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Abstract In this paper, we study the existence theorems of systems of variational inclusion
problems. From these existence results, we study the existence theorems of systems of var-
iational differential inclusion problems, mathematical program with systems of variational
inclusion constraints, and mathematical program with systems of equilibrium constraints.
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1 Introduction

Let U and V be two Banach spaces and let T := [a, b] be a time interval of the real line. Let
H : T × U × V � U , F : T × U � U , and S : U × T � V be multivalued maps. The
control problem is the differential equations with control parameters

ẋ = f (t, x, u), u ∈ S(x, t) (1)

where ẋ denote the time derivative of x(t). The differential inclusion problem is the problem
of finding x such that

ẋ ∈ F(t, x), t ∈ T . (2)

It has been well recognized that differential inclusions, which are certainly of their own
interest provide a useful generalization control systems generated by (1) via F(t, x) =
f (t, x, S(x, t)). In some cases, especially when the set F(t, x) is a convex set for each
(t, x) ∈ T × X , the differential inclusions (2) admits parametric representations of type (1),
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but in general they can not be reduced to parametric control system and should be studied
for their own sake. There are many results in the literatures studied differential inclusion
problems. One can refer to [19,21] and the references therein for the differential inclusion
problems.

Let E be a topological vector space (in short t.v.s.), X be a nonempty subset of E , and
f : X × X � E be a function with f (x, x) ≥ 0 for all x ∈ X , then the scalar equilibrium
problem is to find x̄ ∈ X such that f (x̄, y) ≥ 0 for all y ∈ X . The equilibrium problem
contains optimization problems, variational inequalities problem, the Nash equilibrium prob-
lem, fixed point problems, complementary problems, and Ekeland’s variational principle as
special case (see [2,8,12]). This problem was extensively investigated and generated to the
vector equilibrium for single valued or multivalued maps [8–15] and references therein.

Let I be an index set. For each i ∈ I , let Zi be a real t.v.s., Xi and Yi be nonempty closed
convex subsets of locally convex spaces Ei and Wi , respectively. Let X = ∏

i∈I Xi and
Y = ∏

i∈I Yi . For each i ∈ I , let Si : X × Y � Xi , Ti : X � Yi , Gi : X × Y × Yi � Zi

be multivalued maps. Recently, Lin [10] studied the following type of systems of variational
inclusion problem:

Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × Y such that for each i ∈ I, x̄i ∈ Si (x̄, ȳ), ȳi ∈
Ti (x̄), and 0 ∈ Gi (x̄, y, vi ) for all vi ∈ Ti (x̄).

Lin [10] used Himmelberg’s fixed point theorem to study the existence theorem of this
problem. By this result, he gave some applications. For detail, one can refer to Lin [10].

In this paper, let Ai : X � Xi , Fi : X � Xi , Hi : X × X � Zi , Ci : X � Zi , and
Gi : X × X × Xi � Zi be multivalued maps. Let Āi : X � Xi and F̄i : X � Xi be
defined by Āi (x) = {yi ∈ Xi : (x, yi ) ∈ clX×Xi Gr(Ai )} and F̄i (x) = {yi ∈ Xi : (x, yi ) ∈
clX×Xi Gr(Fi )}, where clX×Xi Gr(Ai ) denote the closure of Gr(Ai ) in X ×Xi . Throughout this
paper, we use these notations unless otherwise specified. We study the following variational
inclusion problems:

(VIP-1) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × X such that for each i ∈ I , x̄i ∈ Āi (x̄), ȳi ∈
F̄i (x̄), and 0 ∈ Gi (x̄, ȳ, vi ) for all vi ∈ Ai (x̄);

(VIP-2) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × X such that for each i ∈ I , x̄i ∈ Āi (x̄),
ȳi ∈ F̄i (x̄), and Hi (x̄, ȳ) ∩ Gi (x̄, ȳ, vi ) = ∅ for all vi ∈ Ai (x̄).

Note that our problem (VIP-1) is different from the problem studied in Lin [8–10]. From the
existence theorems of (VIP-1), we study the following problems:

(a) Systems of variational differential inclusion problems:
Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × X such that for each i ∈ I, x̄i ∈ Āi (x̄), ȳi ∈
F̄i (x̄), and dx̄

dt ∈ Gi (x̄, ȳ, vi ) for all vi ∈ Ai (x̄). That is, x̄i ∈ Āi (x̄), ȳi ∈ F̄i (x̄), and
dx̄
dt ∈ ⋂

vi ∈Ai (x̄) Gi (x̄, ȳ, vi );

(b) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × X such that for each i ∈ I, x̄i ∈ Āi (x̄), ȳi ∈
F̄i (x̄), and Gi (x̄, ȳ, vi ) ∩ Ci (x̄) �= ∅ for all vi ∈ Ai (x̄);

(c) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × X such that for each i ∈ I , x̄i ∈ Āi (x̄),
ȳi ∈ F̄i (x̄), and Gi (x̄, ȳ, vi ) � −intCi (x̄) for all vi ∈ Ai (x̄);

(d) Variational fixed point problem:
Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × X such that for each i ∈ I , x̄i ∈ Āi (x̄), ȳi ∈
F̄i (x̄), and x̄ ∈ Gi (x̄, ȳ, vi ) for all vi ∈ Ai (x̄).
From problem (VIP-2), we study the following problems:

(e) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × X such that for each i ∈ I, x̄i ∈ Āi (x̄), ȳi ∈
F̄i (x̄), and Gi (x̄, ȳ, vi ) = dx̄

dt for all vi ∈ Ai (x̄), where Gi : X × X × Xi → Z is a
function and Z is a t.v.s.;
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(f) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × X such that for each i ∈ I , x̄i ∈ Āi (x̄),
ȳi ∈ F̄i (x̄), and Gi (x̄, ȳ, vi ) ⊂ Ci (x̄) for all vi ∈ Ai (x̄);

(g) Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × X such that for each i ∈ I, x̄i ∈ Āi (x̄), ȳi ∈
F̄i (x̄), and Gi (x̄, ȳ, vi ) ∩ (−intCi (x̄)) = ∅ for all vi ∈ Ai (x̄);

(h) Variational stationary point problem:
Find (x̄, ȳ) = ((x̄i )i∈I , (ȳi )i∈I ) ∈ X × X such that for each i ∈ I, x̄i ∈ Āi (x̄), ȳi ∈
F̄i (x̄), and Gi (x̄, ȳ, vi ) = {x̄} for all vi ∈ Ai (x̄).

Let Z be a real t.v.s., D a proper closed convex cone in Z . A point ȳ ∈ A is called a vector
minimal point of A if for any y ∈ A, y − ȳ /∈ −D \ {0}. The set of vector minimal points of
A is denoted by MinD A.

Problems (a) and (e) contain control parameter, but problem (2) does not have control
parameter. Problems (a) and (e) are different from any differential inclusion problems stud-
ied in the literatures. Problem (1) is not a special case of (a).

Let h : X × Y � W and W be a real t.v.s. ordered by a closed convex cone D. As
applications of our results, we study the following mathematical programs with systems
of variational differential inclusion constraints and mathematical programs with systems of
equilibrium constraints:

(i) MinDh(x, y) subject to (x, y) = ((xi )i∈I , (yi )i∈I ) ∈ X × X such that for each i ∈
I, xi ∈ Āi (x), yi ∈ F̄i (x), and dx

dt ∈ Gi (x, y, vi ) for all vi ∈ Ai (x);
(j) MinDh(x, y) subject to (x, y) = ((xi )i∈I , (yi )i∈I ) ∈ X × X such that for each i ∈ I ,

xi ∈ Āi (x), yi ∈ F̄i (x), and Gi (x, y, vi ) = { dx
dt } for all vi ∈ Ai (x);

(k) MinDh(x, y) subject to (x, y) = ((xi )i∈I , (yi )i∈I ) ∈ X × X such that for each i ∈ I ,
xi ∈ Āi (x), yi ∈ F̄i (x), and Gi (x, y, vi ) ⊂ Ci (x) for all vi ∈ Ai (x);

(l) MinDh(x, y) subject to (x, y) = ((xi )i∈I , (yi )i∈I ) ∈ X × X such that for each i ∈
I, xi ∈ Āi (x), yi ∈ F̄i (x), and Gi (x, y, vi ) ∩ Ci (x) �= ∅ for all vi ∈ Ai (x);

(m) MinDh(x, y) subject to (x, y) = ((xi )i∈I , (yi )i∈I ) ∈ X × X such that for each i ∈ I ,
xi ∈ Āi (x), yi ∈ F̄i (x), and Gi (x, y, vi ) � −intCi (x) for all vi ∈ Ai (x);

(n) MinDh(x, y) subject to (x, y) = ((xi )i∈I , (yi )i∈I ) ∈ X × X such that for each i ∈ I ,
xi ∈ Āi (x), yi ∈ F̄i (x), and Gi (x, y, vi ) ∩ (−intCi (x)) = ∅ for all vi ∈ Ai (x).

In this paper, we study the existence theorems of systems of variational inclusion prob-
lem. From these results, we give simple proofs of existence theorems of solution for systems
of equilibrium problems which are recently studied by Lin et al. [11]. From these existence
theorems of variational inclusion problem, we study the existence theorems of systems of
differential inclusion problems, systems of variational fixed point, systems of variational sta-
tionary points, mathematical problems with systems of equilibrium constraints, mathematical
problem with systems of differential inclusion constraints, and systems of generalized vector
quasi-equilibrium problem with upper and lower bounds.

Our results are different from any existence results of these types of problems. For detail,
one can refer to [1,3–7,9,10,13–15,17,18,20,21] and references therein.

2 Preliminaries

Throughout this paper, all topological spaces (in short t.s.) are assumed to be Hausdorff. Let
X and Y be t.s., T : X � Y be a multivalued map, T is said to be upper semicontinuous (in
short u.s.c.) (respectively lower semicontinuous (in short l.s.c.) at x ∈ X if for every open
set U in Y with T (x) ⊆ U (resp. T (x)∩U �= ∅), there exists an open neighborhood V (x) of
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x such that T (x ′) ⊆ U (resp. T (x ′) ∩ U �= ∅) for all x ′ ∈ V (x); T is said to be u.s.c. (resp.
l.s.c.) on X if T is u.s.c. (resp. l.s.c.) at every point of X; T is continuous at x if T is both
u.s.c. and l.s.c. at x; T is closed if Gr(T ) = {(x, y) ∈ X × Y : y ∈ T (x), x ∈ X} is a closed
set in X × Y . We also define T̄ : X � Y by T̄ (x) = {y ∈ Y : (x, y) ∈ clX×Y Gr(T )}, where
clX×Y Gr(T ) denote the closure of Gr(T ) in X × Y .

The following lemmas and theorems are needed in this paper.

Lemma 2.1 [20] Let X and Y be t.s., and T : X � Y be a multivalued map. Then T is l.s.c.
at x ∈ X if and only if for any y ∈ T (x) and any net {xα}α∈� in X converges to x, there
exists a net {yα}α∈� such that yα ∈ T (xα) for all α ∈ A and yα → y.

Lemma 2.2 [19] Let Z be a t.v.s. and C be a closed convex cone in Z. If A is a nonempty
compact subset of Z, then MinC A �= ∅.

Lemma 2.3 [16] Let X and Y be Hausdorff t.v.s., F, G : X � Y be multivalued maps. Let
F + G : X � Y be defined by (F + G)(x) := F(x) + G(x) for each x ∈ X.

(a) If F is an u.s.c. multivalued map with nonempty compact values and G is closed, then
F + G is closed;

(b) If F is l.s.c. and G is open, then F + G is open.

Theorem 2.1 [1] Let X and Y be t.s., and T : X � Y be a multivalued map.

(i) If T is an u.s.c. multivalued map with nonempty closed values, then T is closed;
(ii) If Y is a compact space and T is closed, then T is u.s.c.;

(iii) If X is compact and T is an u.s.c. multivalued map with nonempty compact values,
then T (X) is compact.

Definition 2.1 Let X be a nonempty convex subset of a vector space E , Y be a nonempty
convex subset of a vector space H and Z be a real t.v.s.. Let F : X ×Y � Z and C : X � Z
be multivalued maps such that for each x ∈ X , C(x) is a closed convex cone. For each x ∈ X ,

(i) F is C(x)—quasiconvex if for any y1, y2 ∈ Y and λ ∈ [0, 1], either

F(x, y1) ⊆ F(x, λy1 + (1 − λ)y2) + C(x),

or

F(x, y2) ⊆ F(x, λy1 + (1 − λ)y2) + C(x).

(ii) F is {0}—quasiconvex-like if for any y1, y2 ∈ Y and λ ∈ [0, 1], either

F(x, λy1 + (1 − λ)y2) ⊆ F(x, y1),

or

F(x, λy1 + (1 − λ)y2) ⊆ F(x, y2).

(iii) F is 0—quasiconvex if for any y1, y2 ∈ Y and λ ∈ [0, 1], either

F(x, y1) ⊆ F(x, λy1 + (1 − λ)y2),

or

F(x, y2) ⊆ F(x, λy1 + (1 − λ)y2).
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Definition 2.2 [3] Let E be a t.v.s and X be a subset of E such that X = ⋃∞
n=1 Gn , where

{Gn}∞n=1 is an increasing (in the sense that Gn ⊆ Gn+1) sequence of nonempty compact
sets. A sequence {yn}∞n=1 in X is said to be escaping from X (relative to {Gn}∞n=1) if for each
n ∈ N, there exists M > 0 such that yk /∈ Gn for all k ≥ M .

Theorem 2.2 [11] Let I be any index set. For each i ∈ I , let Xi be a nonempty subset of
a locally convex t.v.s. Ei and let X = �i∈I Xi . For each i ∈ I , let Xi × Xi = ⋃∞

j=1 Gi, j ,
where {Gi, j }∞j=1 is an increasing sequence of nonempty compact convex subsets of a locally
convex t.v.s. Ei × Ei . For each i ∈ I , assume that:

(i) Ai : X � Xi and Fi : X � Xi are l.s.c. multivalued maps with nonempty convex
values;

(ii) Pi : X × X � Xi has an open graph and xi �∈ coPi (x, y) for all (x, y) ∈ X × X;
(iii) for each sequence {(xn, yn)}∞n=1 in X × X with (xn, yn) ∈ Gn = �i∈I Gi,n for each

n ∈ N, which is escaping from X × X relative to {Gn}∞n=1, there exists m ∈ N and
(x̃m, ỹm) ∈ Gm such that πi (x̃m) ∈ Ai (xm) ∩ Pi (xm, ym) and πi (ỹm) ∈ Fi (xm) for all
i ∈ I , where πi (x) is the projection of x ∈ X onto Xi .

Then there exists (x̂, ŷ) = ((x̂i )i∈I , (ŷi )i∈I ) ∈ X × X such that for each i ∈ I, x̂i ∈
Āi (x̂), ŷi ∈ F̄i (x̂), and Ai (x̂) ∩ Pi (x̂, ŷ) = ∅.

Theorem 2.3 [11] Let I be an index set. For each i ∈ I , let Xi be a nonempty convex subset
of a locally convex t.v.s. Ei and let X = �i∈I Xi . For each i ∈ I , assume that:

(i) Ai : X � Xi and Fi : X � Xi are l.s.c. multivalued maps with nonempty convex
values;

(ii) Pi : X × X � Xi has an open graph and xi /∈ coPi (x, y) for all (x, y) ∈ X × X;
(iii) there exist nonempty compact subsets K and M of X and nonempty compact convex

subsets D̃i and Di of Xi for each i ∈ I with the property that for each (x, y) ∈
(X × X)\ (K × M), there exists j ∈ I such that A j (x) ∩ Pj (x, y) ∩ D̃ j �= ∅ and
Fj (x) ∩ D j �= ∅.

Then there exists (x̂, ŷ) = ((x̂i )i∈I , (ŷi )i∈I ) ∈ K × M such that for each i ∈ I, x̂i ∈
Āi (x̂), ŷi ∈ F̄i (x̂), and Ai (x̂) ∩ Pi (x̂, ŷ) = ∅.

3 Existence theorems of systems of generalized quasi-variational inclusions problems

From now onward unless otherwise specified, for each i ∈ I , let Xi be a nonempty closed
convex subset of a locally convex Hausdorff t.v.s. Ei and let X = �i∈I Xi . For each i ∈ I ,
let Zi be a t.v.s. and Ci : X � Zi be a multivalued map such that for each x ∈ X, Ci (x) is
a proper closed convex cone with intCi (x) �= ∅.

Theorem 3.1 For each i ∈ I , let Gi : X × X × Xi � Zi be a closed multivalued map with
nonempty values. For each i ∈ I , assume that:

(i) Fi , Ai : X � Xi are l.s.c. multivalued maps with nonempty convex values;
(ii) for each x = (xi )i∈I ∈ X and y ∈ X, 0 ∈ Gi (x, y, xi );

(iii) for each (x, y) ∈ X × X, ui � Gi (x, y, ui ) is {0}-quasiconvex-like;
(iv) there exist nonempty compact subsets K and M of X and nonempty compact convex

subsets D̂i and Di of Xi for each i ∈ I such that for each (x, y) ∈ (X × X) \ (K × M),
there exist j ∈ I, û j ∈ D̂ j , and v̂ j ∈ D j such that û j ∈ A j (x), v̂ j ∈ Fj (x), and
0 /∈ G j (x, y, û j ).
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Then there exists (x̂, ŷ) = ((x̂i )i∈I , (ŷi )i∈I ) ∈ K × M such that for each i ∈ I, x̂i ∈
Āi (x̂), ŷi ∈ F̄i (x̂), and 0 ∈ Gi (x̂, ŷ, ui ) for all ui ∈ Ai (x̂).

Proof For each i ∈ I , let Pi : X × X � Xi be defined by Pi (x, y) = {ui ∈ Xi : 0 /∈
Gi (x, y, ui )} for (x, y) ∈ X × X . By (iii), Pi (x, y) is a convex set for each (x, y) ∈ X × X .
By (ii), xi /∈ Pi (x, y) = coPi (x, y) for each (x, y) ∈ X × X . For each i ∈ I, Pi has an
open graph in X × X × Xi . Indeed, let (x, y, ui ) ∈ cl[Gr(Pi )]c, then there exists a net
(xα, yα, uα

i )
α∈�

in (Gr(Pi ))
c such that (xα, yα, uα

i ) → (x, y, ui ), where � is an index set.
One has (xα, yα, uα

i ) ∈ X × X × Xi and 0 ∈ Gi (xα, yα, uα
i ). Since Xi and X are closed sets

and Gi is closed, (x, y, ui ) ∈ X×X×Xi and 0 ∈ Gi (x, y, ui ). Hence, (x, y, ui ) ∈ (Gr(Pi ))
c

and (Gr(Pi ))
c is a closed set. This shows that Gr(Pi ) is open and Pi has an open graph. By (iv),

for each (x, y) ∈ X × X\(K × M), there exists j ∈ I such that A j (x) ∩ Pj (x, y) ∩ D̃ j �= ∅
and Fj (x)∩ D j �= ∅. Then by Theorem 2.3 there exists (x̂, ŷ) = ((x̂i )i∈I , (ŷi )i∈I ) ∈ K × M
such that for each i ∈ I, x̂i ∈ Āi (x̂), ŷi ∈ F̄i (x̂), and Pi (x̂, ŷ) ∩ Ai (x̂) = ∅. That is,
0 ∈ Gi (x̂, ŷ, ui ) for all ui ∈ Ai (x̂). ��
Remark 3.1 Theorem 3.1 is different from Theorem 3.1 in [10]. The continuity assumptions
on Fi and Ai in Theorem 3.1 [10] and Theorem 3.1 are different. The convexity assumptions
on Gi are different. In Theorem 3.1, we assume a coercive condition, but in Theorem 3.1 in
[10], we don’t assume the coercive assumptions. The proofs and conclusions of these two
theorems are also different.

Theorem 3.2 For each i ∈ I , let Gi : X × X × Xi � Zi be a l.s.c. multivalued map with
nonempty values. For each i ∈ I , assume that:

(i) Fi , Ai : X � Xi are l.s.c. multivalued maps with nonempty convex values;
(ii) Hi : X × X � Zi is a multivalued map with nonempty values and open graph;

(iii) for each x = (xi )i∈I ∈ X and y ∈ X, Hi (x, y) ∩ Gi (x, y, xi ) = ∅;
(iv) for each (x, y) ∈ X × X, ui � Gi (x, y, ui ) is {0}-quasiconvex;
(v) there exist nonempty compact subsets K and M of X and nonempty compact convex

subsets D̂i and Di of Xi for each i ∈ I , such that for each (x, y) ∈ (X × X)\ (K × M),
there exist j ∈ I, û j ∈ D̂ j , and v̂ j ∈ D j such that û j ∈ A j (x), v̂ j ∈ Fj (x), and
Hj (x, y) ∩ G j (x, y, û j ) �= ∅.

Then there exists (x̂, ŷ) = ((x̂i )i∈I , (ŷi )i∈I ) ∈ K × M such that for each i ∈ I, x̂i ∈
Āi (x̂), ŷi ∈ F̄i (x̂), and Hi (x̂, ŷ) ∩ Gi (x̂, ŷ, vi ) = ∅ for all vi ∈ Ai (x̂).

Proof For each i ∈ I , let Fi : X × X × Xi � Zi be defined by Qi (x, y, vi ) = Zi \
[−Hi (x, y) + Gi (x, y, vi )] for each (x, y, vi ) ∈ X × X × Xi . Then by Lemma 2.3 , Qi is
closed. By (iv), for each x = (xi )i∈I ∈ X and y ∈ X, vi � Qi (x, y, vi ) is {0}-quasiconvex-
like. Then Theorem 3.2 follows from Theorem 3.1. ��
Remark 3.2 Theorem 3.2 is also true if “Gi is l.s.c. and Hi is open” is replaced by “Gi is
open and Hi is l.s.c.”.

Theorem 3.3 For each i ∈ I , let Gi : X × X × Xi � Zi be an u.s.c. multivalued map with
nonempty compact values. For each i ∈ I , assume that:

(i) Fi , Ai : X � Xi are l.s.c. multivalued maps with nonempty convex values;
(ii) Hi : X × X � Zi is a multivalued map with nonempty values and closed graph;

(iii) for each x = (xi )i∈I ∈ X and y ∈ X, Hi (x, y) ∩ Gi (x, y, xi ) �= ∅;

123



J Glob Optim (2009) 44:579–591 585

(iv) for each (x, y) ∈ X × X, ui � Gi (x, y, ui ) is {0}-quasiconvex-like;
(v) there exist nonempty compact subsets K and M of X and nonempty compact convex

subsets D̂i and Di of Xi for each i ∈ I , such that for each (x, y) ∈ (X × X)\ (K × M),
there exist j ∈ I, û j ∈ D̂ j , and v̂ j ∈ D j such that û j ∈ A j (x), v̂ j ∈ Fj (x), and
Hj (x, y) ∩ G j (x, y, û j ) = ∅.

Then there exists (x̂, ŷ) = ((x̂i )i∈I , (ŷi )i∈I ) ∈ K × M such that for each i ∈ I, x̂i ∈
Āi (x̂), ŷi ∈ F̄i (x̂), and Hi (x̂, ŷ) ∩ Gi (x̂, ŷ, vi ) �= ∅ for all vi ∈ Ai (x̂).

Proof Let Qi : X × X × Xi � Zi be defined by Fi (x, y, vi ) = −Hi (x, y) + Gi (x, y, vi )

for each (x, y, vi ) ∈ X × X × Xi . By Lemma 2.3, Qi is closed. By (iv), for each (x, y) ∈
X × X, vi � Qi (x, y, vi ) is {0}-quasiconvex-like. Then Theorem 3.3 follows from Theo-
rem 3.1. ��
Theorem 3.4 For each i ∈ I , let Xi = ⋃∞

j=1 Qi, j , where {Qi, j }∞j=1 is an increasing
sequence of nonempty compact convex subset of Ei , and Gi : X × X × Xi � Zi is a closed
multivalued map with nonempty values. Assume that conditions (i)–(iii) of Theorem 3.1 and
the following condition hold:

(iv′) for each sequence {(xn, yn)}∞n=1 in X ×X with (xn, yn) ∈ Qn = �i∈I Qi,n for each n ∈
N, which is increasing from X × X relative to {Qn}∞n=1, there exist
m ∈ N and (x̃m, ỹm) ∈ Qm such that πi (x̃m) ∈ Ai (xm), πi (ỹm) ∈ Fi (xm) and
0 /∈ Gi (xm, ym, πi (x̃m)) for all i ∈ I , where πi (x) is the projection of x ∈ X onto Xi .

Then there exists (x̂, ŷ) = ((x̂i )i∈I , (ŷi )i∈I ) ∈ X × X such that for each i ∈ I, x̂i ∈
Âi (x̂), ŷi ∈ F̂i (x̂), and 0 ∈ Gi (x̂, ŷ, ui ) for all ui ∈ Ai (x̂).

Proof For each i ∈ I , let Pi be defined as in Theorem 3.1. Applying Theorem 2.2 and fol-
lowing the same argument as in Theorem 3.1, we can prove Theorem 3.4. ��
Remark 3.3

(a) In Theorem 3.3, if Hi (x, y) = Ci (x) is a closed multivalued map with nonempty val-
ues, then Theorem 3.3 will be reduced to Theorem 3.2.2 in [11]. Besides, if Hi (x, y) =
Zi \ (−intCi (x)), then Theorem 3.3 will be reduced to Theorem 3.2.4 in [11].

(b) In Theorem 3.2, if Hi (x, y) = Zi \ Ci (x) is an open multivalued map, then Theo-
rem 3.2 will be reduced to Theorem 3.2.1 in [11]. If Hi (x, y) = −intCi (x) is an open
multivalued map, then Theorem 3.2 will be reduced to Theorem 3.2.3 in [11].

(c) Applying Theorem 3.4, we can obtain similar results as Theorems 3.2 and 3.3. From
the similar results of Theorems 3.2 and 3.4, we can prove Theorems 3.2.5–3.2.8 in [11].

4 Applications

The following notations are needed in the following theorem. Let D be an open set in R, we
denote BC1(D) = {x | dx

dt : D → R is a bounded continuous function and x : D → R is a
bounded function} and BC(D) = {x |x : D → R is a bounded function}. If f ∈ BC1(D), we
define ‖ f ‖ = supt∈D | d f (t)

dt |+supt∈D | f (t)|. If g ∈ BC(D), we define ‖g‖ = supt∈D |g(t)|.
For f, g ∈ BC1(D), we define ( f + g)(t) = f (t) + g(t). It is easy to see that BC1(D) is a
normed linear space.

Let D be an open set in R, F : BC1(D) → BC(D) be defined by F(x) = dx
dt

for each x ∈ BC1(D). Then F : BC1(D) → BC(D) is a closed function. Indeed,
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||F(x)||C = || dx
dt ||C ≤ || dx

dt ||C + ||x ||C = ||x ||C1 and this shows that F is continuous.
Therefore, F is a closed function.

The following theorems study the existence of the systems of variational differential
inclusion problems.

Theorem 4.1 Let I be any index set. For each i ∈ I , let Di be an open set in R, Xi a nonempty
closed convex subset of BC1(Di ), X = ∏

i∈I Xi , Zi = BC(Di ), and Gi : X ×X ×Xi � Zi

be an u.s.c. multivalued map with nonempty compact values. For each i ∈ I , assume that:

(i) Fi , Ai : X � Xi are l.s.c. multivalued maps with nonempty convex values;
(ii) for each x = (xi )i∈I ∈ X and y ∈ X,

dxi
dt ∈ Gi (x, y, xi );

(iii) for each (x, y) ∈ X × X, ui � Gi (x, y, ui ) is {0}-quasiconvex-like;
(iv) there exist nonempty compact subsets K and M of X and nonempty compact convex

subsets D̂i and Di of Xi for each i ∈ I such that for each (x, y) ∈ (X ×Y )\ (K × M),
there exist j ∈ I, û j ∈ D̂ j , and v̂ j ∈ D j such that û j ∈ A j (x), v̂ j ∈ Fj (x), and
dxi
dt /∈ G j (x, y, û j ).

Then there exists (x̂, ŷ) = ((x̂i )i∈I , (ŷi )i∈I ) ∈ K × M such that for each i ∈ I, x̂i ∈
Āi (x̂), ŷi ∈ F̄i (x̂), and dx̂i

dt ∈ Gi (x̂, ŷ, vi ) for all vi ∈ Ai (x̂).

Proof Let Hi : X × X � Zi be defined by Hi (x, y) = dxi
dt . Then Hi is open. Then

Theorem 4.1 follows from Theorem 3.3. ��
Theorem 4.2 For each i ∈ I , let Gi : X × X × Xi � X be an u.s.c. multivalued map with
nonempty compact values. For each i ∈ I , assume that:

(i) Fi , Ai : X � Xi are l.s.c. multivalued maps with nonempty convex values;
(ii) for each x = (xi )i∈I ∈ X, y ∈ X, x ∈ Gi (x, y, xi );

(iii) for each (x, y) ∈ X × X, ui � Gi (x, y, ui ) is {0}-quasiconvex-like;
(iv) there exist a nonempty compact subsets K and M of X and a nonempty compact convex

subsets D̃i and Di of Xi for each i ∈ I such that for each (x, y) ∈ (X × X)\ (K × M),
there exist j ∈ I, û j ∈ D̂ j , and v̂ j ∈ D j such that û j ∈ A j (x), v̂ j ∈ Fj (x), and
x̂ /∈ G j (x, y, û j ).

Then there exists (x̂, ŷ) = ((x̂i )i∈I , (ŷi )i∈I ) ∈ K × M such that for each i ∈ I, x̂i ∈
Āi (x̂), ŷi ∈ F̄i (x̂), and x̂ ∈ Gi (x̂, ŷ, vi ) for all vi ∈ Ai (x̂).

Proof Let H : X × X � X be defined by H(x, y) = −{x}. Then Theorem 4.2 follows from
Theorem 4.1. ��
Lemma 4.1 Let X be a nonempty subset of a topological space E, Z be a real t.v.s., and D
be a nonempty closed convex cone in Z. Let F : X � Z be a l.s.c. multivalued map. Suppose
that for each x ∈ X, IMinD F(x) �= ∅. Let H : X � Z be defined by H(x) := IMinD F(x)

for each x ∈ X. Then H is a closed function.

Proof If (x, y) ∈ cl(Gr(H)), then there exists a net {(xα, zα)}α∈� in Gr(H) such that
(xα, zα) → (x, z). One has zα ∈ H(xα) = IMinD F(xα). Hence, F(xα) − zα ∈ D. Let
u ∈ F(x). Since F is l.s.c., there exists a net {uα}α∈� such that uα ∈ F(xα) for all α ∈ �

and uα → u. We have uα − zα ∈ D. Since D is a closed set, u − z ∈ D. Therefore,
F(x) − z ⊆ D and z ∈ IMinD F(x) = H(x). This shows that (x, z) ∈ Gr(H) and H is
closed. Since D is proper, it is easy to see that H is a function. ��
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Lemma 4.2 Let X be a nonempty subset of a t.v.s. E, Z be a real t.v.s., and D be a proper
closed convex cone in Z with nonempty interior. Let F : X � Z be a continuous multivalued
map with nonempty compact values. Let m : X � Z be defined by m(x) := WMinD F(x)

for each x ∈ X . Then m is a closed multivalued map with nonempty closed values.

Proof Since F(x) is compact for each x ∈ X , it follows from Lemma 2.2 that ∅ �=
MinD F(x) ⊆ WMinD F(x) = m(x) for each x ∈ X . If (x, z) ∈ cl(Gr(m)), then there exists
a net {(xα, zα)}α∈� in Gr(m) such that (xα, zα) → (x, z). One has zα ∈ m(xα) ⊆ F(xα).
Since F is an u.s.c. multivalued map with nonempty closed values, it follows from The-
orem 2.1 that F is closed and z ∈ F(x). We want to show that z ∈ m(x). Suppose that
z /∈ m(x). Then there exists ω ∈ F(x) such that ω− z ∈ −intD. But F is l.s.c., there exists a
net {ωα}α∈� with ωα ∈ F(xα) for all α ∈ � such that ωα → ω. Therefore, ωα − zα ∈ −intD
for some α. This is impossible since zα ∈ m(xα). Therefore, z ∈ m(x) and m is closed. ��
Theorem 4.3 For each i ∈ I , let Zi be a real t.v.s. and Ci be a proper closed convex cone
in Zi , and let Gi : X × X × Xi � Zi be a continuous multivalued map with nonempty
compact values. For each i ∈ I , suppose that the conditions (i) and (iii) of Theorem 4.1 and
the following condition are satisfied:

(iv) there exist nonempty compact subsets K and M of X and nonempty compact convex
subsets D̂i and Di of Xi for each i ∈ I such that for each (x, y) ∈ (X × X)\(K × M),
there exist j ∈ I, û j ∈ D̂ j , and v̂ j ∈ D j such that û j ∈ A j (x), v̂ j ∈ Fj (x), and
G j (x, y, û j ) ∩ WMinCi Gi (x, y, xi ) = ∅.

Then there exists (x̂, ŷ) = ((x̂i )i∈I , (ŷi )i∈I ) ∈ K × M such that for each i ∈ I, x̂i ∈
Āi (x̂), ŷi ∈ F̄i (x̂), and Gi (x̂, ŷ, vi ) ∩ WMinCi Gi (x̂, ŷ, x̄i ) �= ∅ for all vi ∈ Ai (x̂).

Proof Let Hi : X × X � Zi be defined by Hi (x, y) := WMinCi Gi (x, y, xi ) for each
(x, y) ∈ X×X . By Lemma 4.2, Hi is closed. For each (x, y) ∈ X×X, WMinCi Gi (x, y, xi )=
Hi (x, y) ⊆ Gi (x, y, xi ). Then Theorem 4.3 follows from Theorem 3.3. ��

For the special case of Theorem 4.1, we have the following results.

Corollary 4.1 For each i ∈ I , let Gi : X × X × Xi � R be a continuous multivalued map
with nonempty compact values. For each i ∈ I , suppose that the conditions (i) and (ii) of
Theorem 3.1 and the following are satisfied:

(iv) there exist nonempty compact subsets K and M of X and nonempty compact convex
subsets D̂i and Di of Xi for each i ∈ I such that for each (x, y) ∈ (X × X)\ (K × M),
there exist j ∈ I, û j ∈ D̂ j , and v̂ j ∈ D j such that û j ∈ A j (x), v̂ j ∈ Fj (x), and
MinG j (x, y, x j ) /∈ G j (x, y, û j ).

Then there exists (x̂, ŷ) = ((x̂i )i∈I , (ŷi )i∈I ) ∈ K × M such that for each i ∈ I, x̂i ∈
Āi (x̂), ŷi ∈ F̄i (x̂), and MinCi Gi (x̂, ŷ, x̂i ) ∈ Gi (x̂, ŷ, vi ) for all vi ∈ Ai (x̂).

Corollary 4.2 Let X be a nonempty closed convex subset of a t.v.s. and G : X � R be a
continuous multivalued map with nonempty compact values. Assume that:

(i) G is {0}-quasiconvex-like;
(ii) there exists a nonempty compact subset K of X and a nonempty convex subset D̂ of X

such that for each x ∈ X \ K , there exists û ∈ D̂ such that MinG(x) �∈ G(û).

Then there exists x̂ ∈ X such that MinG(x̂) ∈ ∩y∈X G(y).
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Proof Let A, F : X � X be defined by A(x) := X and F(x) := X for each x ∈ X . Then
Corollary 4.2 follows from Corollary 4.1. ��

Applying Lemma 4.1 and following the same argument as in Theorem 4.3, we can prove
Theorem 4.4.

Theorem 4.4 In Theorem 4.3, suppose that I MinGi (x, y, xi ) �= ∅ for each x = (xi )i∈I ∈ X
and y ∈ X. If the condition (iv) of Theorem 4.3 is replaced by (iv)′, where

there exist nonempty compact subsets K and M of X and nonempty compact convex
subsets D̂i and Di of Xi for each i ∈ I such that for each (x, y) ∈ (X × X)\ (K × M),
there exist j ∈ I , and û j ∈ D̂ j , v̂ j ∈ D j such that û j ∈ A j (x), v̂ j ∈ Fj (x), and
IMinCi G j (x, y, x j ) /∈ G j (x, y, û j ).

Then there exists (x̂, ŷ) = ((x̂i )i∈I , (ŷi )i∈I ) ∈ K × M such that for each i ∈ I, x̂i ∈
Āi (x̂), ŷi ∈ F̄i (x̂), and IMinCi Gi (x̂, ŷ, x̄i ) ∈ Gi (x̂, ŷ, vi ) for all vi ∈ Ai (x̂).

We can also apply Theorem 3.2 to study systems of generalized equilibrium problem with
upper and lower bounded.

Theorem 4.5 For each i ∈ I , let ai , bi ∈ R with ai < bi and Gi : X × X × Xi � R be a
l.s.c multivalued map with nonempty values. For each i ∈ I , suppose that the conditions (i)
and (iii) of Theorem 3.1 and the following conditions are satisfied:

(ii) for each x = (xi )i∈I and y ∈ X, Gi (x, y, xi ) ⊆ [ai , bi ];
(iv) there exist nonempty compact subsets K and M of X and nonempty compact convex

subsets D̂i and Di of Xi for each i ∈ I such that for each (x, y) ∈ (X × X) \ (K × M),
there exist j ∈ I, û j ∈ D̂ j , and v̂ j ∈ D j such that û j ∈ A j (x), v̂ j ∈ Fj (x), and
G j (x, y, û j ) �⊆ [a j , b j ].

Then there exists (x̂, ŷ) = ((x̂i )i∈I , (ŷi )i∈I ) ∈ K × M such that for each i ∈ I, x̂i ∈ Āi (x̂),
ŷi ∈ F̄i (x̂), and Gi (x̂, ŷ, vi ) ⊆ [ai , bi ] for all vi ∈ Ai (x̂).

Proof Let Hi : X × X � R be defined by Hi (x, y) := R\[ai , bi ] for each (x, y) ∈ X × X .
Then Theorem 4.5 follows from Theorem 3.2. ��
Theorem 4.6 For each i ∈ I , let Gi : X × X × Xi � X be an l.s.c. multivalued map with
nonempty values. For each i ∈ I , assume that:

(i) Fi , Ai : X � Xi are l.s.c. multivalued maps with nonempty convex values;
(ii) for each x = (xi )i∈I ∈ X and y ∈ X, Gi (x, y, xi ) = {x};

(iii) for each (x, y) ∈ X × Y, ui � Gi (x, y, ui ) is {0}-quasiconvex;
(iv) there exist nonempty compact subsets K and M of X and nonempty compact convex

subsets D̂i and Di of Xi for each i ∈ I such that for each (x, y) ∈ (X × X)\ (K × M),
there exist j ∈ I, û j ∈ D̂ j , and v̂ j ∈ D j such that û j ∈ A j (x), v̂ j ∈ Fj (x), and
x ∈ G j (x, y, û j ).

Then there exists (x̂, ŷ) = ((x̂i )i∈I , (ŷi )i∈I ) ∈ K × M such that for each i ∈ I, x̂i ∈
Āi (x̂), ŷi ∈ F̄i (x̂), and Gi (x̂, ŷ, vi ) = {x̂} for all vi ∈ Ai (x̂).

Proof Let H(x, y) = −(X \ {x}). It is clear that Hi : X × Y � X has open graph. Then
Theorem 4.6 follows from Theorem 3.2. ��
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5 Mathematical program with system of variational differential inclusion constraints
or systems of equilibrium constraints

As an application of Theorem 4.1, we have the following existence theorem of mathematical
program with system of variational differential inclusions constraints.

Theorem 5.1 In Theorem 4.1, if we assume further that h : X × X � W is an u.s.c. mul-
tivalued map with nonempty compact values, where W is a real t.v.s. ordered by a closed
convex cone D. Then there exists a solution to the problem:

(MPIC) MinDh(x, y) subject to (x, y) = ((xi )i∈I , (yi )i∈I ) ∈ X × X such that for each
i ∈ I, xi ∈ Āi (x), yi ∈ F̄i (x), and dxi

dt ∈ Fi (x, y, vi ) for all vi ∈ Ai (x).

Proof For each i ∈ I , let Li = {(x, y) ∈ X × X : (x, y) = ((xi )i∈I , (yi )i∈I ), xi ∈
Āi (x), yi ∈ F̄i (x), and dxi

dt ∈ Fi (x, y, vi ) for all vi ∈ Ai (x)}. Let L = ∩i∈I Li . By Theo-

rem 4.1, Li �= ∅. As we see in Theorem 4.1, the map (x, y, vi ) � − dxi
dt + Fi (x, y, vi ) is

closed. Li is closed. Indeed, if (x, y) ∈ cl(Li ), then there exists a sequence ((xn, yn))n∈N

in Li such that (xn, yn) → (x, y). Let (xn, yn) = ((xn
i )i∈I , (yn

i )i∈I ) and (x, y) = ((xi )i∈I ,

(yi )i∈I ). One has (xn, yn) ∈ X × X, xn
i ∈ Āi (xn), yn

i ∈ F̄i (xn), and 0 ∈ − dxn
i

dt +
Gi (xn, yn, vi ) for all vi ∈ Ai (xn). Let vi ∈ Ai (x). Since Ai is l.s.c., there exists a sequence

{vn
i }n∈N such that vn

i → vi . Hence 0 ∈ − dxn
i

dt +Gi (xn, yn, vn
i ). But Āi : X � Xi , F̄i : X �

Xi are closed, and X is a closed set, we see (x, y) ∈ X × X, xi ∈ Āi (x), yi ∈ F̄i (x), and
0 ∈ − dxi

dt + Gi (x, y, vi ) for all vi ∈ Ai (x). This shows that Li is closed and L = ∩i∈I Li

is closed. By (iv) of Theorem 4.1, L ⊆ K × M . This shows that L is compact. Since
h : X × X � U is an u.s.c. multivalued map with nonempty compact values, h(L) is a
compact set. Then Theorem 5.1 follows from Lemma 2.2 ��
Theorem 5.2 Let Gi be the same as in Theorem 3.2. For each i ∈ I , suppose that conditions
(i) and (iv) of Theorem 3.2 and and the following conditions are satisfied:

(ii) Ci : X � Zi is a closed multivalued map with nonempty values;
(iii) for each x = (xi )i∈I ∈ X and y ∈ X, Gi (x, y, xi ) ⊂ Ci (x);
(v) there exist nonempty compact subsets K and M of X and nonempty compact convex

subsets D̂i and Di of Xi for each i ∈ I such that for each (x, y) ∈ (X × X)\(K × M),
there exist j ∈ I, û j ∈ D̂ j , and v̂ j ∈ D j such that û j ∈ A j (x), v̂ j ∈ Fj (x), and
G j (x, y, û j ) � C j (x);

(vi) h : X × X � W is an u.s.c. multivalued map with nonempty compact values, where
W and D are the same as in Theorem 5.1.

Then there exists a solution to the problem:
MinDh(x, y) subject to (x, y) = ((xi )i∈I , (yi )i∈I ) ∈ X × X such that for each i ∈ I, xi ∈

Āi (x), yi ∈ F̄i (x), and Gi (x, y, vi ) ⊂ Ci (x) for all vi ∈ Ai (x).

Proof For each i ∈ I , let Li = {(x, y) ∈ X × X : (x, y) = ((xi )i∈I , (yi )i∈I ), xi ∈
Āi (x), yi ∈ F̄i (x), and Gi (x, y, vi ) ⊂ Ci (x) for all vi ∈ Ai (x)}. Let L = ∩i∈I Li . Let
Hi : X × Y � Zi be defined by Hi (x, y) = (Zi \ (Ci (x))) for each (x, y) ∈ X × X . By
Theorem 3.2, we can get L �= ∅.

Since Ci : X � Zi is closed. Li is a closed set for each i ∈ I . Indeed, let (x, y) ∈
cl(Li ), then there exists a net (xα, yα) ∈ Li such that (xα, yα) → (x, y). Let (xα, yα) =
((xα

i ), (yα
i )) and (x, y) = ((xi )i∈I , (yi )i∈I ). Then xα

i → xi , yα
i → yi , xα

i ∈ Āi (xα), yα
i ∈

F̄i (xα), and Gi (xα, yα, vi ) ⊂ Ci (xα) for all vi ∈ Ai (xα). Let vi ∈ Ai (x). Since Ai is
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l.s.c., there exists a net vα
i ∈ Ai (xα) for all α such that vα

i → vi . Hence Gi (xα, yα, vα
i ) ⊂

Ci (xα). Let si ∈ Gi (x, y, vi ). Since Gi is l.s.c., there exists a net {sα
i }α∈� such that sα

i ∈
Gi (xα, yα, vα

i ) for all α and sα
i → si . Since Āi , F̄i and Ci are closed, we have (x, y) ∈

X × Y, xi ∈ Āi (x), yi ∈ F̄i (x) and si ∈ Ci (x). This shows that Gi (x, y, vi ) ⊂ Ci (x) for all
vi ∈ Ai (x). Hence (x, y) ∈ Li and Li is closed. Hence, L is closed. But by (v), L ⊆ K × M .
Therefore, L is compact. Then we follow the same argument as in Theorem 5.1, we can prove
Theorem 5.2. ��
Remark 5.1 It is easy to see that Theorems 5.1 and 5.2 are true, if h : X × Y → R is a l.s.c.
function.

Theorem 5.3 In Theorem 5.2, if conditions (ii), (iii), and (v) are replaced by (ii)1, (iii)1 and,
(v)1, where

(ii)1 Wi : X � Zi defined by Wi (x) = Z \(−intCi (x)) is a closed multivalued map;
(iii)1 for each x = (xi )i∈I ∈ X and y ∈ X, Gi (x, y, xi ) ∩ (−intCi (x)) = ∅;
(v)1 there exist nonempty compact subsets K and M of X and nonempty compact convex

subsets D̂i and Di of Xi , for each i ∈ I such that for each (x, y) ∈ (X × X)\(K × M),
there exist j ∈ I, û j ∈ D̂ j , and v̂ j ∈ D j such that û j ∈ A j (x), v̂ j ∈ Fj (x), and
G j (x, y, û j ) ∩ (−intC j (x)) �= ∅;

Then there exists a solution to the problem:
MinDh(x, y) subject to (x, y) = ((xi )i∈I , (yi )i∈I ) ∈ X × X such that for each i ∈ I, xi ∈
Āi (x), yi ∈ F̄i (x), and Gi (x, y, ui ) ∩ (−intCi (x)) = ∅ for all ui ∈ Ai (x).

Proof For each i ∈ I , let Li = {(x, y) ∈ X × X, (x, y) = ((xi )i∈I , (yi )i∈I ), xi ∈
Āi (x), yi ∈ F̄i (x), and Gi (x, y, ui ) ⊂ Zi \ (−intCi (x))}, and L = ∩i∈I Li . Following
the similar argument as in Theorem 5.2, we can prove Theorem 5.3. ��
Theorem 5.4 For each i ∈ I , let Gi : X × X × Xi � Zi be a u.s.c multivalued map with
nonempty compact values. For each i ∈ I , suppose that conditions (i), (iii) of Theorem 3.3,
conditions (ii), (iv) are replaced by (ii)2, (iv)2, and assume that (v), where

(ii)2 for each x = (xi )i∈I ∈ X and y ∈ X, Gi (x, y, xi ) ∩ Ci (x) �= ∅;
(iv)2 there exist nonempty compact subsets K and M of X and nonempty compact convex

subsets D̂i and Di of Xi for each i ∈ I such that for each (x, y) ∈ (X × X)\(K × M),
there exist j ∈ I, û j ∈ D̂ j , and v̂ j ∈ D j such that û j ∈ A j (x), v̂ j ∈ Fj (x), and
G j (x, y, û j ) ∩ C j (x) = ∅;

(v) Ci : X � Zi is a closed map with nonempty values;
(vi) h : X × X � W is an u.s.c. multivalued map with nonempty compact values, where

W and D be the same as in Theorem 5.1.

Then there exists a solution to the problem:
MinDh(x, y) subject to (x, y) = ((xi )i∈I , (yi )i∈I ) ∈ X × X such that for each i ∈ I, xi ∈
Āi (x), yi ∈ F̄i (x), and Gi (x, y, ui ) ∩ Ci (x) �= ∅ for all ui ∈ Ai (x).

Proof For each i ∈ I , let Li = {(x, y) ∈ X × X | (x, y) = ((xi )i∈I , (yi )i∈I ), xi ∈
Āi (x), yi ∈ F̄i (x), and Gi (x, y, ui ) ∩ Ci (x) �= ∅ for all ui ∈ Ai (x)} and L = ∩i∈I Li . By
Theorem 3.1, we can prove that L �= ∅. Furthermore, by assumptions on Ci and Gi and
Lemma 2.3, we can also show that L is a compact set. Following the same argument as in
Theorem 5.1, we can prove Theorem 5.4. ��
Remark 5.2

(a) Theorems 5.2–5.4 are true if h : X × Y → R is a l.s.c. function.
(b) Theorems 5.2–5.4 are different from any results in [11,14,15,18].
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