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Abstract In this paper, we study the mathematical program with system of equilib-
rium constraints. This problem contains bilevel program with system of equilibrium
constraints, semi-infinite program with system of equilibrium constraints, mathemat-
ical program with Nash equilibrium constraints, mathematical program with system
of mixed variational like inequalities constraints. We establish the existence theo-
rems of mathematical program with system of equilibrium constraints under various
assumptions.

Keywords Mathematical program (resp. bilevel problem, semi-infinite problem)
with system of equilibrium constraints · Concave (resp. convex) multivalued map ·
Upper (resp. lower) semicontinuous multivalued map

1 Introduction

Let I be any index set. For each i ∈ I, let Xi be a nonempty subset of a topological
space Ei, Yi be a nonempty subset of a topological vector space (in short t.v.s.) Vi,
X = �i∈IXi, Y = �i∈IYi, fi : X × Yi × Yi → R, h : X × Y → R and gi : Xi × Y → R be
functions, Ti : X −◦Yi be multivalued map. In this paper, we study the mathematical
program with system of equilibrium constraints (MPSEC) of type I.
MPSEC I: min(x,y) h(x, y) such that x = (xi)i∈I ∈ X, y = (yi)i∈I ∈ Y, yi ∈ Ti(x),
gi(xi, y) ≥ 0 and

fi(x, yi, vi) ≥ 0 for all vi ∈ Ti(x) and all i ∈ I.

If fi(x, yi, vi) = ϕi(x, vi) − ϕi(x, yi), where ϕi:X × Yi → R is a function, then the
MPSEC will be reduced to the bilevel problem with system of equilibrium constraints
(BLSEC).
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BLSEC: min(x,y) h(x, y) such that x = (xi)i∈I ∈ X, y = (yi)i∈I ∈ Y, yi ∈ Ti(x),
gi(xi, y) ≥ 0 and

yi is a solution of the problem Q(x) : min
vi∈Ti(x)

ϕi(x, vi) for all i ∈ I.

If fi(x, yi, vi) = ϕi(x, vi) for all x ∈ X, yi ∈ Yi and vi ∈ Yi, then the MPSEC will be
reduced to the semi-infinite program with system of equilibrium constraints (SIPSEC):
SIPSEC: min(x,y) h(x, y) such that x = (xi)i∈I ∈ X, y = (yi)i∈I , gi(xi, y) ≥ 0, yi ∈ Ti(x),

and ϕi(x, vi) ≥ 0 for all vi ∈ Ti(x) and for all i ∈ I.

If fi(x, yi, vi) = 〈Fi(x), ηi(yi, vi)〉 + pi(vi) − pi(yi), where ηi : Yi × Yi → Yi, pi : Yi → R,
are functions Fi : X → Y∗

i , where Y∗
i is the dual space of Yi and 〈·, ·〉 be the dual pair

between Yi and Y∗
i , then the MPSEC will be reduced to the mathematical program

with system of mixed variational-like inequalities constraints (MPSMVLI):
MPSMVLI: min(x,y) h(x, y), x = (xi)i∈I ∈ X, y = (yi)i∈I ∈ Y, yi ∈ Ti(x), gi(xi, y)≥ 0 and

〈Fi(x), ηi(yi, vi)〉 + pi(vi) − pi(yi) ≥ 0 for all vi ∈ Ti(x) and for all i ∈ I.

If pi(yi) = 0 for all yi ∈ Yi and for all i ∈ I. Then the MPSMVLI will be reduced to
the mathematical program with system of variational-like inequalities constraints.
MPSVLI: min(x,y) h(x, y) such that x = (xi)i∈I ∈ X, y = (yi)i∈I ∈ Y, yi ∈ Ti(x),
gi(xi, y) ≥ 0

and 〈Fi(x), ηi(yi, vi)〉 ≥ 0 for all vi ∈ Ti(x) and for all i ∈ I.

If I is a singleton, f :X×Y×Y → R, g:X×Y → R and ϕ : X×Y → R are functions and
T : x → Y are multivalued maps. Then the MPSEC will be reduced to the problem:

MPEC: min
(x,y)

h(x, y) such that g(x, y) ≥ 0 and f (x, y, v) ≥ 0 for all v ∈ T(x);

BLSEC will be reduced to the problem:

BL: min
(x,y)

h(x, y) such that g(x, y) ≥ 0 and y is a solution of Q(x) : min
t∈T(x)

ϕ(x, t);

SIPEC will be reduced to the problem:

SIP: min
(x,y)

h(x, y) such that g(x, y) ≥ 0 and ϕ(x, v) ≥ 0 for all v ∈ T(x).

We also study the mathematical problem with systems of equilibrium constraints of
type II.
MPSEC II: minx,y h(x, y) such that x ∈ X, y = (yi)i∈I ∈ Y, yi ∈ Ti(x), gi(x, yi) ≥ 0,

fi(x, y, vi) ≥ 0 for all vi ∈ Ti(x) and for all i ∈ I,

where gi : X × Yi → R and fi : X × Y × Yi → R are functions.
If fi(x, y, vi) = ϕi(y, vi) − ϕi(y, yi). Then the MPSEC II will be reduced to the mathe-
matical program with Nash equilibrium constraints:
MPNEC: min(x,y) h(x, y) such that x ∈ X, y = (yi)i∈I , yi ∈ Ti(x), gi(x, yi) ≥ 0 and

ϕi(y, vi) ≥ ϕi(y, yi) for all vi ∈ Ti(x).

MPEC, SIP; and BL represent three important classes of optimization problems which
have been investigated in a large number of papers and books (see, e.g [2, 3, 8–11]
and references there in ). These papers mainly deal with the optimal conditions and
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numerical methods used to solve MPEC, SIP, and BL. Typically the existence of a
feasible point is tacitly assumed. The aim of this paper is to establish the sufficient
conditions for the existence of the feasible points of MPSEC and the solution of this
type of problem. We investigate under what assumptions that MPSEC has a solution.
The main tools of this paper are maximal element theorem for a family of multi-
valued maps and Himmelberg fixed point theorem. Our approach are different from
[7]. Since MPSEC contains many problems, as special cases, our results contain many
existence results of the problems which are the special cases of mathematical program
with system of equilibrium constraints.

2 Preliminaries

Let T : X − ◦Y be a multivalued map from a space X to another space Y. By
GrT = {(x, y) ∈ X × Y : x ∈ X, y ∈ T(x)} will denote the graph of T. The inverse T−
of T is the multivalued map defined by x ∈ T−(y) if and only y ∈ T(x).

Let X and Y be topological spaces (in short t.s.). A multivalued map T : X −◦Y is
said to be upper semicontinuous (in short u.s.c.) (resp. lower semicontinuous, in short
l.s.c.) at x ∈ X, if for every open set U in Y with T(x) ⊆ U (resp. T(x) ∩ U 
= ∅), there
exists an open neighborhood V(x) of x such that T(x′) ⊆ U (resp. T(x′) ∩ U 
= ∅) for
all x′ ∈ V(x); T is said to be u.s.c. (resp. l.s.c.) on X if T is u.s.c. (resp. l.s.c.) at every
point of X; T is continuous at x if T is both u.s.c. and l.s.c. at x ; T is said to be closed
if Gr T is a closed subset of X × Y; T is said to be compact if there exists a compact
subset K of Y such that T(X) ⊆ K. Let A ⊆ X, by Ā will denote the closure of A.

The following theorems and lemma are needed in this paper.

Theorem 2.1 (Himmelberg [6]) Let X be a convex subset of a locally convex t.v.s.
and D be a nonempty compact subset of X. Let T : X −◦D be an u.s.c. multivalued
map such that for each x ∈ X, T(x) is a nonempty closed convex subset of D. Then
there exists a point x̄ ∈ D such that x̄ ∈ T(x̄).

Theorem 2.2 [1] Let X and Y be Hausdorff topological spaces and T : X −◦Y be a
multivalued map.

(1) If Y is compact and T is closed, then T is u.s.c;
(2) If T is u.s.c. and for each x ∈ X, T(x) is a closed set, then T is closed;
(3) If X is compact and T is u.s.c. with compact values, then T(X) is compact.

Lemma 2.1 [12] Let X and Y be Hausdorff topological spaces and T : X −◦Y be a
multivalued map and x ∈ X, then T is l.s.c. at x ∈ X if and only if for any y ∈ T(x), and
any net {xα}, xα → x, there is a net {yα} such that yα ∈ T(xα) and yα → y.

Definition 2.1 Let X and Y be vector spaces and T : X −◦Y be a multivalued map.

(1) T is concave if for all x1, x2 ∈ X and λ ∈ [0, 1],
λT(x1) + (1 − λ)T(x2) ⊂ T(λx1 + (1 − λ)x2);

(2) T is convex if for all x1, x2 ∈ X and λ ∈ [0, 1],
T(λx1 + (1 − λ)x2) ⊆ λT(x1) + (1 − λ)T(x2).

Let A be a subset of a t.v.s. E, coA will denote the convex hull of A.



278 J Glob Optim (2007) 37:275–286

Definition 2.2 Let X be a convex subset of a t.v.s. and a multivalued map T : X − ◦X
is called a KKM mapping if for any finite subset N of X;

(coN) ⊆ T(N) = ∪{T(x) : x ∈ N}.
Theorem 2.3 [4] Let E be a Hausdorff t.v.s., Y be a convex subset of E, X be a non-
empty subset of Y, T : X − ◦Y be a KKM map. Suppose that for each x ∈ X, T(x) is
closed and there exists x0 ∈ X such that T(x0) is compact. Then ∩x∈XT(x) 
= ∅.

3 Mathematical programming with systems of equilibrium constraints of type I

In this section, we study the following mathematical programming with systems of
equilibrium constraints of type I:

min
(x,y)

h(x, y), (x, y) ∈ Mi for all i ∈ I, (1)

where Mi = {(x, y) ∈ X × Y : x = (xi)i∈I ∈ X, y = (yi)i∈I ∈ Y, yi ∈ Ti(x), gi(xi, y) ≥
0, fi(x, yi, vi) ≥ 0 for all vi ∈ Ti(x)}.
Theorem 3.1 Let I be any index set. For each i ∈ I, let Xi be a nonempty compact
convex subset of a Hausdorff locally convex t.v.s. Ei, Yi be a nonempty closed convex
subset of a locally convex t.v.s. Vi. Let Y = �i∈IYi, X = �i∈IXi, Ti:X −◦Yi be a contin-
uous multivalued map with nonempty compact convex values. Let fi : X × Yi × Yi → R

and gi : Xi × Y → R be functions satisfying the following conditions:

(1) fi : X × Yi × Yi → R is an u.s.c. function;
(2) for each (x, yi) ∈ X × Yi, fi(x, yi, yi) ≥ 0 and for each (x, yi) ∈ X × Yi, vi →

fi(x, yi, vi) is quasiconvex, and for each (x, vi) ∈ X × Yi, yi → fi(x, yi, vi) is
quasiconcave;

(3) gi : Xi × Y → R is an u.s.c. function; and
(4) for each fixed y ∈ Y, xi → gi(xi, y) is quasiconcave; and for each y ∈ Y, there

exists wi ∈ Xi such that gi(wi, y) ≥ 0.

Then there exists x̄ ∈ X, ȳ ∈ (ȳi)i∈I ∈ Y = �i∈IYi such that ȳi ∈ Ti(x̄), gi(x̄i, ȳ) ≥ 0
and fi(x̄, ȳi, vi) ≥ 0 for all vi ∈ Ti(x̄) and for all i ∈ I.

Proof Let Ai : Y −◦Xi be defined by

Ai(y) = {wi ∈ Xi : gi(wi, y) ≥ 0},
where Ai is closed. Indeed, if (xi, y) ∈ GrAi, then there exists a net {(xα

i , yα)} in GrAi
such that (xα

i , yα) → (xi, y). One has xα
i ∈ Xi, gi(xα

i , yα) ≥ 0. Since Xi is closed and
gi is u.s.c, xi ∈ Xi and gi(xi, y) ≥ 0. Therefore, (xi, y) ∈ GrAi and Ai is closed. But
Ai(Y) ⊆ Xi and Xi is compact, it follows that Ai : Y −◦X is u.s.c. As Ai is closed,
Ai(y) is a closed set for each y ∈ Y. By assumption, Ai(y) is nonempty. Since for each
y ∈ Y, wi → gi(w, y) is quasiconcave and Xi is a convex set, Ai(y) is convex for each
y ∈ Y. For each x ∈ X, let Qi(x) : Ti(x) −◦Ti(x) be defined by

Qi(x)(vi) = {yi ∈ Ti(x) : fi(x, yi, vi) ≥ 0}.
Then Qi(x) : Ti(x) − ◦Ti(x) is a KKM map. Ineeed, if Qi(x) is not a KKM map,
then there exists a finite subset {v1

i , v2
i , . . . , vn

i } in Ti(x) such that co{v1
i , v2

i , . . . , vn
i } 
⊆
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∪n
j∈1Qi(x)(vj

i). Hence there exists vi ∈ co{v1
i , v2

i , . . . , vn
i } such that vi /∈ Qi(x)(vj

i) for

all j = 1, 2, . . . , n. But vj
i ∈ Ti(x) and Ti(x) is convex, we see vi ∈ Ti(x). Therefore,

fi(x, vi, vj
i) < 0. Since ui → fi(x, yi, ui) is quasiconvex,

fi(x, vi, vi) ≤ max{fi(x, vi, v1
i ), fi(x, vi, v2

i ), . . . , fi(x, vi, vn
i )} < 0.

This contradicts to fi(x, yi, yi) ≥ 0 for all (x, yi) ∈ X × Yi. This shows that for each
x ∈ X, Qi(x) : Ti(x) −◦Ti(x) is a KKM map.
Since for each x ∈ X, Ti(x) is closed and fi : X×Yi×Yi → R is u.s.c. It is easy to see that
Qi(x)(vi) is a closed subset of Ti(x). But Ti(x) is compact, therefore Qi(x)(vi) is a com-
pact set. Then by Theorem 2.3 that ∩vi∈Ti(x)Qi(x)(vi) 
= ∅. Let yi ∈ ∩vi∈Ti(x)Qi(x)(vi),
then yi ∈ Ti(x) and fi(x, yi, vi) ≥ 0 for all vi ∈ Ti(x).

Let Bi : X � Yi be defined by

Bi(x) = {yi ∈ Ti(x) : fi(x, yi, vi) ≥ 0 for all vi ∈ Ti(x)}.
This shows that Bi(x) 
= ∅ for all x ∈ X and i ∈ I. Bi : X −◦Yi is closed. Indeed,

if (x, yi) ∈ GrBi, then there exists a net (xα , yα
i ) ∈ GrBi such that (xα , yα

i ) → (x, yi).
One has yα

i ∈ Ti(xα) and fi(xα , yα
i , vi) ≥ 0 for all vi ∈ Ti(xα). Let vi ∈ Ti(x). Since

Ti : X −◦Yi is l.s.c., there exists a net {vα
i } in Ti(xα) such that vα

i → vi. Since Ti is an
u.s.c. multivalued map with closed values, it follows from Theorem 2.2 that Ti is closed
and yi ∈ Ti(x). We also have fi(xα , yα

i , vα
i ) ≥ 0. Since fi is u.s.c., fi(x, yi, vi) ≥ 0. This

shows that (x, yi, vi) ∈ GrBi and Bi is closed. By the assumption that X is compact
and Ti : X −◦Yi is an u.s.c. multivalued map with nonempty compact values, it follows
from Theorem 2.2 that Ti(X) is compact. But Bi(X) ⊆ Ti(X), then by Theorem 2.2
Bi : X −◦Y is an u.s.c. multivalued map. Since Bi is closed, Bi(x) is a closed set for
each x ∈ X. Let A : Y −◦X and B : X −◦Y be defined by A(y) = �i∈IAi(y) and
B(x) = �i∈IBi(x), then by Lemma 3 [5] that A and B are compact u.s.c. multivalued
map with nonempty closed convex values. Let F : X × Y −◦X × Y be defined by
F(x, y) = A(y) × B(x). Again by Lemma 3 [5] that F is a compact u.s.c. multivlaued
map with nonempty closed convex values. Then by Himmelberg fixed point theo-
rem that there exists (x̄, ȳ) ∈ F(x̄, ȳ). That is x̄ ∈ A(ȳ) and ȳ ∈ T(x̄). Therefore,
x̄ = (xi)i∈I ∈ X, ȳ = (ȳi)i∈I ∈ Y, ȳi ∈ Ti(x̄), gi(x̄i, ȳ) ≥ 0 and fi(x̄, ȳi, vi) ≥ 0 for all
vi ∈ Ti(x̄) and for all i ∈ I.

Theorem 3.2 In Theorem 3.1, if we assume further that h:X ×Y → R is a l.s.c. function.
Then there exists a solution of the program:
min(x,y) h(x, y) such that x = (xi)i∈I ∈ X, y = (yi)i∈I ∈ Y, yi ∈ Ti(x) gi(xi, y) ≥ 0 and
fi(x, yi, vi) ≥ 0 for all vi ∈ Ti(x) and for all i ∈ I.

Proof For each i ∈ I, Mi is a closed set for each i ∈ I. Indeed, if (x, y) ∈ Mi, then
there exists a net (xα , yα) ∈ Mi such that (xα , yα) → (x, y). Let yα = (yα

i )i∈I and
y = (yi)i∈I . One has xα

i → xi, yα
i → yi, yα

i ∈ Ti(xα), gi(xα
i , yα) ≥ 0, and fi(xα , yα

i , vi) ≥ 0
for all vi ∈ Ti(xα). Let vi ∈ Ti(x). Since Ti is l.s.c., there exists a net {vα

i } such that
vα

i ∈ Ti(xα) and vα
i → vi. Therefore fi(xα , yα

i , vα
i ) ≥ 0. Since fi and gi are u.s.c. func-

tions, gi(xi, y) ≥ 0 and fi(x, yi, vi) ≥ 0. By assumption and Theorem 2.2 that Ti is
closed. Hence yi ∈ Ti(x). This shows that (x, y) ∈ Mi and Mi is a closed set for each
i ∈ I. Since Mi ⊆ X × Ti(X) and X × Ti(X) is compact. Mi is a compact set for each
i ∈ I. Let M = ∩i∈IMi, then M is a compact set. By Theorem 3.1 that M 
= ∅. Since
h : X × Y → R is l.s.c. on M and M is a compact subset of X × Y. Therefore, there
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exists (x̄, ȳ) ∈ M such that h(x̄, ȳ) = min h(M). This shows that there exists a solution
of problem (1).

Remark Theorem 3.2 is different from any results in [3, 8–11].

For the special cases of the Theorem 3.2, we have the following existence theorem
of bilevel problem.

Corollary 3.1 Let I, Xi, X, Yi, Ei, Vi, Ti, hi and gi be the same as in Theorem 3.1. Let
fi:X × Yi → R be a continuous function such that for each x ∈ X, vi → fi(x, vi) is
quasi-convex for each fixed x ∈ X. Then there exists a solution of the problem:
min
(x,y)

h(x, y) such that x = (xi)i∈I ∈ X, y = (yi)i∈I ∈ Y, yi ∈ Ti(x), gi(xi, y) ≥ 0 and yi is

a solution of Qi(x):

min
vi∈Ti(x)

fi(x, vi) for all i ∈ I.

Proof Let Fi(x, yi, vi)=fi(x, vi)−fi(x, yi). Then Corollary 3.1 follows from Theorem 3.2.

Remark In Corollary 3.1, if we assume further that fi(x, yi) ≥ 0 for all x ∈ X,
y = (yi)i∈I ∈ Y, yi ∈ Ti(x) and gi(xi, y) ≥ 0. Then there exists a solution of the
semi-infinite program:
min
(x,y)

h(x, y) such that x = (xi)i∈I ∈ X, y = (yi)i∈I ∈ Y, yi ∈ Ti(x), gi(xi, y) ≥ 0 and

fi(x, vi) ≥ 0 for all vi ∈ Ti(x) and for all i ∈ I.

Corollary 3.2 Let I, Xi, X, Yi, Ei, Vi, Ti and h and gi be the same as in Theorem 3.1.
Let Hi : X → Y∗

i be a continuous function, ηi : Yi × Yi → Yi be an affine continuous
function such that ηi(yi, yi) = 0 for all yi ∈ Yi, where Y∗

i is the dual space of Yi and 〈·, ·〉
will denote the dual pair between Yi and Y∗

i . Let pi : Yi → R be a continuous convex
function. Then there exists a solution of the program:

min
(x,y)

h(x, y) such that x = (xi)i∈I ∈ X, y = (yi)i∈I ∈ Y, yi ∈ Ti(x), gi(xi, y) ≥ 0

and

〈Hi(x), ηi(yi, vi)〉 + pi(vi) − pi(yi) ≥ 0 for all vi ∈ Ti(x)

and for all i ∈ I.

Proof Let fi : X × Yi × Yi → R be defined by

fi(x, yi, vi) = 〈Hi(x), ηi(yi, vi)〉 + pi(vi) − pi(yi).

Then fi : X × Yi × Yi → R is a continuous function and for each fixed (x, yi) ∈ X × Yi,
vi → fi(x, yi, vi) is quasiconvex. Indeed, if vi, v′

i ∈ Yi and λ ∈ [0, 1],
fi(x, yi, λvi + (1 − λ)v′

i)

= 〈Hi(x), ηi(yi, λvi + (1 − λ)v′
i)〉 + pi(λvi + (1 − λ)v′

i) − pi(yi)

≤ λ〈Hi(x), ηi(yi, vi)〉 + (1 − λ)〈Hi(x), ηi(yi, v′
i)〉

+λpi(vi) + (1 − λ)pi(v′
i) − pi(yi)

= λfi(x, yi, vi) + (1 − λ)fi(x, yi, v′
i)

≤ max{fi(x, yi, vi), fi(x, yi, v′
i)}.
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Hence vi → fi(x, yi, vi) is quasi-convex for each fixed (x, yi) ∈ X × Yi. Similarly,
yi → fi(x, yi, vi) is quasi-concave for each fixed (x, vi) ∈ X × Yi.

f (x, yi, yi) = 0 for all (x, yi) × X × Yi.

Then by Theorem 3.1, there exists a solution of the program:

min
(x,y)

h(x, y) such that x = (xi)i∈I ∈ X, y = (yi)i∈I , yi ∈ Ti(x), gi(xi, y) ≥ 0

and

〈Hi(x), ηi(yi, vi)〉 + pi(vi) − pi(yi) ≥ 0 for all vi ∈ Ti(x) and for all i ∈ I.

Remark In Corollary 3.2, if I is a singleton, pi(vi) = 0 for all vi ∈ Yi. Then Corollary
3.2 will be reduced to the usual mathematical program with equilibrium constraint
which was studied in [9].

Corollary 3.3 Let I, Xi, Ei, Yi, h, Vi and Ti be the same as in Theorem 3.1. Let fi:X ×
Yi × Yi → R be a function satisfying the following conditions:

(1) fi : X × Yi × Yi → R is an u.s.c. function;
(2) for each (x, yi) ∈ X × Yi, fi(x, yi, yi) ≥ 0 and vi → fi(x, yi, vi) is quasi-convex; and
(3) for each (x, vi) ∈ X × Yi, yi → fi(x, yi, vi) is quasi-concave.

Then there exists a solution of the program:

min
(x,y)

h(x, y) such that x ∈ X, y = (yi)i∈I ∈ Y, yi ∈ Ti(x) and fi(x, yi, vi) ≥ 0 for all vi ∈
Ti(x) and all i ∈ I.

Proof Letting gi = 0 in Theorem 3.2.

Corollary 3.4 In Corollary 3.3, if we assume further that gi : X × Yi → R is a function
satisfying the following condition:

(1) gi : X × Yi → R is an u.s.c. function;
(2) for each x ∈ X, yi → gi(x, yi) is quasi-concave;
(3) for each x ∈ X, there exists yi ∈ Ti(x) such that gi(x, yi) ≥ 0.

Then there exists a solution of the program:

min
(x,y)

h(x, y) such that x ∈ X, y = (yi)i∈I , yi ∈ Ti(x),

gi(x, yi) ≥ 0 and fi(x, yi, vi) ≥ 0 for all vi ∈ Ti(x) for all gi(x, vi) ≥ 0

and for all i ∈ I.

Proof Let Fi(x) = {yi ∈ Ti(x) : gi(x, yi) ≥ 0}. Then follow the same argument as in
Theorem 3.1, and we can show that Fi : X −◦Yi is an u.s.c, multivalued map with
nonempty closed convex values. Then by Corollary 3.3, there exists a solution of the
program:

min
(x,y)

h(x, y) such that x ∈ X, y = (yi)i∈I , yi ∈ Fi(x),

and fi(x, yi, vi) ≥ 0 for all vi ∈ Fi(x).
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Therefore, the following program has a solution.

min
x,y

h(x, y) such that x ∈ X, y = (yi)i∈I , yi ∈ Ti(x),

gi(x, yi) ≥ 0 and fi(x, yi, vi) ≥ 0 for all vi ∈ Ti(x) for all gi(x, vi) ≥ 0

and for all i ∈ I.

Remark (1) The function gi defined in Theorem 3.1 and the function gi defined in
Corollary 3.4 are different.

If we let gi = 0 in Corollary 3.4, then Corollary 3.4 reduces to Corollary 3.3.
Therefore, Corollaries 3.3 and 3.4 are equivalent.

4 Mathematical programming with systems of equilibrium constraints of type II

In this section, we study the following mathematical programming with systems of
equilibrium constraints of type II.

min
(x,y)

h(x, y), (x, y) ∈ Hi for all i ∈ I, (2)

where Hi = {(x, y) ∈ X×K : y = (yi)i∈I , yi ∈ Ti(x) and fi(x, y, vi) ≥ 0 for all vi ∈ Ti(x)}.
The following Lemmas are needed in this section.

Lemma 4.1 [7] Let I be any index set and let Xi be a nonempty convex subset of a t.v.s.
Ei, X = �i∈IXi. For each i ∈ I, let Pi, Qi : X −◦Xi be multivalued maps satisfying the
following conditions:

(1) for each x ∈ X, coPi(x) ⊆ Qi(x);
(2) for each x = (xi)i∈I ∈ X, xi /∈ Qi(x);
(3) for each yi ∈ Xi, P−

i (yi) is open; and
(4) there exists a nonempty compact subset K of X and a compact convex subset Di of

Xi for all i ∈ I such that for each x ∈ X\K, there exist j ∈ I and yj ∈ Xj such that
x ∈ P−

j (yj).

Then there exists x̄ ∈ X such that Pi(x̄) = ∅ for all i ∈ I.

Lemma 4.2 Let X be a nonempty subset of a topological space E, I be any index set. For
each i ∈ I, let Yi be a nonempty convex subset of a Hausdorff t.v.s. Vi. Let Y = �i∈IYi,
fi : X ×Y ×Yi → R be a function and Ti : X −◦Yi be a multivalued map with nonempty
closed convex values satisfying the following conditions:

(1) for each fixed (x, vi) ∈ X × Yi, y → fi(x, y, vi) is u.s.c;
(2) for each (x, y) ∈ X × Y, vi → fi(x, y, vi) is quasi-convex;
(3) for each x ∈ X, y = (yi)i∈I ∈ Y, fi(x, y, yi) ≥ 0;
(4) there exists a compact subset K of Y and a nonempty compact convex subset Di

of Yi for each i ∈ I such that for each x ∈ X, y ∈ Y\K, there exist j ∈ I and
vj ∈ D ∩ Tj(x) such that fj(x, y, vj) < 0.

Then for each x ∈ X, there exists ȳ = (ȳi)i∈I ∈ Y such that ȳi ∈ Ti(x) and

fi(x, ȳ, vi) ≥ 0 for all vi ∈ Ti(x) and for all i ∈ I.
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Proof For each i ∈ I and x ∈ X, let Ai(x) : �i∈ITi(x) −◦Ti(x) be defined by

Ai(x)(y) = {vi ∈ Ti(x) : fi(x, y, vi) < 0} for y = (yi)i∈I ∈ �i∈ITi(x).

By (2) and Ti(x) is convex, Ai(x)(y) is a convex set for each x ∈ X, y ∈ Y. By (3),
yi /∈ [Ai(x)(y)]. By (1), for each ui ∈ Ti(x), [Ai(x)]−(ui) is open in Ti(x). By (4), for
each x ∈ X and each y ∈ �i∈ITi(x)\K there exist j ∈ I and a nonempty compact
convex set Dj ∩ Tj(x) and vj ∈ Dj ∩ Tj(x) such that y ∈ [Aj(x)]−(vj).
Then it follows from Lemma 4.1 that there exists ȳ ∈ Y such that Ai(x)(ȳ) = ∅ for all
i ∈ I. That is for each x ∈ X, there exists ȳ = (ȳi)i∈I ∈ Y such that ȳi ∈ Ti(x)

fi(x, ȳ, vi) ≥ 0 for all i ∈ I and for all vi ∈ Ti(x).

If Ti(x) is a nonempty compact convex subset of Yi for each x ∈ X and i ∈ I, then
we the following Lemma.

Lemma 4.3 Lemma 4.2 is true if condition (4) in Lemma 4.2 is replaced by (iv′)
Ti : X −◦Yi is a multivalued map with nonempty compact convex values.

Proof Since Ti(x) is compact for each x ∈ X and i ∈ I, �i∈ITi(x) is compact for each
x ∈ X and condition (iv) of Lemma 4.1 is satisfied. Follow the same argument as in
Lemma 4.2, we can prove Lemma 4.3

As a simple consequence of Lemma 4.3, we have the following theorems.

Theorem 4.1 In Lemma 4.2, if we assume further that X is a nonempty compact subset
of a Hausdorff topological space, h:X × Y → R is a l.s.c. function, Ti : X −◦Yi is a con-
tinuous multivalued map with nonempty closed convex values and fi : X ×Y ×Yi → R

is an u.s.c. function. Then there exists a solution of the program (2).

Proof By Lemma 4.2, for each x ∈ X, there exists y = (yi)i∈I ∈ Y such that yi ∈ Ti(x)

and fi(x, y, vi) ≥ 0 for all vi ∈ Ti(x) and for all i ∈ I. By assumption (4), y ∈ K. Follow
the same argument as in Theorem 3.2, we can prove that Hi is a closed subset of X ×K
for each i ∈ I. Since X × K is compact, Hi is compact for all i ∈ I. Let H = ∩i∈IHi.
Then H is a nonempty compact convex subset of X × K. Since h is l.s.c., there exists
(x̄, ȳ) ∈ H such that h(x̄, ȳ) = min h(H). Therefore, there exists a minimizer of the
problem (2).

Remark Theorem 4.1 is different from Theorem 5[8].

Theorem 4.2 In Lemma 4.3, if we assume further that X is a nonempty compact subset
of a Hausdorff topological space, h : X × Y → R is a l.s.c. function and Ti : X −◦Yi is a
continuous multivalued map with nonempty compact convex values. Then there exists
a minimizer of the problem (2).

Proof Let Hi and H be defined as in Theorem 4.1. By Lemma 4.3, H 
= ∅.
Since X is compact and Ti : X −◦Yi is an u.s.c. multivalued map with nonempty

compact values, it follows from Theorem 2.1 that Ti(X) is compact. Following the same
argument as in Theorem 4.1, we can show that Hi is closed. But Hi ⊆ X × �i∈ITi(X)

and X × �i∈ITi(X) is compact. Hi is compact. Hence H is compact and the theorem
follows from the fact that h is l.s.c.

Remark Theorem 4.1 is different from Theorem 5 [8]. For F i ⊂ X × Yi, by πXFi will
denote the projection of Fi on X and by πYiFi will denote the projection of Fi on Yi.
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Theorem 4.3 In Theorem 4.1, if we assume further that for each i ∈ I, gi : X × Yi → R

is an u.s.c. quasi-concave function. Suppose that Fi = {(x, yi) ∈ X × Yi:gi(x, yi) ≥ 0} is
nonempty, Bi = πYiFi, Ai = πXFi, A = ∩i∈IAi 
= ∅, Ti|A : A → Bi, and GrTi|A ⊆ Fi
for each i ∈ I. Then there exists a solution of the program:

min(x,y) h(x, y) such that x ∈ X, y = (yi)i∈I , yi ∈ Ti(x),

gi(x, yi) ≥ 0 and fi(x, y, vi) ≥ 0 for all vi ∈ Ti(x)

and for all i ∈ I.

Proof It is easy to see that Fi is a nonempty closed convex subset of X × Yi for each
i ∈ I. Therefore Ai is a nonempty closed convex subset of X and Bi is a nonempty
closed convex of Yi. Since X is compact, A is compact. By Theorem 3.3 there exist
x ∈ A, y = (yi)i∈I , yi ∈ Ti(x), such that fi(x, y, vi) ≥ 0 for all vi ∈ Ti(x) and for all i ∈ I.
Since (x, yi) ∈ GrTi|A ⊆ Fi, gi(x, yi) ≥ 0 for all i ∈ I.

The following Lemma slightly generalizes Theorem 5(a) [8]. Although the proof is
essentially the same, we give its proof for the sake of completeness.

Remark Theorem 4.3 is different from Theorem 6 [8].

Lemma 4.4 Let I be any index set. For each i ∈ I, let fi : X × Y × Yi → R be a
quasi-concave function, and Ti : X −◦Yi be a convex and concave multivalued map.
Let

Hi = {(x, y) ∈ X × Y : y = (yi)i∈I , yi ∈ Ti(x) and fi(x, y, vi) ≥ 0 for all vi ∈ Ti(x)}.
Then Hi is a convex set for all i ∈ I.

Proof Let (x, y) and (x′, y′) ∈ Hi and λ ∈ [0, 1]. Then x, x′ ∈ X, y = (yi)i∈I ∈ Y, y′ =
(y′

i)i∈I ∈ Y, yi ∈ Ti(x), y′
i ∈ Ti(x′), fi(x, y, vi) ≥ 0 for all vi ∈ Ti(x) and fi(x′, y′, v′

i) ≥ 0
for all v′

i ∈ Ti(x′). We have (λx+ (1−λ)x′, λy+ (1−λ)y′) ∈ X ×Y. Since Ti is concave,
λyi + (1 − λ)y′

i ∈ Ti(λx + (1 − λ)x′). Let ui ∈ Ti(λx + (1 − λ)x′). Since Ti is convex,
there exist vi ∈ Ti(x), v′

i ∈ Ti(x′) such that ui = λvi + (1 − λ)v′
i. By quasi-convexity of

fi, either 0 ≤ fi(x, y, vi) ≤ fi(λx + (1 − λ)x′, λy + (1 − λ)y′, λvi + (1 − λ)v′
i) or

0 ≤ fi(x′, y′, v′
i) ≤ fi(λx + (1 − λ)x′, λy + (1 − λ)y′, λvi + (1 − λ)v′

i).

In any case, fi(λx + (1 − λ)x′, λy + (1 − λ)y′, ui) ≥ 0 for any ui ∈ Ti(λx + (1 − λ)x′).
This shows that λ(x, y) + (1 − λ)(x′, y′) ∈ Hi and Hi is convex.

Theorem 4.4 Under the assumptions of Lemma 4.2 or 4.3. Suppose the assumptions
of Lemma 4.4 hold. Let H = ∩i∈I Hi and Hi be defined as in Lemma 4.4. Suppose
further that

(1) h : X × Y → R is a l.s.c. and quasiconcave function;
(2) there exist a nonempty compact subset K of H and a nonempty compact convex

subset C of H such that for each (x, y) ∈ H\K, there exists (u, v) ∈ C such that
h(u, v) < h(x, y).

Then there exists a solution of the problem (2).

Proof By Lemmas 4.2 or 4.3, there exists (x, y) ∈ X × Y, y = (yi)i∈I , yi ∈ Ti(x) and
fi(x, y, vi) ≥ 0 for all vi ∈ Ti(x) and for all i ∈ I. Therefore (x, y) ∈ Hi for all i ∈ I.
This shows that H = ∩i∈IHi 
= ∅. By Lemma 4.4, Hi is convex for all i ∈ I, therefore
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H is convex. Next we prove that the problem (2) has a solution. Let P:H → H be
defined by

P(x, y) = {(u, v) ∈ H : h(u, v) < h(x, y)}.
Since h is quasi-convex, P(x, y) is convex for each (x, y) ∈ H. Since h is l.s.c. P−(u, v) =
{(x, y) ∈ H : h(u, v) < h(x, y)} is open in H. By (2), for each (x, y) ∈ H\K, there exists
(u, v) ∈ C such that (x, y) ∈ P−(u, v). For each (x, y) ∈ H, (x, y) /∈ P(x, y). Then by
Lemma 4.1 that there exists (x̄, ȳ) ∈ H such that P(x̄, ȳ) = ∅. That is h(u, v) ≥ h(x̄, ȳ)

for all (u, v) ∈ H. This shows that the problem (2) has a solution.

Remark Theorem 4.4 improves Theorem 6 [8]. But because I may not be singleton
here, in the proof we use maximal element theorem for a family of multivalued maps
instead of KKM theorem which has been used to prove Theorem 6 of [8]. KKM
theorem can not be applied to prove this theorem.

Applying Theorem 4.4 and following the same argument as in Theorem 4.3, we have
the following theorem.

Theorem 4.5 In Theorem 4.4, if we assume further that for each i ∈ I, gi : X × Yi → R

is a quasi-concave function. Suppose that Fi = {(x, yi) ∈ X × Yi : gi(x, yi) ≥ 0} is
nonempty, Bi = πYFi, Ai = πXFi, A = ∩i∈IAi 
= ∅, Ti|A : A −◦Bi and GrTi|A ⊆ Fi
for each i ∈ I. Then there exists a solution of the program:

min(x,y) h(x, y) such that x ∈ X, y = (yi)i∈I , yi ∈ Ti(x),

gi(x, yi) ≥ 0 and fi(x, y, vi) ≥ 0 for all vi ∈ Ti(x) and for all i ∈ I.

As applications of Theorem 4.5, we establish the existence theorem of mathematical
program with Nash equilibrium constraints.

Theorem 4.6 Let X, E, Yi, Vi, Y, gi, Ai, Bi, A, Fi and Ti be the same as in Theorem 4.5.
Let ϕi : Y × Yi → R be a continuous function. Suppose that

(1) for each y ∈ Y, vi → ϕi(y, vi) is quasi-convex.
(2) there exist a compact subset K of Y and a nonempty compact convex subset Di

of Yi for each i ∈ I such that for each x ∈ X, y ∈ Y\K there exist j ∈ I and
vj ∈ Dj ∩ Tj(x) such that ϕj(y, vj) < ϕj(y, yj). Then there exists a minimizer to the
program:

min
(x,y)

h(x, y) such that x ∈ X, y = (yi)i∈I , yi ∈ Ti(x),

gi(x, yi) ≥ 0 and ϕi(y, vi) ≥ ϕ(y, yi) for all vi ∈ Ti(x) and all i ∈ I.

Proof Let fi(x, y, vi)= ϕi(y, vi)−ϕi(y, yi). Then Theorem 4.6 follows from Theorem 4.5.
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