Then {zα

i } has a subnet {zαλ
i } such that zαλ

i → zi. Since gi and Pi are closed, we have
zi ∈ gi(xi, yi, vi)∩ Pi(xi) �= ∅. Therefore gi(xi, yi, vi) � −intCi(xi) for all vi ∈ Ti(x), and
then Hi is closed.

By Theorem 2.1 (2), Hi is a compact u.s.c. with nonempty closed convex value.
Define F : X×Y � X×Y by F(x, y) = �i∈I[Ai(x, y)×Hi(x)]. Then F is an u.s.c. with

nonempty closed convex value. By Himmelberg fixed theorem, there exists (x̄, ȳ) ∈
X × Y such that (x̄, ȳ) ∈ F(x̄, ȳ). There exists x̄i ∈ Ai(x̄, ȳ) and ȳi ∈ Ti(x̄) such that
gi(x̄i, ȳi, vi) � −intCi(x̄i) for all vi ∈ Ti(x̄) ��
Corollary 3.4 Suppose conditions (2)–(4) of Theorem 3.3 hold, and for each i ∈ I,
suppose that

(i) Si : X × Y � Xi is a compact continuous multivalued map with nonempty closed
convex values;

(ii) (a) fi : Xi × Yi × Xi � Zi is an u.s.c. multivalued map with compact values and
concave in the first argument;

(b) for each yi ∈ Yi, the function fi(·, yi, ·) is weak type II Ci-diagonally quasi-
convex;

(iii) Pi : Xi � Zi defined by Pi(xi) = Zi \(−intCi(xi)) is a concave u.s.c. multivalued
map.

Then there exists (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si(x̄, ȳ), ȳi ∈ Ti(x̄),

fi(x̄i, ȳi, ui) � −intCi(x̄i) for all ui ∈ Si(x̄, ȳ)

and

gi(x̄i, ȳi, vi) � −intCi(x̄i) for all vi ∈ Ti(x̄).

Proof For each i ∈ I, define a multivalued map Mi :X × Y � Si(X × Y) by

Mi(x, y) = {wi ∈ Si(x, y) | fi(wi, yi, ui) � −intCi(wi) ∀ ui ∈ Si(x, y)}.
Following the similarly argument as in Theorem 3.3, we can show that Mi(x, y) is
nonempty. Let w1

i , w2
i ∈ Mi(x, y) and λ ∈ [0, 1], then w1

i , w2
i ∈ Si(x, y), fi(w1

i , yi, ui) �

−intCi(w1
i ) and fi(w2

i , yi, ui) � −intCi(w2
i ) for all ui ∈ Si(x, y). So there exists z1

i ∈
fi(w1

i , yi, ui) ∩ Pi(w1
i ) and z2

i ∈ fi(w2
i , yi, ui) ∩ Pi(w2

i ) for all ui ∈ Si(x, y). Since Si(x, y)

is convex, λw1
i + (1 − λ)w2

i ∈ Si(x, y). By (ii.a), we have

λz1
i + (1 − λ)z2

i ∈ λfi(w1
i , yi, ui) + (1 − λ)fi(w2

i , yi, ui)

⊆ fi(λw1
i + (1 − λ)w2

i , yi, ui)

and λz1
i +(1−λ)z2

i ∈ λPi(w1
i )+(1−λ)Pi(w2

i ) ⊆ Pi(λw1
i +(1−λ)w2

i ). So λz1
i +(1−λ)z2

i ∈
fi(λw1

i + (1−λ)w2
i , yi, ui)∩Pi(λw1

i + (1−λ)w2
i ). Therefore fi(λw1

i + (1−λ)w2
i , yi, ui) �

−intCi(λw1
i + (1 − λ)w2

i ) for all ui ∈ Si(x, y). Hence Mi(x, y) is convex. Following the
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same argument as in Theorem 3.3, we see that Mi is closed. Therefore, Mi is a compact
u.s.c. multivalued map with nonempty closed convex value by Theorem 2.1 (2). Then
by Theorem 3.3 we have the result. ��

The following corollary has some applications in the study of Mathematical Pro-
gramming with equilibrium constraint.

Corollary 3.5 Suppose conditions (2) − (4) of Theorem 3.3 hold and for each i ∈ I,

(i) Si : X × Y � Xi is a compact u.s.c. multivalued map with nonempty closed convex
values;

(ii) (a) fi :Xi ×Yi � Zi is an u.s.c. multivalued map with compact values and convex
in the first argument;

(b) for each x ∈ X and y = (yi)i∈I ∈ Y, there exists wi ∈ Si(x, y) such that
fi(wi, yi) � −intCi(wi);

(iii) Pi : Xi � Zi define by Pi(xi) = Zi \(−intCi(xi)) is a concave u.s.c. multivalued
map.

Then there exists (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si(x̄, ȳ), ȳi ∈
Ti(x̄), fi(x̄i, ȳi) � −intCi(x̄i) and gi(x̄i, ȳi, vi) � −intCi(x̄i) for all vi ∈ Ti(x̄)

Proof For each i ∈ I, defined Mi : X × Y � Si(X × Y) by

Mi(x, y) = {wi ∈ Si(x, y) | fi(wi, yi) � (−intCi(wi))}
Following the similar argument as in Corollary 3.4, we can show that Mi is a compact
u.s.c. multivalued map with nonempty closed convex values. And then we obtain the
result by Theorem 3.3.

Theorem 3.4 For each i ∈ I, suppose that Bi : X � Yi is a compact u.s.c. multivalued
map with nonempty closed convex values and conditions (i) and (iii) of Corollary 3.4

Then there exists (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si(x̄, ȳ), ȳi ∈ Bi(x) and

fi(x̄i, ȳi, ui) � −intCi(x̄i) for all ui ∈ Si(x̄, ȳ).

Proof For each i ∈ I, define a multivalued map Mi :X × Y � Si(X × Y) by

Mi(x, y) = {wi ∈ Si(x, y) | fi(wi, yi, ui) � −intCi(wi) ∀ui ∈ Si(x, y)}.
Now, define F :X × Y � X × Y by F(x, y) = ∏

i∈I[Mi(x, y) × Bi(x)], then F is an u.s.c.
multivalued map with nonempty closed convex values. By Himmelberg fixed point,
we have the result.

Corollary 3.6 For each i ∈ I, suppose that conditions (i),(ii) and (iii) of Corollary 3.4
and

(a) gi : Xi × Yi � Zi is a l.s.c. and for each xi ∈ Xi, yi � gi(xi, yi) is Ci(xi)−quasicon-
cave;

(b) for each x = (xi)i∈I ∈ X, there exists wi ∈ Ti(x) such that gi(xi, wi) � −intCi(xi);
(c) Ti : X � Yi is a compact u.s.c. with closed convex values.

Then there exists (x̄, ȳ) ∈ X × Y with x̄i ∈ Si(x̄, ȳ), ȳi ∈ Ti(x̄) such that gi(x̄i, ȳi) �

−intCi(x̄i) and fi(x̄i, ȳi, ui) � −intCi(x̄i) for all ui ∈ Si(x̄, ȳ).
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Proof For each i ∈ I, define Hi :X � Ti(X) by

Hi(x) = {yi ∈ Ti(x) | gi(xi, yi) � −intCi(xi)}
Then using the similarly discussion in Theorem 3.3, we have that Hi is a compact

u.s.c. with nonempty closed convex values. Therefore, we have the result by Theorem
3.4. ��
Remark 3.2 In Corollary 3.4, if we replayed (2b) by (2b′) for each (xi, yi) ∈ Xi × Yi,
ui � fi(xi, yi, ui) is Ci(xi)−quasiconvex with fi(xi, yi, xi) ⊆ Ci(xi). Then Corollary 3.4
also holds.

Following the similar argument as in Theorem 3.1, we have the following Theorems.

Theorem 3.5 For each i ∈ I, suppose that

(1) Ai :X × Y � Xi is a compact u.s.c. multivalued map with nonempty closed convex
values;

(2) gi : Xi × Yi × Yi � Zi is a compact u.s.c. multivalued map with nonempty closed
values and gi(xi, yi, yi) ⊆ Ci(xi);

(3) for each (xi, vi) ∈ Xi ×Yi, yi � gi(xi, yi, vi) is concave, and for each (x, y) ∈ X ×Y,
vi � gi(x, y, vi) is Ci(x)-quasiconvex.

Then there exists (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄) and

gi(x̄i, ȳi, vi) ∩ Ci(x̄i) �= ∅ ∀ vi ∈ Ti(x̄).

Corollary 3.7 In Theorem 3.5, if we replace condition (1) and (2) by

(1′) (a) Si : X × Y � Xi is a compact continuous multivalued map with nonempty
closed convex values;

(b) fi : Xi × Yi × Xi � Zi is an u.s.c. multivalued map with compact values and
concave in the first argument;

(c) for each yi ∈ Yi, fi(·, yi, ·) is strong type II Ci−diagonally quasiconvex.
(2′) Ci : Xi � Zi is a closed concave multivalue map.

Then there exists (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si(x̄, ȳ), ȳi ∈ Ti(x̄),

fi(x̄i, ȳi, ui) ∩ Ci(x̄i) �= ∅ for all ui ∈ Si(x̄, ȳ)

and

gi(x̄i, ȳi, vi) ∩ Ci(x̄i) �= ∅ for all vi ∈ Ti(x̄).

Following the similar argument as in Corollary 3.2, we have the following Corollary.

Corollary 3.8 In Theorem 3.5, further, if we assume that Ci is concave and replace
condition (1) by

(1) (a) Si : X × Y � Xi is a compact u.s.c. multivalued map with nonempty closed
convex values;

(b) fi : Xi × Yi � Zi is an u.s.c. multivalued map with compact values and
concave in the first argument; for each x ∈ X and y = (yi)i∈I ∈ Y, there exists
wi ∈ Si(x, y) such that fi(wi, yi) ∩ Ci(wi) �= ∅.
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Then there exists (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si(x̄, ȳ), ȳi ∈ Ti(x̄),
fi(x̄i, ȳi) ∩ Ci(x̄i) �= ∅ and

gi(x̄i, ȳi, vi) ∩ Ci(x̄i) �= ∅ ∀ vi ∈ Ti(x̄).

Theorem 3.6 For each i ∈ I, suppose that

(1) Ai : X ×Y � Xi is a compact u.s.c. multivalued map with nonempty closed convex
values;

(2) gi : Xi × Yi × Yi � Zi is a l.s.c. multivalued map and gi(xi, yi, yi) ⊆ Ci(xi);
(3) for each (xi, vi) ∈ Xi×Yi, yi � gi(xi, yi, vi) is convex, and for each (xi, yi) ∈ Xi×Yi,

vi � gi(xi, yi, vi) is Ci(xi)-quasiconvex;
(4) Pi : Xi � Zi defined by Pi(xi) = Zi \ (−intCi(xi)) is a concave u.s.c. multivalued

map.

Then there exists (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Ai(x̄, ȳ), ȳi ∈ Ti(x̄)

and

gi(x̄i, ȳi, vi) ∩ (−intCi(x̄i)) = ∅ ∀ vi ∈ Ti(x̄).

Following the similar argument as in Corollary 3.2, we have the following Corollary.

Corollary 3.9 In Theorem 3.6, further, if we assume Ci is concave and replace condition
(1) by

(1′) (a) Si : X × Y � Xi is a compact u.s.c. multivalued map with nonempty closed
convex values;

(b) fi :Xi × Yi × Xi � Zi is a l.s.c. multivalued map and convex in the first argu-
ment; for each x ∈ X and y = (yi)i∈I ∈ Y, there exists wi ∈ Si(x, y) such that
fi(wi, yi) ∩ −intCi(wi) = ∅.

Then there exists (x̄, ȳ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si(x̄, ȳ), ȳi ∈ Ti(x̄),
fi(x̄i, ȳi) ∩ (−intCi(x̄i)) = ∅ and

gi(x̄i, ȳi, vi) ∩ (−intCi(x̄i)) = ∅ ∀ vi ∈ Ti(x̄).

4 Applications to systems of quasi-saddle point problems and system of
quasi-minimax inequalities

In this section, we define systems of quasi-saddle point problems and system of quasi-
minimax inequalities.

Let ϕi : Xi × Yi → Zi be a function. We consider the following systems of quasi-
saddle point problems.

(SVQSPP): find x̄ = (x̄i)i∈I ∈ X and ȳ = (ȳi)i∈I ∈ Y such that for each

i ∈ I, x̄i ∈ Si(x̄, ȳ), ȳi ∈ Ti(x̄),

ϕi(xi, ȳi) − ϕ(x̄i, ȳi) ∈ Ci(x̄i) for all xi ∈ Si(x̄, ȳ)

and

ϕi(x̄i, ȳi) − ϕi(x̄i, yi) ∈ Ci(x̄i) for all yi ∈ Ti(x̄).
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Theorem 4.1 For each i ∈ I, suppose that

(1) (a) fi : Xi × Yi → Zi is a continuous function and affine in the first argument;
(b) for each xi ∈ Xi, yi → fi(xi, yi) is Ci(xi)-quasiconcave; for any finite set

A = {x1
i , x2

i , . . . , xn
i } in Xi and xi ∈ coA, there exists 1 ≤ j ≤ n such that

fi(x
j
i, yi) − fi(xi, yi) ∈ Ci(xi);

Then there exists (x̄, ȳ) ∈ X × Y with x̄i ∈ Si(x̄, ȳ) and ȳi ∈ Ti(x̄) such that

fi(ui, ȳi) − fi(x̄i, ȳi) ∈ Ci(x̄i) ∀ ui ∈ Si(x̄, ȳ)

and

fi(x̄i, ȳi) − fi(x̄i, vi) ∈ Ci(x̄i) ∀ vi ∈ Ti(x̄).

Proof Let Fi : Xi × Yi × Xi � Zi and Gi : Xi × Yi × Yi � Zi be defined by
Fi(xi, yi, ui) = {fi(ui, yi) − fi(xi, yi)} and Gi(xi, yi, vi) = {fi(xi, yi) − fi(xi, vi)}. Then by
(2a), Fi and Gi are l.s.c. Let x1

i , x2
i ∈ Xi and λ ∈ [0, 1], then by condition (2a), we have

Fi(λx1
i + (1 − λ)x2

i , yi, ui)

= {fi(ui, yi) − fi(λxi + (1 − λ)x2
i , yi)}

= {fi(ui, yi) − λfi(x1
i , yi) − (1 − λ)fi(x2

i , yi)}
= {λ[fi(ui, yi) − fi(x1

i , yi)] + (1 − λ)[fi(ui, yi) − fi(x2
i , yi)]}

⊆ λ{fi(ui, yi) − fi(x1
i , yi)} + (1 − λ){fi(ui, yi) − fi(x2

i , yi)}
= λFi(x1

i , yi, ui) + (1 − λ)Fi(x2
i , yi, ui).

So Fi is convex in the first argument. ��

And by condition (1b), we can obtain that Fi is strong type I Ci-diagonally quasi-
convex. Note that Gi(xi, yi, yi) = {fi(xi, yi) − fi(xi, yi)} = {0} ⊆ Ci(xi). By condition
(2b), yi → fi(xi, yi) − fi(xi, vi) is Ci(xi)− quasiconcave and vi → fi(xi, yi) − fi(xi, vi) is
Ci(xi)− quasiconvex. Then by Corollary 3.1, there exists there exists (x̄, ȳ) ∈ X × Y
with x̄i ∈ Si(x̄, ȳ) and ȳi ∈ Ti(x̄) such that

fi(ui, ȳi) − fi(x̄i, ȳi) ∈ Ci(x̄i) ∀ ui ∈ Si(x̄, ȳ)

and

fi(x̄i, ȳi) − fi(x̄i, vi) ∈ Ci(x̄i) ∀ vi ∈ Ti(x̄).

Theorem 4.2 In Theorem 4.1, if we let Zi = R and yi → fi(xi, yi) is quasiconcave,
then there exists x̄ = (x̄i)i∈I ∈ X and ȳ = (ȳi)i∈I ∈ Y with x̄i ∈ Si(x̄, ȳ) and ȳi ∈ Ti(x̄)

such that

min
ui∈Si(x̄,ȳ)

max
vi∈Ti(x̄)

fi(ui, vi) = fi(x̄i, ȳi) = max
vi∈Ti(x̄)

min
ui∈Si(x̄,ȳ)

fi(ui, vi).

Proof Ci(xi) = [0, ∞) for all x ∈ X. Then by Theorem 4.1, there exists (x̄, ȳ) ∈ X×Y
with x̄i ∈ Si(x̄, ȳ) and ȳi ∈ Ti(x̄) such that

fi(ui, ȳi) ≥ fi(x̄i, ȳi) for all ui ∈ Si(x̄, ȳ)
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and

fi(x̄i, ȳi) ≥ fi(x̄i, vi) for all vi ∈ Ti(x̄).

That is,

fi(x̄i, ȳi) = min
ui∈Si(x̄,ȳ)

fi(ui, ȳi)

and

fi(x̄i, ȳi) = max
vi∈Ti(x̄)

fi(x̄i, vi).

Then

fi(x̄i, ȳi) = min
ui∈Si(x̄,ȳ)

fi(ui, ȳi) ≤ max
vi∈Ti(x̄)

min
ui∈Si(x̄,ȳ)

fi(ui, vi)

and

fi(x̄i, ȳi) = max
vi∈Ti(x̄)

fi(x̄i, vi) ≥ min
ui∈Si(x̄,ȳ)

max
vi∈Ti(x̄)

fi(ui, vi).

So

min
ui∈Si(x̄,ȳ)

max
vi∈Ti(x̄)

fi(ui, vi) ≤ fi(x̄i, ȳi) ≤ max
vi∈Ti(x̄)

min
ui∈Si(x̄,ȳ)

fi(ui, vi).

And

min
ui∈Si(x̄,ȳ)

fi(ui, vi) ≤ fi(x̄i, vi) ≤ max
vi∈Ti(x̄)

fi(x̄i, vi) = fi(x̄i, ȳi).

max
vi∈Ti(x̄)

fi(ui, vi) ≥ fi(ui, ȳi) ≥ min
ui∈Si(x̄,ȳ)

fi(ui, ȳi) = fi(x̄i, ȳi).

So we have

max
vi∈Ti(x̄)

min
ui∈Si(x̄,ȳ)

fi(ui, vi) ≤ fi(x̄i, ȳi) ≤ min
ui∈Si(x̄,ȳ)

max
vi∈Ti(x̄)

fi(ui, vi).

Therefore

min
ui∈Si(x̄,ȳ)

max
vi∈Ti(x̄)

fi(ui, vi) = fi(x̄i, ȳi) = max
vi∈Ti(x̄)

min
ui∈Si(x̄,ȳ)

fi(ui, vi). ��

5 Applications to mathematical program with equailibrium constraint, semi-infinite
and bilevel problems

Theorem 5.1 In Corollary 3.1, in addition, let L be a real t.v.s. and h :X ×Y � L be an
u.s.c. multivalued map with compact valued. Then there exists a solution of the problem:
(P1) Min h(K), where K = {(x, y) ∈ X ×Y | ∀ i ∈ I, xi ∈ Si(x, y), yi ∈ Ti(x), fi(xi, yi, ui)

⊆ Ci(xi) ∀ ui ∈ Si(x, y), and gi(xi, yi, vi) ⊆ Ci(xi) ∀ vi ∈ Ti(x)}.
Proof By Corollary 3.1, we have that K �= ∅. Let (x, y) ∈ K, then there exists
a net {(xα , yα)} in K such that (xα , yα) → (x, y). So for each i ∈ I, xα

i ∈ Si(xα , yα),
yα

i ∈ Ti(xα), fi(xα
i , yα

i , ui) ⊆ Ci(xα
i ) for all ui ∈ Si(xα , yα) and gi(xα

i , yα
i , vi) ⊆ Ci(xα

i ) for
all vi ∈ Ti(xα). Since Si and Ti are closed, xi ∈ Si(x, y) and yi ∈ Ti(x). Let ui ∈ Si(x, y).
Since Si is l.s.c., there exists a net {uα

i } such that uα
i → ui and uα

i ∈ Si(xα , yα). Let
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zi ∈ fi(xi, yi, ui). Since fi is l.s.c., there exists a net {zα
i } such that zα

i → zi and zα
i ∈

fi(xα
i , yα

i , uα
i ) ⊆ Ci(xα

i ). Since Ci is closed, zi ∈ Ci(xi). So fi(xi, yi, ui) ⊆ Ci(xi) for all
ui ∈ Si(x, y). Similarly, by the same way we have gi(xi, yi, vi) ⊆ Ci(xi) for all vi ∈ Ti(x).
Therefore (x, y) ∈ K, i.e. K is closed in a compact set

∏
i∈I Si(X × Y) × Ti(X), hence

K is also compact. And since h is u.s.c. with compact valued, it follows Theorem 2.4
that P1 has a solution. ��

Theorem 5.2 In Corollary 3.3, in addition, let L be a real t.v.s. and h : X × Y � L
be an u.s.c. multivalued map with compact valued. Then there exists a solution of the
problem:

(MPEC1) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y), yi ∈
Ti(x), gi(xi, yi) ⊆ Ci(xi), and fi(xi, yi, ui) ⊆ Ci(xi) for all ui ∈ Si(x, y)}.

Proof By Corollary 3.3, we have that K �= ∅. With the similarly discussion in The-
orem 5.1, we can show that K is compact, hence the conclusion is true. ��

Corollary 5.1 In Corollary 3.3, if we replace condition (1) by

(1′) ϕi : Xi × Xi � Zi is a l.s.c. multivalued map and convex in the first argument; ϕi
is strong type I Ci-diagonally quasiconvex

and h be the same as in Theorem 5.2. Then there exists a solution of the problem:
(SIP1) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y), yi ∈

Ti(x), gi(xi, yi) ⊆ Ci(xi), and ϕi(xi, ui) ⊆ Ci(xi) for all ui ∈ Si(x, y)}.

Proof Define fi : Xi × Yi × Xi � Zi by fi(xi, yi, ui) = ϕi(xi, ui). Then fi is l.s.c. and
convex in the first argument and f (·, y, ·) is strong type I Ci-diagonally quasiconvex.
By Theorem 5.2, we have the conclusion. ��

Applying Corollary 3.1, we have the following existence theorem of mathematical
program with equilibrium constraint.

Theorem 5.3 In Corollary 3.2, in addition, let L be a real t.v.s. and h : X × Y � L be
an u.s.c. multivalued map with compact valued. Then there is a solution of the problem:

(MPEC2) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y), yi ∈
Ti(x), fi(xi, yi) ⊆ Ci(xi), and gi(xi, yi, vi) ⊆ Ci(xi) for all vi ∈ Ti(x)}.

For the special case of Theorem 5.3, we have the following Corollary.

Corollary 5.2 Let Si, Ti, h be the same as in Theorem 5.3, Ci(xi) = [0, ∞) and for each
i ∈ I, suppose that

(1) (a) fi : Xi × Yi → R is an affine continuous function;
(b) for each x = (xi)i∈I ∈ X and y = (yi)i∈I ∈ Y, there exists wi ∈ Si(x, y) such

that fi(wi, yi) ≥ 0;
(2) gi : Xi × Yi × Yi → R is a continuous function such that gi(xi, yi, yi) ≥ 0;
(3) for each (xi, vi) ∈ Xi × Yi, yi → gi(xi, yi, vi) is quasiconcave, and for each (xi, yi) ∈

Xi × Yi, vi → gi(xi, yi, vi) is quasiconvex.
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Then there is a solution of the problem:
(MPEC3) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y), yi ∈

Ti(x), fi(xi, yi) ≥ 0, and gi(xi, yi, vi) ≥ 0 for all vi ∈ Ti(x)}.
As an application of Corollary 5.2, we establish the existence theorem of bilevel

problem.

Corollary 5.3 In Corollary 5.2, we replace conditions (2) and (3) by

(2′) ϕi : Xi × Yi → R is a continuous function;
(3′) for each xi ∈ Xi, yi → ϕi(xi, yi) is quasiconvex.

Then there exist a solution of the following Bilevel Problems: (BL) Min h(K),
where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y), yi ∈ Ti(x), fi(xi, yi) ≥
0, and gi(xi, yi) ≤ gi(xi, vi) for all vi ∈ Ti(x)}.
Proof Let Zi = R, Ci = [0, ∞) and gi(xi, yi, vi) = ϕi(xi, vi) − ϕi(xi, yi), then
gi(xi, yi, yi) = 0 ∈ Ci(xi). Moreover, gi(xi, ·, vi) is quasiconcave and gi(xi, yi, ·) is
quaisconvex. Then we obtain the conclusion by Corollary 5.2. ��

By Corollary 3.1, we have the following theorem.

Theorem 5.4 In Corollary 3.4, in addition, let L be a real t.v.s. and h :X ×Y � L be an
u.s.c. multivalued map with compact valued. Then there exists a solution of the problem:
(P2) Min h(K), where K = {(x, y) ∈ X ×Y | ∀ i ∈ I, xi ∈ Si(x, y), yi ∈ Ti(x), fi(xi, yi, ui)

� −intCi(xi) ∀ ui ∈ Si(x, y), and gi(xi, yi, vi) � −intCi(xi) ∀ vi ∈ Ti(x)}.
Theorem 5.5 In Corollary 3.6, in addition, let L be a real t.v.s. and h : X × Y � L
be an u.s.c. multivalued map with compact valued. Then there exists a solution of the
problem:

(MPEC4) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y), yi ∈
Ti(x), gi(xi, yi) � −intCi(xi), and fi(xi, yi, ui) � −intCi(xi) for all ui ∈ Si(x, y)}.

By Corollary 3.6, we have the existence theorem of semi-infinite problem.

Corollary 5.4 In Corollary 3.6, if we replace condition (ii.a) and (ii.b) of Corollary 3.4
by

(2′) ϕi : Xi × Xi � Zi is a continuous multivalued map and concave in the first
argument; ϕi is weak type II Ci-diagonally, quasiconvex

and h be the same as in Theorem 5.5. Then there exists a solution of the problem:
(SIP2) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y), yi ∈

Ti(x), gi(xi, yi) � −intCi(xi), and ϕi(xi, ui) � −intCi(xi) for all ui ∈ Si(x, y)}.

Proof Define fi : Xi × Yi × Xi � Zi by fi(xi, yi, ui) = ϕi(xi, ui). Then fi is an u.s.c.
multivalued map and concave in the first argument. Moreover, f (·, y, ·) is weak type
II Ci−diagonally quasiconvex. By Theorem 5.5, we have the conclusion. ��

Theorem 5.6 In Corollary 3.5, in addition, let L be a real t.v.s. and h : X × Y � L be
an u.s.c. multivalued map with compact valued. Then there is a solution of the problem:

(MPEC5) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y), yi ∈
Ti(x), and fi(xi, yi) � −intCi(xi), gi(xi, yi, vi) � −intCi(xi) for all vi ∈ Ti(x)}.
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Theorem 5.7 In Corollary 3.7, in addition, let L be a real t.v.s. and h : X × Y � L
be an u.s.c. multivalued map with compact valued. Then there exists a solution of the
problem:

(P3) Min h(K), where K={(x, y) ∈ X × Y | ∀ i∈I, xi∈Si(x, y), yi∈Ti(x), fi(xi, yi, ui)

∩ Ci(xi) �= ∅ ∀ ui ∈ Si(x, y), and gi(xi, yi, vi) ∩ Ci(xi) �= ∅ ∀ vi ∈ Ti(x)}.
Theorem 5.8 In Corollary 3.9, in addition, let L be a real t.v.s. and h : X × Y � L
be an u.s.c. multivalued map with compact valued. Then there exists a solution of the
problem:

(MPEC6) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y), yi ∈
Ti(x), gi(xi, yi) ∩ Ci(xi) �= ∅, and fi(xi, yi, ui) ∩ Ci(xi) �= ∅ for all ui ∈ Si(x, y)}.
Theorem 5.9 In Corollary 3.8, in addition, let L be a real t.v.s. and h : X × Y � L be
an u.s.c. multivalued map with compact values. Then there is a solution of the problem:

(MPEC7) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y), yi ∈
Ti(x), and fi(xi, yi) ∩ Ci(xi) �= ∅, gi(xi, yi, vi) ∩ Ci(xi) �= ∅ for all vi ∈ Ti(x)}.
Theorem 5.10 In Corollary 3.8, in addition, let L be a real t.v.s. and h :X × Y � L be
an u.s.c. multivalued map with compact valued. Then there is a solution of the problem:

(MPEC8) Min h(K), where K = {(x, y) ∈ X × Y | for each i ∈ I, xi ∈ Si(x, y), yi ∈
Ti(x), and fi(xi, yi)∩ (−intCi(xi)) = ∅, gi(xi, yi, vi)∩ (−intCi(xi)) = ∅ for all vi ∈ Ti(x)}.

Acknowledgements This research was supported by the National Science Council of the Republic of
China.

References

1. Aubin, J.P., Cellina, A.: Differential Inchisions. Spring Verlag, Berlin, Germany (1994)
2. Ansari, Q.H., Lin, L.J., Su, L.B.: System of simultaneous generalized vector quasi-equilibrium

problems and their applications. J. Optim. Theory Appl. 127: 27–44 (2005)
3. Ansari, Q.H., Chan, W.K., Yang, X.Q.: The system of vector quasi-equilibrium problems with

applications. J. Global Optim. 29(1): 45–57 (2004)
4. Ansari, Q.H., Schible, S., Yao, J.C.: System of vector equilibrium problems and its applications.

J. Optim. Theory and Appl. 107: 547–557 (2000)
5. Ansari, Q.H., Schible, S., Yao, J.C.: The systems of generalized vector equilibrium problems with

applications. J. Global Optim. 22: 3–16 (2003)
6. Ansari, Q.H., Yao, J.C.: Systems of generalized variational inequalities and their applications.

Appl. Anal. 76: 203–217 (2000)
7. Ansari, Q.H., Yao, J.C.: An existence result for the generalized vector equilibrium problems. Appl.

Math. lett. 12: 53–56 (1999)
8. Blum, E., Oettli, W.: From optimization and variation inequilities to equilibrium problems. Math.

Stud. 63: 123–146 (1994)
9. Hou, S.H., Yu, H., Chen, G.Y.: On vector quasi-equilibrium problems with set-valued maps.

J. Optim. Theory Appl. 119(3): 485–498 (2003)
10. Lin, L.J.: Existence theorems of simultaneous equilibrium problems and generalized vector quasi-

saddle points. J. Global Optim. 32: 613–632 (2005)
11. Lin, L.J.: System of generalized vector quasi-equilibrium problem with application to fixed point

theorem for a family of nonexpansive multivalued maps. J. Global Optim. 34: 15–32 (2006)
12. Lin, L.J.: Existence Theorems for Bilevel Problems with Applications to Mathematical Programs

with Equilibrium constraints and Semi-infinite Problems. J. Optim. Theory and Appl. (2007)
13. Lin, L.J., Tasi, Y.L.: On vector quasi-saddle points of set-valued maps. In: Eberhard, A., Had-

jisavvas, N., Luc, D. T., (eds.) Generalized Convexity Generalized Monotonicity and Applications,
pp. 311–319. Kluwer Academic Publishers, Dordrecht, The Netherlands (2005)

14. Lin, L.J., Still, G.: Mathematical Programs with Equilibrium Constraints: The structure of the
feasible set and the existence of feasible points. Optimization, 55: 205–219 (2006)



J Glob Optim (2007) 37:195–213 213

15. Luc, D.C.: Theory of vector optimization. Lecture Notes in Economics and Mathematical Systems,
Vol. 319. Springer, Berlin (1989)

16. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraint. Cambridge
University Press, Cambridge (1997)

17. Tan, N.X.: Quasi-variation inequalities in topological linear locally convex Hausdorff spaces.
Mathematische Nachrichter 122: 231–246 (1995)

18. Yuan, G.X.-Z.: KKM Theory and Applications in Nonlinear Analysis. Marcel Dekker Inc., New
York, Basel (1999)


