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1. Introduction

Let X, Y and Z be nonempty sets. S; : X — 2%,5;: X — 2¥and H : X x Y — 27, Let R be a relation linkingx € X,y € Y
and Z. Luc [1,2] studied the following variational relation problem.
(VR) Find x € X such that x € S;(x) and R(x, y, v) holds for every y € S;(X) and any v € H(x, y).

(VR) contains optimization problems, variational inclusion problems, differential inclusion problems and equilibrium
problems as special cases. In this paper, let X, Y be two nonempty compact convex metrizable subsets in two locally convex
topological vector spaces (in short, t.v.s.) and Z be a topological space (in short, t.s.).S : X — 2¥and T : X — 2Y be two
multivalued maps with nonempty values. We consider the following problem:

(SVR) Find (x,y) € X x Y suchthatx € cIS(x),y € T(x),
Q(x,y, u) holds forall u € S(x)
and
R(x,y, v) holds forall v € T(x),
where R and Q are relations definedon X x Y x Yand X x Y x X, respectively.

This problem was called a simultaneous variational relation problem in which S, T are constraints and R, Q are variational
relations. As applications of our existence result of the simultaneous variational relation problem above, we study the
following problems:

(i) Find (x,¥) € X x Y suchthatx € c1S(x),y € T(x),
F(x,y,u) € G(x,y,u) forallu e S(x)
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and
AR, y,v) € B(x,y,v) forallv e T(X).
(ii) Find (x,y) € X x Y suchthatx € cIS(X),y € T(x),
FR.y.u) [ |G&y.u) # 0 forallu e S®),
and
ARX,y,v) ﬂB()’(, y,v) £ @ forallv € T(x).
(ili) Find (x,y) € X x Y such thatx € cIS(X) [(1M(X),y € T(%),
and R(x, y, v) holds for all v € T(x).
(iv) Find (x,y) € X x Y suchthatx € cIS(x),y € T(x)

and min max h(u,v) = max min h(u, v) = h(x,y).
veT (X) uecl S(x) ueclS(x) veT (x)

The problems (i) and (ii) are simultaneous variational inclusion problems. When A = B, problems (i) and (ii) were different
from the problems studied by Hai et al. [3-5]. In [3-5], Hai et al. studied the variational inclusion problems with a fixed
point theorem or maximal element theorems, in this paper, we study the variational inclusion problems with an existence
theorem of simultaneous of variational relation problems, the results and techniques are quite different. As special cases
of problems (i) and (ii), we consider several simultaneous quasi-equilibrium problems and simultaneous quasivariational
inclusion problems:

Let Z be areal t.v.s.and C : X — 27 be a multivalued map such that for each x € X, C(x) is a nonempty closed convex
cone with nonempty interior.

(SVEP1) Find (x,y) € X x Y such thatx € clS(x),y € T(x),
F(X,y,u) CC(X) forallue SX)
and
AKX, y,v) CC(x) forallv e T(x);
(SVEP2) Find (x,y) € X x Y suchthatx € clIS(x),y € T(x),
F(x,y,u) ﬂC()’() # ) forallu € S(x)
and
A& 3, v)[)C®) #9 forallv e T(R);
(SVEP3) Find (x,y) € X x Y suchthatx € cIS(x),y € T(X),
F(x,y,u) ﬂintC()_c) =@ forallu e S(x)
and
AX,y,v) mintC()_c) = forallv e T(x);
(SVEP4) Find (x,y) € X x Y suchthatx € cIS(x),y € T(X),
F(x,y,u) £ intC(x) forallu € S(x)
and
AX,y,v) £ intC(x) forallv e T(X);
(SVEP1, 2, 3, 4) were studied by Lin [6].
If we let F(x,y, u) = {0} forall (x,y, u) € X x Y x X, then (SVEP1) is reduced to the vector equilibrium problem:
(VEP1) Find (x,y) € X x Y such thatx € clS(x),y € T(x) and
AKX, y,v) CC(x) forallv e T(x);

(SVEP2) is reduced to the vector equilibrium problem:
(VEP2) Find (x,y) € X x Y such thatx € clS(x),y € T(x) and

A3, v)(|C® # 0 forallv e T(R);

(SVEP3) is reduced to the vector equilibrium problem:
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(VEP3) Find (x,y) € X x Y suchthatx € cIS(x),y € T(x) and
AX,y,v) mintC()_c) =@ forallv € T(x);

(SVEP4) is reduced to the vector equilibrium problem:
(VEP4) Find (x,y) € X x Y suchthatx € clS(x),y € T(x) and

ARX,y,v) € intC(x) forallv e T(x)
(VEP1, 2, 3, 4) were studied by Lin et al. [7-9], Sach [10] and references therein.
Similarly, if we let A(x,y, v) = {0} for all (x,y,v) € X x Y x Y, then (SVEP1, 2, 3, 4) are is reduced to the vector
equilibrium problem recently studied by [11,12].

LetH: X xY xY —22andM : X x Y x X — 27 be multivalued maps with nonempty values.
The special cases of problem (i) are following simultaneous variational inclusion problems:

(SVIP1) Find (x,y) € X x Y such thatx € clIS(x),y € T(X),
M(x,y,X) CM(x,y,u) — C(x) forallu e S(x)
and
HRX, 9,5 CHR, y,v) —C(X) forallv e T(X).
(SVIP2) Find (x,y) € X x Y such thatx € cIS(x),y € T(x),
MX,y,u) CM@RX,y,X) +C(x) forallu € S(X)
and
HRX,y,v) CH®X,y,y) +C(x) forallv e T(x).
(SVIP1, 2) were studied in [9,13] and references therein.
The special cases of problem (SVIP1) are the following variational inclusion problems:

(VIP1) Find (x,y) € X x Y suchthatx € cIS(x),y € T(x),
and M(x,y,y) € M(x,y,u) — C(x) forallu € S(x).
(VIP2) Find (X, y¥) € X x Y suchthatx € cIS(x),y € T(X),
andH(x,y,y) CH(,y,v) — C(x) forall v € T(x).

The special cases of problem (SPVIP2) are the following variational inclusion problem:

(VIP3) Find (x,y) € X x Y suchthatx € cIS(x),y € T(x),
and M(x,y,u) C M(x,y,x) + C(x) forallu € S(x).
(VIP4) Find (x,y) € X x Y such thatx € cIS(X),y € T(x),
andH(x,y,v) CHX,y,y) + C(x) forallv € T(x).

(VIP1, 3) were studied in [2,13] and references therein, (VIP2, 4) were studied in [9] and references therein.

The special cases of (SVIP3) are the following variational inclusion problems:
(SVIP4) Find (x,y) € X x Y such thatx € cIS(x),y € T(x),
0e€GXx,y,u) forallu e S(x)
and
0 € B(x,y,v) forallv e T(x).
(VIP4) Find (x,y¥) € X x Y such thatx € cIS(x),y € T(x),
0 € B(x,y,v) forallv e T(x).
(VIP5) Find (x,y) € X x Y suchthatx € cIS(X),y € T(X),
0 € GXx,y,u) forallu e S(x).
(VIP5) was studied in [12,14] and (VIP4) was studied in [13].

Leth : X x Y — Z be a function and C be a nonempty closed convex cone in Z with int C # ¢. Let the relations Q and R
be defined by

Q(x,y, u) holds iff h(u, y) — h(x,y) € —C(x)
and
R(x,y, v) holds iff h(x, v) — h(x,y) € C

then (SVR) is reduced to the following vector saddle point problem:
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(VSP1) Find (x,y) € X x Y suchthatx € cIS(X),y € T(X),
h(u,y) — h(x,y) € —C forallu € S(x)
and
h(x,v) —h(x,y) € C forallv € T(x).

Similarly (SVR) contains the following vector saddle point problem:
(VSP2) Find (x,y) € X x Y suchthatx € cIS(x),y € T(x),
h(u,y) — h(x,y) € intC forallu € S(x)
and
h(x,v) — h(x,y) € —intC forallv € T(x).
(VSP3) Find (x,y) € X x Y such thatx € clS(x),y € T(x)
h(u,y) — h(x,y) € intC forallu € S(x)
and
h(x,v) — h(x,y) € —intC forallv € T(x).
From the existence theorems of vector saddle point problem (VSP), we study the existence theorem of solution for minimax
problem (iv).
The purpose of this paper is to establish an existence theorem of simultaneous variational relation problems, from this
existence theorem, we studied existence theorems of simultaneous variational inclusion problems, existence theorems of
solutions for vector saddle point problems, minimax theorem and existence theorem of solution for common fixed point

theorem and variational relation problem. As we point out in the introduction, our problems contain many problems and
many known results as special cases. Our results are different from Luc [1,2] and Lin et al. [15].

2. Preliminaries

Let X and Y be t.s., we denote 2¥ the collection of all subsets of X. Let T : X — 2 be a multivalued map, T is said to be
closed (resp. open) if GrT = {(x,y) € X x Y : y € T(x)} is a closed (resp. open) setin X x Y.LetX beatv.s,A C X, we
denote co A, clA as the convex hull, the closure of A, respectively. As for the definition of lower semicontinuous (in short
l.s.c.) and upper semicontinuous (in short u.s.c.) of the map T : X — 2", one can refer to [16]. Throughout this paper, all
topologies space are assumed to the Hausdorff.

Definition 2.1. Let X, Y, Z be t.s. We denote R(x, y, z) a relation linking x € X,y € Y,z € Z. Arelation R is called closed
at (x, y, z) if for each net {(Xy, Y, Zo) }aca converges to (x,y,z) in X x Y x Z and R(x,, Y«, Z,) holds for all « € A, then
R(x,y, z) holds. A relation R defined on X x Y x Z is called closed if relation R is closed at every pointof X x Y x Z.

Definition 2.2 ([17]). Let X be a convex subset of a t.v.s. E. A multivalued map F : X — E is said to be a KKM map if
c0A C UF(x), foreach A € (X).

xeA

Definition 2.3. Let X, Y be real t.v.s., F : X — 2Y be a multivalued map and C be a nonempty closed convex cone in Y.
(i) F is said to be C-quasiconvex if for all x;, x, € X, A € [0, 1],
either F(x;) C F(Ax1 + (1 — A)xy) +C
or
F(x2) S F(Ax1 + (1 — A)x2) +C;
(ii) F is said to be C-quasiconcave if for all x1, x, € X, A € [0, 1],
either F(x;) C F(Ax1 + (1 — A)xy) — C
or
F(x2) € F(Ax1 + (1 —M)xz) — C.

Theorem 2.1 ([16]). Let X and Y be topological spaces, T : X — 2¥ be a multivalued map.
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(i) If T is an u.s.c. multivalued map with closed values, then T is closed.
(ii) If Y is a compact space and T is closed, then T is u.s.c.
(iii) If X is compact and T is an u.s.c. multivalued map with compact values, then T (X) is compact.

Theorem 2.2 ([18]). Let X and Y be topological spaces, T : X — 2" be a multivalued map. Then T is .s.c. at x € X if and only if
foranyy € T(x) and any net {X,}4c in X converges to x, there exists a net {yy}oca, Yo € T(Xy) foralla € A withy, — y.

The following theorem proposed by Kim and Tan [19] is the main tool in this paper.

Theorem 2.3 ([19]). Let I be any index set, X = [[;Xiand Y = [], Yi, where X; and Y; be nonempty compact convex
metrizable subsets of locally convex t.v.s. E; and H;, respectively. S; : X — 2% T; : X — 2Yiand P; : X x Y — 2% be multivalued
maps. Suppose that

(i) Foreach x € X, S;(x) is a nonempty convex subset of X;;
(i) cIS;: X — 2% isus.c;
(iii) T; is u.s.c. with nonempty closed convex values;
(iv) forall (x,y) € X x Y and x = (X)ies, Xi &€ coPi(x,y);
)

(v) forally; € X;, S; (i) = {x € X : y; € S(X)} and P{” (y;) are open in X x Y and X, respectively.

Then there exists (X, y) € X x Y such that for eachi € I, x; € c15;(x), y; € T;(x) and S;(x) (Pi(x, y) = .
Theorem 2.4 ([17]). Let E be a t.v.s., X C E be an arbitrary set, and G : X — 2F be a KKM map. If G(x) is closed for all x € X
and G(xg) is compact for some xo € X. Then [{G(x) : x € X} # 0.

Lemma 2.5 ([16]). Let X and Y be Hausdor{f topological spaces, G : Y — 2* be a multivalued map and W : X x Y — 2% bea
function and V(y) = supycgqy W(x, y).

(i) If W is lower semicontinuous on X x Y and G is lower semicontinuous at y,, then V is lower semicontinuous at yo;
(i) If W is upper semicontinuous on X x Y, G is upper semicontinuous at yo and G(y,) is compact, then V is upper semicontinuous

at yo.
3. Main results

In this section, unless otherwise specify, we assume that X, Y are two nonempty compact convex metrizable subsets in
two locally convex t.v.s., E and V respectively. S : X — 2¥and T : X — 2Y be multivalued maps, R and Q are relations
definedonX x Y x Yand X x Y x X, respectively.

The following theorem is the main result of this paper.

Theorem 3.1. Suppose that:

(i) S is a multivalued map with nonempty convex values and S~ (y) is open forally € X and c1S : X — 2Xisu.s.c.;;
(ii) T is a continuous multivalued map with nonempty closed convex values;
(iii) (a) the relation R is closed;
(b) for each x € X, any finite subset {vq, v2, ..., vy} of Yand anyy € co{vy, v, ..., vy}, thereexistsj € {1,2,...,n},
such that R(x, y, vj) holds;
(c) foreach (x,v) € X x Y, theset {y € T(x) : R(x, y, v) holds} is convex; and
(iv) (a) for each finite set {X1,X>...,Xxp} C X, any x € co{xy,X2,...,xp}andy € Y, there exists j € {1, 2, ..., n} such that
Q(x,y, x;) holds;
(b) foreachu € X, {(x,y) € X x Y : Q(x,y, u) does not hold} is open.

Then there exists (x,y) € X x Y such that x € c1S(x),y € T(x),
Q(x,y, u) holds for allu € S(x)
and

R(x,y, v) holds for allv € T(x).

Proof. Let H(x) = {y € T(x) : R(x,y, v) holds forallv € T(x)} and P(x,y) = {u € X : Q(x,y, u) does not hold}. We want
to show that H(x) is nonempty for all x € X. For each x € X, let R, : T(x) — 27® be defined by R,(v) = {y € T(%) :
R(x, y, v) holds}. By (iii)(b), for each x € X, R, is a KKM map.

Foreachx € Xandv € Y, R,(v) isaclosed set. Indeed, lety € R(v), then there exists a net {y*} in Ry(v) such thaty® — y.
Then y* € T(x) and R(x, y*, v) holds. By (ii) and Theorem 2.1, y € T(x). By (iii)(a), R(x, y, v) holds and Ry (v) is closed. Since
Ry(v) € T(x) € Y and Y; is compact, then R, (v) is compact. By Theorem 2.4, ﬂvém) Ry(v) # P.Llety € ﬂvém) Ry(v), then

y € H(x) and H(x) is nonempty. H is closed. Indeed, if (x,y) € GrH, then there exists a net {(x*, y*)} in GrH such that
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x*,y*) — (x,y). Therefore, y* € T(x*) and R(x*, y*, v) holds for all v € T(x*). For each v € T(x), by Theorem 2.2, there
exists a net {v*} such that v* € T(x*), v* — v and R(x*, y*, v*) holds. Since T is closed, y € T(x) and R(x, y, v) holds for
all v € T(x). Hence (x,y) € GrH and H is closed. Since H is closed and Y is compact, by Theorem 2.1 H is u.s.c. with closed
values. By (iii)(c), H(x) is convex for each x € X. By (iv), it is easy to see that P~ (u) is open for allu € X and x & coP(x, y).
Indeed, suppose x € coP(x, y), then there exists {x1, X2, ..., X} € P(x,y) and x € co{x1, X2, ..., X,}, by (iv)(a), Q(x, y, X))
holds for some j = 1, 2, ..., n. This leads to a contradiction. Then Theorem 3.1 follows from Theorem 2.3. O

For the special cases of Theorem 3.1, we have the following existence theorems for variational relation problems.
Corollary 3.1. Suppose that conditions (i), (ii) and (iii) of Theorem 3.1, then there exists (X, y) € X xY suchthatx € clS(x),y €
T (%)

and R(x, y, v) holds forall v € T(x).

Proof. Suppose Q (x,y,u) holds forallx € X,y € Y and u € S(x). Then condition (iv) of Theorem 3.1 is satisfied. Then
Corollary 3.1 follows from Theorem 3.1. O

Corollary 3.2. Suppose that conditions (i), (ii) and (iv) of Theorem 3.1, then there exists (X, y) € X xY suchthat x € clS(x),y €
T (%),
and Q (x, y, u) holds for allu € S(x).
Proof. LetRbe the relation that R(x, y, v) holds forallx € X,y € Y and v € Y.Then condition (iii) of Theorem 3.1 is satisfied.
Corollary 3.2 follows from Theorem 3.1. O
As applications of Theorem 3.1, we have the following existence theorems of simultaneous variational inclusion
problems.

Theorem 3.2. let Z beats,A B : X xY xY — 22and F,G : X x Y x X — 27 be multivalued maps. Suppose
conditions (i) and (ii) of Theorem 3.1 and suppose that

(iii) (a) AisLs.c, Bis closed;
(b) for each (x,y) € X x Y, any finite subset {vq, v, ...,vs} of Y;, and y € cof{vq, va, ..., vy}, there exists j €
{1,2,...,n},such that A(x, y, vj) € B(x,y, v));
(c) foreach (x,v) € X x Y, theset {y € T(x) : A(x,y, v) € B(x,y, v)} is convex; and
(iv) (a) for each finite subset {x1, X3, ...,X;} C X, anyx € co{x1,X2,...,xp}andy € Y, thereexistsj € {1,2,...,n} such
that F(x,y, %)) € G(x,¥, X)),
(b) foreachu € X, (x,y) — F(x,y,u)islLs.c.and (x,y) — G(x, y, u) is closed.
Then there exists (x,y) € X x Y such that x € cIS(x),y € T(x),

F(x,y,u) C Gk, y,u) forallu € S(x)
and
AR, y,v) CB(x,y,v) forallv e T(x).

Proof. Let relations Q and R be defined by

Q(x,y, u) holds if and only if F(x, y, u) C G(x,y, u)
and

R(x, y, v) holds if and only if A(x, y, v) C B(x, y, v).

By (iii)(a), R(x, y, v) is closed. Indeed, let {(x*, y*, v*)} be any net in X x Y x Y such that (x*, y*, v*) — (x,y, v) and
R(x*,y*, v¥) holds for all« € A.Then

AR®,y*, v¥) € B(x*,y*, v*) foralla € A.

Let w € A(x,y, v). Since A is Ls.c.,, there exists a net {w®}4ec4 in Z such that w* € A(x*, y*, v¥) and w* — w. Since B is
closed, w € B(x, y, v). This shows that A(x, y, v) € B(x, y, v) and R(x, y, v) holds. Therefore relation R is closed. By (iii)(b),
for each u € X, the set

M = {(x,y) €e X x Y : Q(x, y, u) holds} is closed.

Indeed, let (x,y) € M, then there exists a net {(x*, ¥*)}oea in M such that (x*, y*) — (x, y). One has (x*, y*) € X x Y,
Q(x*,y*,u) holds forall @« € A.Since X x Y is a closed set, (x,y) € X x Y. By (iv) and with the same argument as the proof
that R is closed, we can show that Q (x, y, u) holds. Hence (x, y) € M and M is closed. Therefore, for each u € X, the set

{(x,y) e X x Y : Q(x,y, u) does not hold} is open.

Then Theorem 3.2 follows from Theorem 3.1. O
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Remark 3.1. Let Z be a t.v.s. For each (x, v) € X x Y,y — B(x,y, v) is concave and y — A(x, y, v) is convex, then condition
(iii)(c) of Theorem 3.2 holds.
Indeed, let0 < A < 1and

y1,¥2 € {y e T(®) : A(x,y, v) € B(x,y,v)} forsomexeX,veyY.
Then

y1,¥2 € TX), A, y1,v) € B, y1,0)
and

Ai(x, y2, vi) € B(x, y2, v).
Lety, = Ay1 + (1 — A)y,, then

Ax, ¥, v) © AR, y1, V) + (1 = VAR, ¥2, v)

= )"B(X7 Y1, v) + (1 - )")B(X5 Y2, U)
S B(X, y2, v).

N

We also have y; € T(x). This shows that the set
{yeT(x) : A(x,y,v) C B(x,y, v)} is convex.

Theorem3.3. let Zbeats,AB : X xY xY — 22and F,G : X x Y x X — 2% be multivalued maps. Suppose
conditions (i) and (ii) of Theorem 3.1 and suppose that

(iii) (a) Ais an u.s.c. multivalued maps with nonempty compact values, B is closed;
(b) foreach (x,y) € X xY, any finite subset {vq, V2, ..., vy} of Y,andy € co{vq, vo, ..., vy}, thereexistsj € {1, 2, ..., n}
such that A(x, y, v;) (B, y, vj)) # &;
(c) foreach (x,v) € X x Y, theset {y € T(x) : A(x,y, v) (| B(x,y, v) # @} is convex; and
(iv) (a) for each finite subset {x1, X2, ...,%,} C X, anyx € co{x1,X2,...,xs}andy € Y, thereexistsj € {1,2,...,n} such

that F(x,y, %) [ G(x,y, %) # &;
(b) foreachu € X, (x,y) — F(x,y, u) isus.c.and (x,y) — G(x,y, u) is closed.

Then there exists (x,y) € X x Y such that x € c1S(x),y € T(x),
F& .0 (G&.J.u) #0 forallu € SX),
and

A3, v)(B&.y.v) # 9 foralveT ().

Proof. Let relations Q and R be defined by

Q(x,y, u) holds if and only if F(x, y, u) ﬂ Gx,y,u) #0
and

R(x, y, v) holds if and only if A(x, y, v) ﬂ B(x,y,v) # 0.

By (iii)(a), R is closed. Indeed, let {(x*, y*, v*)} be any net in X x Y x Y such that (x*, y*, v¥) — (x,y, v) and R(x*, y*, v*)
holds for all « € A. Then

Ay v (B, y* v*) £ 0 foralla € A.

Let w® € A(x¥, y*, v¥) [ B&x*, y*, v*).
LetK = {x* :a € AYUXL L={y* 1 @ € A} U{),

andM = {v* 1« € A}U{v}.

Then K, L and M are compact, hence K x L x M is a compactsetin X x Y x Y. By (iii)(a) and Theorem 2.1, A(K x L x M) is
a compact set and w* € A(K x L x M), then {w*}ye4 has a subnet {w* },, ¢4 such that w** — w for some w € A(x, y, v).
Since w** € B(x**, y** v**) and B is closed, w € B(x, y, v). Therefore

w € A(x,y,v) [ |B(.y. v) # 0

and R(x, y, v) holds. By (iv)(b) and following the same argument as in Theorem 3.2, we can prove that for each v € X,
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the set
{y e T(x) : Q(x,y, v) does not hold} is open.
Then Theorem 3.3 follows from Theorem 3.1. O

For the special case of Theorem 3.3, we have the following corollary.

Corollary 3.3. Let Zbeat.v.s,B: XxYxY — 272 andG : XxY xX — 2% be multivalued maps. Suppose conditions (i) and (ii) of
Theorem 3.1 and suppose that

(iii) (a) Bis closed;
(b) foreach (x,y) € X xY, any finite subset {vq, v, ..., vy} of Y,andy € co{vq, va, ..., vy}, thereexistsj € {1,2,...,n}
such that 0 € B(x, y, vj);
(c) foreach (x,v) € X x Y, theset {y € T(x) : 0 € B(x,y, v)} is convex; and
(iv) (a) for each finite subset {x1, X3, ..., X,} C X, anyx € co{x1,X2, ..., Xy}, andy € Y, there exists j € {1,2, ..., n} such
that 0 € G(x, y, X;);
(b) foreachu € X, (x,y) — G(x, y, u) is closed.

Then there exists (x,y) € X x Y such that x € cIS(x),y € T(x),
0 € GXx,y,u) forallue S(x),
and

0 € B(x,y,v) forallv e T(x).

Proof. LetA: X XY XY —-ZandF : X X Y x X — Z be defined by
A(x,y,v) = {0} forall (x,y,v) eXxY XY
and
F(x,y,u) ={0} forall (x,y,u) e X xY xX.
Then Corollary 3.3 follows from Theorem 3.3. O
Remark 3.2. Let Z be areal t.v.s.and C : X — 27 be a closed multivalued map such that for each x € X, C(x) is a nonempty
convex cone.
(i) In Theorem 3.2, if
B(x,y,v) =C(x) forall(x,y,v) eXxY xY
and
Gx,y,u) =C(x) forall (x,y,u) e X xY xX.

Then Theorem 3.2 is an existence theorem of solution for simultaneous generalized vector quasi-equilibrium problem
studied in [6,7,20]:
Find (x,y) € X x Y suchthatx € cIS(X),y € T(%),
F(x,y,u) C C(x) forallu e S(x),
and
AX,y,v) CC(x) forallv e T(x).
(i) Ifint C(x) # @ for all x € X and

Bx,y,v) =Z\intC(x) forall(x,y,v) eX xY xY
and
Gx,y,u) =Z\intC(x) forall (x,y,u) e X xY x X.

Then Theorem 3.2 is an existence theorem of solution for the following problem:
Find (x,y) € X x Y suchthatx € cIS(x),y € T(x),
F(x,y,u) ﬂ intC(x) =@ forallu € S(x),
and
A& §,v)()intC® =@ forallv e TX).
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(iii) If B(x,y, v) = H(x,y,v) — C(x) forall (x,y,v) e X x Y x Y,
A(x,y,v) =H(,y,y) forall(x,y,v) eXxY xY,
and G(x,y,u) =M(x,y,u) —C(x) forall (x,y,u) e X xY xX,
F(x,y,u) =M(x,y,x) forall (x,y,u) e X xY x X,
whereH : X xY xY — 2Zand M : X x Y x X — 27 are u.s.c. multivalued map with nonempty compact values. Then
Theorem 3.2 is an existence theorem of solution for systems of generalized vector quasivariational inclusion problem
studied in [2,9,20,21] and reference therein:
Find (%, y) € X x Y such thatx € cIS(X),y € T(X),
Mk,y,X) CM(x,y,u) — C(x) forallu e S(x),
and
H(x,y,y) CH(,y,v) —C(x) forallv € T(x).
IfB(x,y,v) = HXx,y,y) + C(x) forall (x,y,v) e X xY x Y,
A(x,y,v) =H(x,y,v) forall(x,y,v) eXxY xY,
and G(x,y,u) =M(x,y,x) +C(x) forall (x,y,u) e X XY xX,
F(x,y,u) = M(x,y,u) forall (x,y,u) e X xY x X,

—
—_
<

—

where H, M and C are the same as (iii) above. Then Theorem 3.2 is an existence theorem of solution for the following
systems of generalized vector quasivariational inclusion problem studied in [2,20]:
Find (x,y) € X x Y suchthatx € cIS(X),y € T(X),
MK, y,u) S M(Kx,y,X) + C(x) forallu € S(x),
and
Hx,y,v) CHX,y,y) +Ckx) forallv e T(x).
In Theorem 3.3, if

B(x,y,v) =C(x) forall(x,y,v) eX xY xY

(v

—

and
Gx,y,u) =C(x) forall (x,y,u) e X xY xX.

Then Theorem 3.3 is an existence theorem of solution for the following systems of generalized vector quasi-equilibrium
problem studied in [6,7,20]:
Find (x,y) € X x Y suchthatx € cIS(X),y € T(X),
F(x,y,u) ﬂC()"c) # ¢ forallu e S(x),
and
AX,y,v)[ |CX) £@ forallv e T(x).
In Theorem 3.3, i

B(x,y,v) =Z\ —intC(x) forall(x,y,v) eX xY xY

(vi

~

and
Gx,y,u)=Z\ —intC(x) forall (x,y,u) € X xY x X.

Then Theorem 3.2 is an existence theorem of solution for simultaneous generalized vector quasi-equilibrium problem
studied in [6,7]:
Find (x,y) € X x Y suchthatx € cIS(X),y € T(x),
F(x,y,u) € —intC(x) forallu € S(x),
and
ARX,y,v) £ —intC(x) forallv € T(x).

Theorem 3.4. Let X be a nonempty compact convex subset of a normed vector space, let M : X — 2X be a multivalued map
with nonempty compact convex values. Suppose conditions (i), (ii) and (iii) of Theorem 3.1 and suppose that:

(iv) M is a continuous multivalued map and M(x) () S(x) # @ for allx € X.
Then there exists (X, y) € X x Y such that X € c1S(X) (1M (X),y € T(x), and R(x, y, v) holds for all v € T(X).
Proof. Let the relation Q be defined by
Q(x,y, u;) holds iff d(x, M(x)) < d(u, M(x)).

It suffices to show that condition (iv) of Theorem 3.1 is satisfied. Suppose there exists a finite subset {xq, x2, ..., X;} of X,
X € cof{xq,Xx,...,x,} andy € Y such that Q(x, y, x;) does not hold for allj € {1, 2, ..., n}. Then

d(x, M(x)) > d(x;, M(x))
= inf ||x; —z| = ||x; — z]|| forsomez € M(x).
zeM(x)
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Since x € co {x1, X2, ..., X,}, there exists A; > 0, ..., A, > 0 with 2'7:1 Aj = 1suchthatx = 2'7:] AjXj. By assumption,
M(x) is convex for eachx € X, x = Z}; AjiXj € M(x).

n
d(x, M) > Y Ajllx; — ]
j=1

n n n
> Z)ijj' — Z)»J'Zj = ||X — Z)»J'Zj
=1 j=1 j=1
> d(x, M(x)).
This leads to a contradiction. Therefore, for each finite subset {x{, x5, ..., x,} of X, any x € co{xq,x2,...,x,}andy € Y,
there existsj € {1, 2, ..., n} such that

d(x, M(x)) < d(xj, M(x)).

Thatis Q (x, y, x;) holds.
Since M : X — 2% is a continuous map, it follows from Lemma 2.5 that for each u € X

x — dx,M(x)) = inf d(x, w)
weM (x)
and x — d(u, M(x)) are continuous functions.
By the definition of Q, for each u € X,
{x,y) eX xY :dx,M(x)) <du,Mx)} ={(x,y) € X xY :Q(x,y, u) holds} is a closed setin X x Y.
Hence, the set
{(x,y) e X x Y : Q(x,y, u) does not hold} isopeninX x Y.

Then by Theorem 3.1 that there exists (x,y) € X x Y such thatx € cIS(x),y € T(x), d(x, M(x)) < d(u, M(x)) holds for all
u € S(x) and R(x, ¥, v) holds for all v € T(x). By (iv), M(%) [ S(X) # 0.

Takei € M%) [ |S®).
then d(x, M(x)) < d(ii, M(x)) =0 and hence d(x, M(X)) = 0.
Since M(X) is a closed set,x € M(X) [\ cIS(x). O

Remark 3.3. Theorem 3.4 is an existence theorem of solution for common fixed point and variational relation problem.

As an application of Theorem 3.1, we study the following existence theorem of solution for vector saddle point.

Theorem 3.5. Let Z be areal t.v.s. and C be a nonempty closed convex cone in Z. Suppose conditions (i) and (ii) of Theorem 3.1
and suppose that:

(iii) h : X x Y — Z is a continuous function and for each x € X, v — h(x, v) is C-quasiconvex;
(iv) foreachy € Y, x — h(x,y) is C-quasiconcave.

Then there exists (x,y) € X x Y such that x € cIS(x),y € T(x),
h(u,y) — h(x,y) € —C forallu € S(X)
and

h(x,v) — h(x,y) € C forallv € T(x).

Proof. Let the relations Q and R be defined by

Q(x,y,u) holds iff h(u,y) — h(x,y) € —C
R(x,y, v) holds iff h(x, v) — h(x,y) € C.

Since h is continuous, it is easy to see that conditions (iii)(a) and (iv)(b) of Theorem 3.1 hold.
By the definitions of C-quasiconvex and C-quasiconcave, we see that conditions (iii)(b), (iii)(c) and (iv)(a) of Theorem 3.1
hold. Then Theorem 3.5 follows from Theorem 3.1. O

Theorem 3.5 can also be applied to study the following minimax theorem.

Theorem 3.6. Suppose conditions (i) and (ii) of Theorem 3.1 and suppose that:
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(iii) h : X x Y — R s a continuous function and for each x € X, v — h(x, v) is quasiconvex;
(iv) foreachy € Y, x — h(x,y) is quasiconcave.

Then there exists (x,y) € X x Y such that x € c1S(x),y € T(x) and

min max h(u,v) = max min h(u, v) = h(x, y).
veT(X) uecl S(x) ueclS(x) veT (%)

Proof. By Theorem 3.1, there exists (X, ) € X x Y such thatx € clIS(x),y € T(x) and
h(u,y) < h(x,y) < h(x,v) forallu e S(X)and v € T(x).
Hence

max min h(x,y) > min max h(x,y).
xeclS(x) yeT(X) yeT(X) xeclS(x)

Since

max min h(x,y) < min max h(x,y)
xeclS(x) yeT (%) yeT(X) xeclS(x)

is always true, we have

max min h(x,y) = min max h(x,y). O
xeclS(x) yeT(X) yeT(X) xeclS(x)
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