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Abstract

Deguire and Lassonde [P. Deguire, M. Lassonde, Familles sélectantes, Topol. Methods Nonlinear Anal. 5 (1995) 261–269]
extend the concept of continuous selection and introduce the notion of selecting family for a family of set-valued mappings. In this
paper, we first establish a new existence theorem of selecting families. The existence of the selecting families will be then used in
order to obtain several fixed component theorems of Fan–Browder type, an intersection result, a maximal element theorem for a
family of set-valued mappings and a minimax inequality.
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1. Introduction

Let X and Y be two nonempty sets and T : X ( Y be a set-valued mapping (simply, a map), that is a function that
assigns to each x ∈ X , a unique subset T (x) of Y . For each y ∈ Y , the set T −(y) is called the fiber of T at the point
y.

It is well-known that any map from a paracompact space to a convex space has a continuous selection whenever
it has nonempty convex values and open fibers. This fact was first used by Browder [1,2] in order to establish the
so-called Fan–Browder fixed point theorem. Later, it was explicitly formulated by Ben-El-Mechaiekh, Deguire, and
Granas [3,4] and by Yannelis and Prabhakar [5], and has been applied by many authors.

In [6] Deguire and Lassonde extend the concept of continuous selection introducing the notion of selecting family
for a family of maps. Let us recall this notion.

Definition 1. Let T = {Ti : X ( Yi }i∈I be a family of maps, where X and Yi (i ∈ I ) are topological spaces. A
selecting family for T is a family of continuous functions { fi : X → Yi }i∈I satisfying the following condition: for
each x ∈ X , there exists i ∈ I such that fi (x) ∈ Ti (x).

One easily observes that the notion of selecting family reduces to the concept of continuous selection, when I has
only one element.

The two authors mentioned above, establish the following theorem on the existence of selecting families:
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Theorem 1. Let X be a paracompact space and {Yi }i∈I a family of convex sets each in a Hausdorff topological vector
space. Suppose that T = {Ti : X ( Yi }i∈I is a family of maps satisfying the following conditions:

(i) each Ti has convex values;
(ii) each Ti has open fibers;

(iii) for each x ∈ X, there exists i ∈ I such that Ti (x) 6= ∅.

Then T has a selecting family.

By Theorem 1, Lassonde and Deguire obtain the following fixed component theorem of Fan–Browder type:

Theorem 2. Let {X i }i∈I be a family of compact convex sets each in a Hausdorff topological vector space and
{Ti : X =

∏
j∈I X j ( X i }i∈I a family of maps satisfying conditions (i), (ii) and (iii) in Theorem 1. Then there

exist x̃ = (̃xi )i∈I ∈ X and i ∈ I such that x̃i ∈ Ti (̃x).

In this paper, we first establish a new existence theorem of selecting families replacing conditions (ii) and (iii)
in Theorem 1 by a unique weaker condition. The existence of the selecting families will be then used in order to
obtain several fixed component theorems of Fan–Browder type (closely related to Theorem 2), an intersection result,
a maximal element theorem for a family of maps and minimax inequalities. The maximal element theorem in this
paper is different from Corollary 4.4 in [7], Theorem 4.1 in [8] and many other results concerning maximal elements
from the recent literature.

2. Selecting families, fixed component theorems

Theorem 3. Let X be a paracompact space and {Yi }i∈I a family of convex sets each in a Hausdorff topological
vector space. Suppose that T = {Ti : X ( Yi }i∈I is a family of maps with convex values satisfying the condition
X =

⋃
i∈I

⋃
yi ∈Yi

int T −

i (yi ). Then T has a selecting family.

Proof. For each i ∈ I let Fi : X ( Yi be defined by

Fi (x) = {yi ∈ Yi : x ∈ int T −

i (yi )} for all x ∈ X.

Then F−

i (yi ) = int T −

i (yi ) and F−

i (yi ) is open. Since
⋃

i∈I
⋃

yi ∈Yi
int T −

i (yi ) = X , for each x ∈ X , there exist
i ∈ I and yi ∈ Yi such that x ∈ int T −

i (yi ). This shows that yi ∈ Fi (x) ⊂ co Fi (x), hence co Fi (x) 6= ∅. It is
easy to see that Fi (x) ⊂ Ti (x) for all x ∈ X . Let Hi : X ( Yi be defined by Hi (x) = co Fi (x) for x ∈ X . Then,
Hi (x) ⊂ co Ti (x) = Ti (x).

Since the maps Fi have open fibers, by Lemma 5.1 in [5], H−

i (y) = (co Fi )
−(yi ) is open for each i ∈ I and

yi ∈ Yi . Then by Theorem 1, there exists a family of continuous functions { fi : fi : X → Yi } such that for each
x ∈ X , there exists i ∈ I such that fi (x) ∈ Hi (x) ⊂ Ti (x). Hence { fi }i∈I is a selecting family of T . �

It is easy to show that X =
⋃

i∈I
⋃

yi ∈Yi
int T −

i (yi ) whenever conditions (ii) and (iii) in Theorem 1 are fulfilled.
The following example shows that sometimes we can apply Theorem 3 to show that a family of maps T has a selecting
family, but Theorem 1 is not applicable.

Example. Let T1, T2 : [0, 1] ( [0, 1] be the maps defined by

T1(x) =

{
{1}, if x = 0
(0, x], if x ∈ (0, 1].

T2(x) =

{
[x, 1), if x ∈ [0, 1)

{0}, if x = 1.

Then⋃
y1∈[0,1]

int T −

1 (y1) = (0, 1],
⋃

y2∈[0,1]

int T −

2 (y2) = [0, 1)

hence
⋃2

i=1
⋃

yi ∈[0,1]
int T −

i (yi ) = [0, 1]. So T1, T2 satisfy the requirements of Theorem 3. But T −

1 (1) = T −

2 (0) =

{0, 1} are not open, hence T1, T2 not satisfy all the conditions of Theorem 1.
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Observe that, if we denote by 1[0,1] the identity function on [0,1], then the family {1[0,1], 1[0,1]} is a selecting family
for {T1, T2}.

Recall that if Y is topological space, a map T : X ( Y is said to be compact if T (X) is a relatively compact subset
of Y .

In the proof our theorem, we need the following particular form of the Himmelberg fixed point theorem [9].

Lemma 4. If X is a convex subset of a locally convex topological vector space, then any compact continuous function
f : X → X has a fixed point.

In the next theorems, for a subset X of a topological space and a map T : X ( Y , by int T −(y) we denote the
interior of T −(y) relative to X .

Theorem 5. Let {X i }i∈I be a family of convex sets each in a Hausdorff locally convex topological vector space
and {Ti : X =

∏
k∈I Xk ( X i }i∈I a family of compact maps with convex values satisfying the condition

X =
⋃

i∈I
⋃

yi ∈X i
int T −

i (yi ). Then there exist x̃ = (̃xi )i∈I ∈ X and i ∈ I such that x̃i ∈ Ti (̃x).

Proof. For each i ∈ I , Yi = Ti (X) is a compact subset of X i . Since Y =
∏

i∈I Yi is compact in X , Ỹ = co Y is
paracompact in X , by Lemma 1 in [10]. By Theorem 3 there exists a selecting family { fi : Ỹ → X i }i∈I for the family
of maps {Ti

|Ỹ
: Ỹ → X i }i∈I . The function f : Ỹ → Ỹ defined by

f (x) = ( fi (x))i∈I , for x = (xi )i∈I ∈ Ỹ ,

is continuous and compact (since each of its components is compact). By Lemma 4, f has a fixed point x̃ = (̃xi )i∈I .
From the definition of the selecting family, there is an index i ∈ I such that x̃i = fi (̃x) ∈ Ti (̃x). �

It would be of some interest to compare Theorem 5 to Theorem 2 in [11].
As we have already remarked, X =

⋃
i∈I

⋃
yi ∈X i

int T −

i (yi ) whenever conditions (ii) and (iii) in Theorem 1 are
fulfilled. Thus, in locally convex topological vector spaces Theorem 2 remains valid if the compactness condition for
the sets X i is replaced by the compactness of the maps Ti . More precisely we have:

Corollary 6. Let {X i }i∈I be a family of convex sets each in a Hausdorff topological locally convex vector space and
{Ti : X =

∏
k∈I Xk ( X i }i∈I a family of compact maps satisfying conditions (i), (ii) and (iii) of Theorem 1. Then

there exist x̃ = (̃xi )i∈I ∈ X and i ∈ I such that x̃i ∈ Ti (̃x).

When I is a singleton, Theorem 5 reduces to the following corollary:

Corollary 7. Let X be a convex set in a Hausdorff locally convex topological vector space and T : X ( X a compact
map with nonempty convex values satisfying the condition X =

⋃
x∈X int T −(x). Then there exists x̃ ∈ X such that

x̃ ∈ T (̃x).

Taking into account Proposition 1 in [12] we can observe that Corollary 7 coincides with Corollary 3 in [11].
As a consequence of Theorem 5, we obtain a new fixed component theorem.

Theorem 8. Let {X i }i∈I be a family of convex sets each in a Hausdorff locally convex topological vector space,
{Y j } j∈J a family of nonempty sets, {Ti : X =

∏
k∈I Xk ( X i }i∈I a family of compact maps and {F j : X ( Y j } j∈J

a family of maps such that

(i) for each i ∈ I , Ti has convex values;
(ii) for each j ∈ J , F j has open fibers;

(iii) for each x ∈ X, there exists j ∈ J such that F j (x) 6= ∅;
(iv) for each j ∈ J and any y j ∈ Y j , there exist i ∈ I and xi ∈ X i such that F−

j (y j ) ⊂ T −

i (xi ).

Then there exist x̃ = (̃xi )i∈I ∈ X and i ∈ I such that x̃i ∈ Ti (̃x).

Proof. According to Theorem 5 it suffices to show that
X =

⋃
i∈I

⋃
zi ∈X i

int T −

i (zi ).
Let x ∈ X . By (iii) and (iv) there exist j ∈ J , y j ∈ Y j , i ∈ I and zi ∈ X i and such that x ∈ F−

j (y j ) ⊂ T −

i (zi ).

Since F−

j (y j ) is open, it follows that x ∈ int T −

i (zi ). Thus the proof is complete. �
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It is easy to see that Theorem 8 is equivalent to the following maximal element theorem for a family of maps.

Theorem 9. Let {X i }i∈I be a family of convex sets each in a Hausdorff locally convex topological space, {Y j } j∈J a
family of nonempty sets, {Ti : X =

∏
i∈I X i ( X i }i∈I a family of compact maps and {F j : X ( Y j } j∈J a family of

maps such that

(i) for each i ∈ I , Ti has convex values;
(ii) for each j ∈ J , F j has open fibers;

(iii) for each x = (xi )i∈I ∈ X and i ∈ I , xi 6∈ Ti (x);
(iv) for each j ∈ J and any y j ∈ Y j , there exist i ∈ I and xi ∈ X i such that F−

j (y j ) ⊂ T −

i (xi ).

Then there exists x̄ ∈ X such that F j (x̄) = ∅ for all j ∈ J .

Remark 1. Theorem 9 is different from Corollary 4.4 in [7], Theorem 4.1 in [8] and any other existing maximal
element theorem from the recent literature. This theorem will have many applications.

The origin of the next theorem goes back to Fan’s section lemma (Lemma 4 in [13]).

Theorem 10. Let {X i }i∈I be a family of compact convex sets each in a Hausdorff locally convex topological vector
space, X =

∏
i∈I X i and, for each i ∈ I , Ai ⊂ X × X i . Suppose that the following conditions are satisfied:

(i) for each x = (xi )i∈I ∈ X and any i ∈ I , (x, xi ) ∈ Ai ;
(ii) for each x ∈ X and any i ∈ I , the set {yi ∈ X i : (x, yi ) 6∈ Ai } is convex (possibly empty);

(iii) for each i ∈ I , there exists a compact subset Ki of X i such that X × (X i \ Ki ) ⊂ Ai .

Then, ∩i∈I ∩yi ∈X i {x ∈ X : (x, yi ) ∈ Ai } 6= ∅.

Proof. For each i ∈ I , define the map Ti : X ( X i by

Ti (x) = {yi ∈ X i : (x, yi ) 6∈ Ai }.

By (iii) it follows at once that Ti (X) ⊂ Ki , hence the maps Ti are compact, have convex values and, by (i), they do not
satisfy the conclusion of Theorem 5. Consequently,

⋃
i∈I

⋃
xi ∈X i

int T −

i (xi ) 6= X . This means that there exists x̃ ∈ X
such that for each neighborhood V of x̃ and any index i ∈ I , ∩x∈V Ti (x) = ∅.

Let i ∈ I and yi ∈ X i be arbitrarily fixed. For each neighborhood V of x̃ , there is a point xV ∈ V such that
yi 6∈ Ti (xV ). If we denote by

M(yi ) = {x ∈ X : (x, yi ) ∈ Ai },

it follows that xV ∈ V ∩ M(yi ), whence x̃ ∈ M(yi ). Since i ∈ I and yi ∈ X i were arbitrarily chosen, it follows that

x̃ ∈ ∩i∈I ∩yi ∈X i {x ∈ X : (x, yi ) ∈ Ai }. �

Remark 2. Condition (iii) in Theorem 10 is trivially fulfilled when X i are all compact.

3. A minimax inequality

Definition 2. Let X be topological space and Y nonempty set. A function f : X × Y → R = R ∪ {±∞} is said to be
transfer upper semicontinuous on X (see [14]) if for each λ ∈ R and all x ∈ X, y ∈ Y with f (x, y) < λ, there exist a
neighborhood V (x) of x and y′

∈ Y such that f (x ′, y′) < λ for all x ′
∈ V (x).

It is clear that every function upper semicontinuous on X is transfer upper semicontinuous on X , but the converse
is not true (see [14]).

The following result is a “multiplied” version of Theorem 11 in [15].

Theorem 11. Let {X i }i∈I be a family of compact convex sets each in a Hausdorff locally convex topological vector
space, X =

∏
i∈I X i , {Y j } j∈J be a family of nonempty sets and { fi : X × X i → R}i∈I , {g j : X × Y j → R} j∈J two

families of functions. Suppose that
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(i) for each i ∈ I , fi is quasiconvex on X i ;
(ii) for each j ∈ J , g j is transfer upper semicontinuous on X;

(iii) for each j ∈ J and any y j ∈ Y j , there exist i ∈ I and xi ∈ X i such that fi (., xi ) ≤ g j (., y j ).

Then, infx∈X infi∈I fi (x, xi ) ≤ supx∈X inf j∈J infy j ∈Y j g j (x, y j ).

Proof. We may suppose that supx∈X inf j∈J infy j ∈Y j g j (x, y j ) < ∞. Let λ > supx∈X inf j∈J infy j ∈Y j g j (x, y j ), be
arbitrarily fixed. For all i ∈ I and j ∈ J , we define the maps Ti : X ( X i G j : Y j ( X and F j : X ( Y j by

Ti (x) = {zi ∈ X i : fi (x, zi ) < λ},

G j (y j ) = {x ∈ X : g j (x, y j ) < λ}, F j (x) = {y j ∈ Y j : x ∈ int G j (y j )}.

We prove that the families of maps {Ti }i∈I and {F j } j∈J satisfy all the requirements of Theorem 8. For all i ∈ I ,
since fi is quasiconvex on X i , Ti has convex values. For j ∈ J and y j ∈ Y j , we have F−

j (y j ) = int G j (y j ), hence
the maps F j have open fibers.

Let x ∈ X . We show that F j (x) 6= ∅, for some j ∈ J . From λ > supx∈X inf j∈J infy j ∈Y j gi (x, y j ), it follows that
there exist j ∈ J and y j ∈ Y j such that g j (x, y j ) < λ. Since g j is transfer upper semicontinuous on X there exist
a neighborhood V (x) of x and y′

j ∈ Y j such that g j (x ′, y′

j ) < λ for all x ′
∈ V (x). It follows that V (x) ⊂ G j (y′

j ).
Then x ∈ int G j (y′

j ), hence y′

j ∈ F j (x).

By (iii), for each j ∈ J and any y j ∈ Y j , there exist i ∈ I and xi ∈ X i such that G j (y j ) ⊂ T −

i (xi ). Since
F−

j (y j ) = int G j (y j ), it follows that F−

j (y j ) ⊂ T −

i (xi ).
Thus all the requirements of Theorem 8 are fulfilled. By Theorem 8, there exist x̃ = (̃xi )i∈I ∈ X and i ∈ I such

that x̃i ∈ Ti (̃x). Hence

inf
x∈X

inf
i∈I

fi (x, xi ) ≤ fi (̃x, x̃i ) < λ,

which proves the theorem. �

The particular case of the previous theorem I = J, X i = Yi , fi = gi for all i ∈ I , is a generalization of Theorem 9
in [15], which is in turn a generalization of the famous Ky Fan minimax inequality [16].
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