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relation problem. As applications of our result, we study the existence theorems of solution
for the equilibrium problem, variational inclusions problem, common fixed points and the
minimax theorem.
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1. Introduction

Let X, Y and Z be nonempty sets. Si : X → 2X , Si : X → 2Y and H : X × Y → 2Z . Let R be a relation linking x ∈ X , y ∈ Y
and Z . Luc [1,2] studied the following variational relation problem.

(VR) Find x̄ ∈ X such that x̄ ∈ S1(x̄) and R(x̄, y, v) holds for every y ∈ S2(x̄) and any v ∈ H(x̄, y).

(VR) contains optimization problems, variational inclusion problems, differential inclusion problems and equilibrium
problems as special cases. In this paper, let X, Y be two nonempty compact convexmetrizable subsets in two locally convex
topological vector spaces (in short, t.v.s.) and Z be a topological space (in short, t.s.). S : X → 2X and T : X → 2Y be two
multivalued maps with nonempty values. We consider the following problem:

(SVR) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

Q (x̄, ȳ, u) holds for all u ∈ S(x̄)

and

R(x̄, ȳ, v) holds for all v ∈ T (x̄),

where R and Q are relations defined on X × Y × Y and X × Y × X , respectively.

This problem was called a simultaneous variational relation problem in which S, T are constraints and R,Q are variational
relations. As applications of our existence result of the simultaneous variational relation problem above, we study the
following problems:

(i) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

F(x̄, ȳ, u) ⊆ G(x̄, ȳ, u) for all u ∈ S(x̄)
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and

A(x̄, ȳ, v) ⊆ B(x̄, ȳ, v) for all v ∈ T (x̄).

(ii) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

F(x̄, ȳ, u)
⋂
G(x̄, ȳ, u) 6= ∅ for all u ∈ S(x̄),

and

A(x̄, ȳ, v)
⋂
B(x̄, ȳ, v) 6= ∅ for all v ∈ T (x̄).

(iii) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄)
⋂
M(x̄), ȳ ∈ T (x̄),

and R(x̄, ȳ, v) holds for all v ∈ T (x̄).

(iv) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄)

and min
v∈T (x̄)

max
u∈cl S(x̄)

h(u, v) = max
u∈cl S(x̄)

min
v∈T (x̄)

h(u, v) = h(x̄, ȳ).

The problems (i) and (ii) are simultaneous variational inclusion problems. When A = B, problems (i) and (ii) were different
from the problems studied by Hai et al. [3–5]. In [3–5], Hai et al. studied the variational inclusion problems with a fixed
point theorem or maximal element theorems, in this paper, we study the variational inclusion problems with an existence
theorem of simultaneous of variational relation problems, the results and techniques are quite different. As special cases
of problems (i) and (ii), we consider several simultaneous quasi-equilibrium problems and simultaneous quasivariational
inclusion problems:
Let Z be a real t.v.s. and C : X → 2Z be a multivalued map such that for each x ∈ X , C(x) is a nonempty closed convex

cone with nonempty interior.

(SVEP1) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

F(x̄, ȳ, u) ⊆ C(x̄) for all u ∈ S(x̄)

and

A(x̄, ȳ, v) ⊆ C(x̄) for all v ∈ T (x̄);

(SVEP2) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

F(x̄, ȳ, u)
⋂
C(x̄) 6= ∅ for all u ∈ S(x̄)

and

A(x̄, ȳ, v)
⋂
C(x̄) 6= ∅ for all v ∈ T (x̄);

(SVEP3) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

F(x̄, ȳ, u)
⋂
int C(x̄) = ∅ for all u ∈ S(x̄)

and

A(x̄, ȳ, v)
⋂
int C(x̄) = ∅ for all v ∈ T (x̄);

(SVEP4) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

F(x̄, ȳ, u) 6⊆ int C(x̄) for all u ∈ S(x̄)

and

A(x̄, ȳ, v) 6⊆ int C(x̄) for all v ∈ T (x̄);

(SVEP1, 2, 3, 4) were studied by Lin [6].
If we let F(x, y, u) = {0} for all (x, y, u) ∈ X × Y × X , then (SVEP1) is reduced to the vector equilibrium problem:

(VEP1) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄) and

A(x̄, ȳ, v) ⊆ C(x̄) for all v ∈ T (x̄);

(SVEP2) is reduced to the vector equilibrium problem:
(VEP2) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄) and

A(x̄, ȳ, v)
⋂
C(x̄) 6= ∅ for all v ∈ T (x̄);

(SVEP3) is reduced to the vector equilibrium problem:
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(VEP3) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄) and

A(x̄, ȳ, v)
⋂
int C(x̄) = ∅ for all v ∈ T (x̄);

(SVEP4) is reduced to the vector equilibrium problem:
(VEP4) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄) and

A(x̄, ȳ, v) 6⊆ int C(x̄) for all v ∈ T (x̄)

(VEP1, 2, 3, 4) were studied by Lin et al. [7–9], Sach [10] and references therein.
Similarly, if we let A(x, y, v) = {0} for all (x, y, v) ∈ X × Y × Y , then (SVEP1, 2, 3, 4) are is reduced to the vector

equilibrium problem recently studied by [11,12].
Let H : X × Y × Y → 2Z andM : X × Y × X → 2Z be multivalued maps with nonempty values.
The special cases of problem (i) are following simultaneous variational inclusion problems:

(SVIP1) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

M(x̄, ȳ, x̄) ⊆ M(x̄, ȳ, u)− C(x̄) for all u ∈ S(x̄)

and

H(x̄, ȳ, ȳ) ⊆ H(x̄, ȳ, v)− C(x̄) for all v ∈ T (x̄).

(SVIP2) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

M(x̄, ȳ, u) ⊆ M(x̄, ȳ, x̄)+ C(x̄) for all u ∈ S(x̄)

and

H(x̄, ȳ, v) ⊆ H(x̄, ȳ, ȳ)+ C(x̄) for all v ∈ T (x̄).

(SVIP1, 2) were studied in [9,13] and references therein.
The special cases of problem (SVIP1) are the following variational inclusion problems:

(VIP1) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),
andM(x̄, ȳ, ȳ) ⊆ M(x̄, ȳ, u)− C(x̄) for all u ∈ S(x̄).

(VIP2) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),
and H(x̄, ȳ, ȳ) ⊆ H(x̄, ȳ, v)− C(x̄) for all v ∈ T (x̄).

The special cases of problem (SPVIP2) are the following variational inclusion problem:

(VIP3) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),
andM(x̄, ȳ, u) ⊆ M(x̄, ȳ, x̄)+ C(x̄) for all u ∈ S(x̄).

(VIP4) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),
and H(x̄, ȳ, v) ⊆ H(x̄, ȳ, ȳ)+ C(x̄) for all v ∈ T (x̄).

(VIP1, 3) were studied in [2,13] and references therein, (VIP2, 4) were studied in [9] and references therein.

The special cases of (SVIP3) are the following variational inclusion problems:

(SVIP4) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

0 ∈ G(x̄, ȳ, u) for all u ∈ S(x̄)

and

0 ∈ B(x̄, ȳ, v) for all v ∈ T (x̄).

(VIP4) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

0 ∈ B(x̄, ȳ, v) for all v ∈ T (x̄).

(VIP5) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

0 ∈ G(x̄, ȳ, u) for all u ∈ S(x̄).

(VIP5) was studied in [12,14] and (VIP4) was studied in [13].

Let h : X × Y → Z be a function and C be a nonempty closed convex cone in Z with int C 6= ∅. Let the relations Q and R
be defined by

Q (x, y, u) holds iff h(u, y)− h(x, y) ∈ −C(x)

and

R(x, y, v) holds iff h(x, v)− h(x, y) ∈ C

then (SVR) is reduced to the following vector saddle point problem:
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(VSP1) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

h(u, ȳ)− h(x̄, ȳ) ∈ −C for all u ∈ S(x̄)

and

h(x̄, v)− h(x̄, ȳ) ∈ C for all v ∈ T (x̄).

Similarly (SVR) contains the following vector saddle point problem:

(VSP2) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

h(u, ȳ)− h(x̄, ȳ) 6∈ int C for all u ∈ S(x̄)

and

h(x̄, v)− h(x̄, ȳ) 6∈ −int C for all v ∈ T (x̄).

(VSP3) Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄)

h(u, ȳ)− h(x̄, ȳ) ∈ int C for all u ∈ S(x̄)

and

h(x̄, v)− h(x̄, ȳ) ∈ −int C for all v ∈ T (x̄).

From the existence theorems of vector saddle point problem (VSP), we study the existence theorem of solution for minimax
problem (iv).
The purpose of this paper is to establish an existence theorem of simultaneous variational relation problems, from this

existence theorem, we studied existence theorems of simultaneous variational inclusion problems, existence theorems of
solutions for vector saddle point problems, minimax theorem and existence theorem of solution for common fixed point
theorem and variational relation problem. As we point out in the introduction, our problems contain many problems and
many known results as special cases. Our results are different from Luc [1,2] and Lin et al. [15].

2. Preliminaries

Let X and Y be t.s., we denote 2X the collection of all subsets of X . Let T : X → 2Y be a multivalued map, T is said to be
closed (resp. open) if Gr T = {(x, y) ∈ X × Y : y ∈ T (x)} is a closed (resp. open) set in X × Y . Let X be a t.v.s., A ⊆ X , we
denote co A, cl A as the convex hull, the closure of A, respectively. As for the definition of lower semicontinuous (in short
l.s.c.) and upper semicontinuous (in short u.s.c.) of the map T : X → 2Y , one can refer to [16]. Throughout this paper, all
topologies space are assumed to the Hausdorff.

Definition 2.1. Let X, Y , Z be t.s. We denote R(x, y, z) a relation linking x ∈ X, y ∈ Y , z ∈ Z . A relation R is called closed
at (x, y, z) if for each net {(xα, yα, zα)}α∈Λ converges to (x, y, z) in X × Y × Z and R(xα, yα, zα) holds for all α ∈ Λ, then
R(x, y, z) holds. A relation R defined on X × Y × Z is called closed if relation R is closed at every point of X × Y × Z .

Definition 2.2 ([17]). Let X be a convex subset of a t.v.s. E. A multivalued map F : X ( E is said to be a KKMmap if

co A ⊆
⋃
x∈A

F(x), for each A ∈ 〈X〉.

Definition 2.3. Let X, Y be real t.v.s., F : X → 2Y be a multivalued map and C be a nonempty closed convex cone in Y .

(i) F is said to be C-quasiconvex if for all x1, x2 ∈ X , λ ∈ [0, 1],

either F(x1) ⊆ F(λx1 + (1− λ)x2)+ C

or

F(x2) ⊆ F(λx1 + (1− λ)x2)+ C;

(ii) F is said to be C-quasiconcave if for all x1, x2 ∈ X , λ ∈ [0, 1],

either F(x1) ⊆ F(λx1 + (1− λ)x2)− C

or

F(x2) ⊆ F(λx1 + (1− λ)x2)− C .

Theorem 2.1 ([16]). Let X and Y be topological spaces, T : X → 2Y be a multivalued map.
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(i) If T is an u.s.c. multivalued map with closed values, then T is closed.
(ii) If Y is a compact space and T is closed, then T is u.s.c.
(iii) If X is compact and T is an u.s.c. multivalued map with compact values, then T (X) is compact.

Theorem 2.2 ([18]). Let X and Y be topological spaces, T : X → 2Y be a multivalued map. Then T is l.s.c. at x ∈ X if and only if
for any y ∈ T (x) and any net {xα}α∈Λ in X converges to x, there exists a net {yα}α∈Λ, yα ∈ T (xα) for all α ∈ Λ with yα → y.

The following theorem proposed by Kim and Tan [19] is the main tool in this paper.

Theorem 2.3 ([19]). Let I be any index set, X =
∏
i∈I Xi and Y =

∏
i∈I Yi, where Xi and Yi be nonempty compact convex

metrizable subsets of locally convex t.v.s. Ei and Hi, respectively. Si : X → 2Xi , Ti : X → 2Yi and Pi : X × Y → 2Xi be multivalued
maps. Suppose that

(i) For each x ∈ X, Si(x) is a nonempty convex subset of Xi;
(ii) cl Si : X → 2Xi is u.s.c.;
(iii) Ti is u.s.c. with nonempty closed convex values;
(iv) for all (x, y) ∈ X × Y and x = (xi)i∈I , xi 6∈ co Pi(x, y);
(v) for all yi ∈ Xi, S−i (yi) = {x ∈ X : yi ∈ S(x)} and P

−

i (yi) are open in X × Y and X, respectively.

Then there exists (x̄, ȳ) ∈ X × Y such that for each i ∈ I , x̄i ∈ cl Si(x̄), ȳi ∈ Ti(x̄) and Si(x̄)
⋂
Pi(x̄, ȳ) = ∅.

Theorem 2.4 ([17]). Let E be a t.v.s., X ⊆ E be an arbitrary set, and G : X → 2E be a KKM map. If G(x) is closed for all x ∈ X
and G(x0) is compact for some x0 ∈ X. Then

⋂
{G(x) : x ∈ X} 6= ∅.

Lemma 2.5 ([16]). Let X and Y be Hausdorff topological spaces, G : Y → 2X be a multivalued map and W : X × Y → 2R be a
function and V (y) = supx∈G(y)W (x, y).

(i) If W is lower semicontinuous on X × Y and G is lower semicontinuous at y0, then V is lower semicontinuous at y0;
(ii) If W is upper semicontinuous on X×Y , G is upper semicontinuous at y0 and G(y0) is compact, then V is upper semicontinuous
at y0.

3. Main results

In this section, unless otherwise specify, we assume that X, Y are two nonempty compact convex metrizable subsets in
two locally convex t.v.s., E and V respectively. S : X → 2X and T : X → 2Y be multivalued maps, R and Q are relations
defined on X × Y × Y and X × Y × X , respectively.
The following theorem is the main result of this paper.

Theorem 3.1. Suppose that:

(i) S is a multivalued map with nonempty convex values and S−(y) is open for all y ∈ X and cl S : X → 2X is u.s.c.;
(ii) T is a continuous multivalued map with nonempty closed convex values;
(iii) (a) the relation R is closed;

(b) for each x ∈ X, any finite subset {v1, v2, . . . , vn} of Y and any y ∈ co {v1, v2, . . . , vn}, there exists j ∈ {1, 2, . . . , n},
such that R(x, y, vj) holds;

(c) for each (x, v) ∈ X × Y , the set {y ∈ T (x) : R(x, y, v) holds} is convex; and
(iv) (a) for each finite set {x1, x2 . . . , xn} ⊂ X, any x ∈ co {x1, x2, . . . , xn} and y ∈ Y , there exists j ∈ {1, 2, . . . , n} such that

Q (x, y, xj) holds;
(b) for each u ∈ X, {(x, y) ∈ X × Y : Q (x, y, u) does not hold} is open.

Then there exists (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

Q (x̄, ȳ, u) holds for all u ∈ S(x̄)

and

R(x̄, ȳ, v) holds for all v ∈ T (x̄).

Proof. Let H(x) = {y ∈ T (x) : R(x, y, v) holds for all v ∈ T (x)} and P(x, y) = {u ∈ X : Q (x, y, u) does not hold}. We want
to show that H(x) is nonempty for all x ∈ X . For each x ∈ X , let Rx : T (x) → 2T (x) be defined by Rx(v) = {y ∈ T (x) :
R(x, y, v) holds}. By (iii)(b), for each x ∈ X , Rx is a KKMmap.
For each x ∈ X and v ∈ Y , Rx(v) is a closed set. Indeed, let y ∈ Rx(v), then there exists a net {yα} in Rx(v) such that yα → y.

Then yα ∈ T (x) and R(x, yα, v) holds. By (ii) and Theorem 2.1, y ∈ T (x). By (iii)(a), R(x, y, v) holds and Rx(v) is closed. Since
Rx(v) ⊆ T (x) ⊆ Y and Yi is compact, then Rx(v) is compact. By Theorem 2.4,

⋂
v∈T (x) Rx(v) 6= ∅. Let y ∈

⋂
v∈T (x) Rx(v), then

y ∈ H(x) and H(x) is nonempty. H is closed. Indeed, if (x, y) ∈ GrH , then there exists a net {(xα, yα)} in GrH such that
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(xα, yα)→ (x, y). Therefore, yα ∈ T (xα) and R(xα, yα, v) holds for all v ∈ T (xα). For each v ∈ T (x), by Theorem 2.2, there
exists a net {vα} such that vα ∈ T (xα), vα → v and R(xα, yα, vα) holds. Since T is closed, y ∈ T (x) and R(x, y, v) holds for
all v ∈ T (x). Hence (x, y) ∈ GrH and H is closed. Since H is closed and Y is compact, by Theorem 2.1 H is u.s.c. with closed
values. By (iii)(c), H(x) is convex for each x ∈ X . By (iv), it is easy to see that P−(u) is open for all u ∈ X and x 6∈ co P(x, y).
Indeed, suppose x ∈ co P(x, y), then there exists {x1, x2, . . . , xn} ⊆ P(x, y) and x ∈ co {x1, x2, . . . , xn}, by (iv)(a), Q (x, y, xj)
holds for some j = 1, 2, . . . , n. This leads to a contradiction. Then Theorem 3.1 follows from Theorem 2.3. �

For the special cases of Theorem 3.1, we have the following existence theorems for variational relation problems.

Corollary 3.1. Suppose that conditions (i), (ii) and (iii) of Theorem 3.1, then there exists (x̄, ȳ) ∈ X×Y such that x̄ ∈ cl S(x̄), ȳ ∈
T (x̄)

and R(x̄, ȳ, v) holds for all v ∈ T (x̄).

Proof. Suppose Q (x, y, u) holds for all x ∈ X , y ∈ Y and u ∈ S(x). Then condition (iv) of Theorem 3.1 is satisfied. Then
Corollary 3.1 follows from Theorem 3.1. �

Corollary 3.2. Suppose that conditions (i), (ii) and (iv) of Theorem 3.1, then there exists (x̄, ȳ) ∈ X×Y such that x̄ ∈ cl S(x̄), ȳ ∈
T (x̄),

and Q (x̄, ȳ, u) holds for all u ∈ S(x̄).

Proof. Let R be the relation that R(x, y, v) holds for all x ∈ X , y ∈ Y and v ∈ Y . Then condition (iii) of Theorem3.1 is satisfied.
Corollary 3.2 follows from Theorem 3.1. �

As applications of Theorem 3.1, we have the following existence theorems of simultaneous variational inclusion
problems.

Theorem 3.2. Let Z be a t.s., A, B : X × Y × Y → 2Z and F ,G : X × Y × X → 2Z be multivalued maps. Suppose
conditions (i) and (ii) of Theorem 3.1 and suppose that
(iii) (a) A is l.s.c., B is closed;

(b) for each (x, y) ∈ X × Y , any finite subset {v1, v2, . . . , vn} of Yi, and y ∈ co {v1, v2, . . . , vn}, there exists j ∈
{1, 2, . . . , n}, such that A(x, y, vj) ⊆ B(x, y, vj);

(c) for each (x, v) ∈ X × Y , the set {y ∈ T (x) : A(x, y, v) ⊆ B(x, y, v)} is convex; and
(iv) (a) for each finite subset {x1, x2, . . . , xn} ⊂ X, any x ∈ co {x1, x2, . . . , xn} and y ∈ Y , there exists j ∈ {1, 2, . . . , n} such

that F(x, y, xj) ⊆ G(x, y, xj);
(b) for each u ∈ X, (x, y)→ F(x, y, u) is l.s.c. and (x, y)→ G(x, y, u) is closed.

Then there exists (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

F(x̄, ȳ, u) ⊆ G(x̄, ȳ, u) for all u ∈ S(x̄)

and

A(x̄, ȳ, v) ⊆ B(x̄, ȳ, v) for all v ∈ T (x̄).

Proof. Let relations Q and R be defined by

Q (x, y, u) holds if and only if F(x, y, u) ⊆ G(x, y, u)

and

R(x, y, v) holds if and only if A(x, y, v) ⊆ B(x, y, v).

By (iii)(a), R(x, y, v) is closed. Indeed, let {(xα, yα, vα)} be any net in X × Y × Y such that (xα, yα, vα) → (x, y, v) and
R(xα, yα, vα) holds for all α ∈ Λ. Then

A(xα, yα, vα) ⊆ B(xα, yα, vα) for all α ∈ Λ.

Let w ∈ A(x, y, v). Since A is l.s.c., there exists a net {wα}α∈Λ in Z such that wα ∈ A(xα, yα, vα) and wα → w. Since B is
closed, w ∈ B(x, y, v). This shows that A(x, y, v) ⊆ B(x, y, v) and R(x, y, v) holds. Therefore relation R is closed. By (iii)(b),
for each u ∈ X , the set

M = {(x, y) ∈ X × Y : Q (x, y, u) holds} is closed.

Indeed, let (x, y) ∈ M , then there exists a net {(xα, yα)}α∈Λ in M such that (xα, yα) → (x, y). One has (xα, yα) ∈ X × Y ,
Q (xα, yα, u) holds for all α ∈ Λ. Since X × Y is a closed set, (x, y) ∈ X × Y . By (iv) and with the same argument as the proof
that R is closed, we can show that Q (x, y, u) holds. Hence (x, y) ∈ M andM is closed. Therefore, for each u ∈ X , the set

{(x, y) ∈ X × Y : Q (x, y, u) does not hold} is open.

Then Theorem 3.2 follows from Theorem 3.1. �
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Remark 3.1. Let Z be a t.v.s. For each (x, v) ∈ X × Y , y→ B(x, y, v) is concave and y→ A(x, y, v) is convex, then condition
(iii)(c) of Theorem 3.2 holds.
Indeed, let 0 ≤ λ ≤ 1 and

y1, y2 ∈ {y ∈ T (x) : A(x, y, v) ⊆ B(x, y, v)} for some x ∈ X, v ∈ Y .

Then

y1, y2 ∈ T (x), A(x, y1, v) ⊆ B(x, y1, v)

and

Ai(x, y2, vi) ⊆ B(x, y2, vi).

Let yλ = λy1 + (1− λ)y2, then

A(x, yλ, v) ⊆ λA(x, y1, v)+ (1− λ)A(x, y2, v)
⊆ λB(x, y1, v)+ (1− λ)B(x, y2, v)
⊆ B(x, yλ, v).

We also have yλ ∈ T (x). This shows that the set

{y ∈ T (x) : A(x, y, v) ⊆ B(x, y, v)} is convex.

Theorem 3.3. Let Z be a t.s., A, B : X × Y × Y → 2Z and F ,G : X × Y × X → 2Z be multivalued maps. Suppose
conditions (i) and (ii) of Theorem 3.1 and suppose that

(iii) (a) A is an u.s.c. multivalued maps with nonempty compact values, B is closed;
(b) for each (x, y) ∈ X×Y , any finite subset {v1, v2, . . . , vn} of Y , and y ∈ co {v1, v2, . . . , vn}, there exists j ∈ {1, 2, . . . , n}
such that A(x, y, vj)

⋂
B(x, y, vj) 6= ∅;

(c) for each (x, v) ∈ X × Y , the set {y ∈ T (x) : A(x, y, v)
⋂
B(x, y, v) 6= ∅} is convex; and

(iv) (a) for each finite subset {x1, x2, . . . , xn} ⊂ X, any x ∈ co {x1, x2, . . . , xn} and y ∈ Y , there exists j ∈ {1, 2, . . . , n} such
that F(x, y, xj)

⋂
G(x, y, xj) 6= ∅;

(b) for each u ∈ X, (x, y)→ F(x, y, u) is u.s.c. and (x, y)→ G(x, y, u) is closed.

Then there exists (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

F(x̄, ȳ, u)
⋂
G(x̄, ȳ, u) 6= ∅ for all u ∈ S(x̄),

and

A(x̄, ȳ, v)
⋂
B(x̄, ȳ, v) 6= ∅ for all v ∈ T (x̄).

Proof. Let relations Q and R be defined by

Q (x, y, u) holds if and only if F(x, y, u)
⋂
G(x, y, u) 6= ∅

and

R(x, y, v) holds if and only if A(x, y, v)
⋂
B(x, y, v) 6= ∅.

By (iii)(a), R is closed. Indeed, let {(xα, yα, vα)} be any net in X × Y × Y such that (xα, yα, vα)→ (x, y, v) and R(xα, yα, vα)
holds for all α ∈ Λ. Then

A(xα, yα, vα)
⋂
B(xα, yα, vα) 6= ∅ for all α ∈ Λ.

Letwα ∈ A(xα, yα, vα)
⋂
B(xα, yα, vα).

Let K = {xα : α ∈ Λ}
⋃
{x}, L = {yα : α ∈ Λ}

⋃
{y},

andM = {vα : α ∈ Λ}
⋃
{v}.

Then K , L andM are compact, hence K × L×M is a compact set in X × Y × Y . By (iii)(a) and Theorem 2.1, A(K × L×M) is
a compact set andwα ∈ A(K × L×M), then {wα}α∈Λ has a subnet {wαλ}αλ∈Λ such thatw

αλ → w for somew ∈ A(x, y, v).
Sincewαλ ∈ B(xαλ , yαλ , vαλ) and B is closed,w ∈ B(x, y, v). Therefore

w ∈ A(x, y, v)
⋂
B(x, y, v) 6= ∅

and R(x, y, v) holds. By (iv)(b) and following the same argument as in Theorem 3.2, we can prove that for each v ∈ X ,
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the set

{y ∈ T (x) : Q (x, y, v) does not hold} is open.

Then Theorem 3.3 follows from Theorem 3.1. �

For the special case of Theorem 3.3, we have the following corollary.

Corollary 3.3. Let Z be a t.v.s., B : X×Y×Y → 2Z andG : X×Y×X → 2Z bemultivaluedmaps. Suppose conditions (i) and (ii) of
Theorem 3.1 and suppose that

(iii) (a) B is closed;
(b) for each (x, y) ∈ X×Y , any finite subset {v1, v2, . . . , vn} of Y , and y ∈ co {v1, v2, . . . , vn}, there exists j ∈ {1, 2, . . . , n}
such that 0 ∈ B(x, y, vj);

(c) for each (x, v) ∈ X × Y , the set {y ∈ T (x) : 0 ∈ B(x, y, v)} is convex; and
(iv) (a) for each finite subset {x1, x2, . . . , xn} ⊂ X, any x ∈ co {x1, x2, . . . , xn}, and y ∈ Y , there exists j ∈ {1, 2, . . . , n} such

that 0 ∈ G(x, y, xj);
(b) for each u ∈ X, (x, y)→ G(x, y, u) is closed.

Then there exists (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

0 ∈ G(x̄, ȳ, u) for all u ∈ S(x̄),

and

0 ∈ B(x̄, ȳ, v) for all v ∈ T (x̄).

Proof. Let A : X × Y × Y ( Z and F : X × Y × X ( Z be defined by

A(x, y, v) = {0} for all (x, y, v) ∈ X × Y × Y

and

F(x, y, u) = {0} for all (x, y, u) ∈ X × Y × X .

Then Corollary 3.3 follows from Theorem 3.3. �

Remark 3.2. Let Z be a real t.v.s. and C : X → 2Z be a closed multivalued map such that for each x ∈ X , C(x) is a nonempty
convex cone.

(i) In Theorem 3.2, if

B(x, y, v) = C(x) for all (x, y, v) ∈ X × Y × Y

and

G(x, y, u) = C(x) for all (x, y, u) ∈ X × Y × X .

Then Theorem 3.2 is an existence theorem of solution for simultaneous generalized vector quasi-equilibrium problem
studied in [6,7,20]:
Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

F(x̄, ȳ, u) ⊆ C(x̄) for all u ∈ S(x̄),
and

A(x̄, ȳ, v) ⊆ C(x̄) for all v ∈ T (x̄).
(ii) If int C(x) 6= ∅ for all x ∈ X and

B(x, y, v) = Z \ int C(x) for all (x, y, v) ∈ X × Y × Y

and

G(x, y, u) = Z \ int C(x) for all (x, y, u) ∈ X × Y × X .

Then Theorem 3.2 is an existence theorem of solution for the following problem:
Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

F(x̄, ȳ, u)
⋂
int C(x̄) = ∅ for all u ∈ S(x̄),

and
A(x̄, ȳ, v)

⋂
int C(x̄) = ∅ for all v ∈ T (x̄).
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(iii) If B(x, y, v) = H(x, y, v)− C(x) for all (x, y, v) ∈ X × Y × Y ,

A(x, y, v) = H(x, y, y) for all (x, y, v) ∈ X × Y × Y ,
and G(x, y, u) = M(x, y, u)− C(x) for all (x, y, u) ∈ X × Y × X,
F(x, y, u) = M(x, y, x) for all (x, y, u) ∈ X × Y × X,

where H : X × Y × Y → 2Z andM : X × Y × X → 2Z are u.s.c. multivalued map with nonempty compact values. Then
Theorem 3.2 is an existence theorem of solution for systems of generalized vector quasivariational inclusion problem
studied in [2,9,20,21] and reference therein:
Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

M(x̄, ȳ, x̄) ⊆ M(x̄, ȳ, u)− C(x̄) for all u ∈ S(x̄),
and

H(x̄, ȳ, ȳ) ⊆ H(x̄, ȳ, v)− C(x̄) for all v ∈ T (x̄).
(iv) If B(x, y, v) = H(x, y, y)+ C(x) for all (x, y, v) ∈ X × Y × Y ,

A(x, y, v) = H(x, y, v) for all (x, y, v) ∈ X × Y × Y ,
and G(x, y, u) = M(x, y, x)+ C(x) for all (x, y, u) ∈ X × Y × X,
F(x, y, u) = M(x, y, u) for all (x, y, u) ∈ X × Y × X,

where H,M and C are the same as (iii) above. Then Theorem 3.2 is an existence theorem of solution for the following
systems of generalized vector quasivariational inclusion problem studied in [2,20]:
Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

M(x̄, ȳ, u) ⊆ M(x̄, ȳ, x̄)+ C(x̄) for all u ∈ S(x̄),
and

H(x̄, ȳ, v) ⊆ H(x̄, ȳ, ȳ)+ C(x̄) for all v ∈ T (x̄).
(v) In Theorem 3.3, if

B(x, y, v) = C(x) for all (x, y, v) ∈ X × Y × Y

and

G(x, y, u) = C(x) for all (x, y, u) ∈ X × Y × X .

Then Theorem 3.3 is an existence theorem of solution for the following systems of generalized vector quasi-equilibrium
problem studied in [6,7,20]:
Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

F(x̄, ȳ, u)
⋂
C(x̄) 6= ∅ for all u ∈ S(x̄),

and
A(x̄, ȳ, v)

⋂
C(x̄) 6= ∅ for all v ∈ T (x̄).

(vi) In Theorem 3.3, if

B(x, y, v) = Z \ −int C(x) for all (x, y, v) ∈ X × Y × Y

and

G(x, y, u) = Z \ −int C(x) for all (x, y, u) ∈ X × Y × X .

Then Theorem 3.2 is an existence theorem of solution for simultaneous generalized vector quasi-equilibrium problem
studied in [6,7]:
Find (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

F(x̄, ȳ, u) 6⊆ −int C(x̄) for all u ∈ S(x̄),
and

A(x̄, ȳ, v) 6⊆ −int C(x̄) for all v ∈ T (x̄).

Theorem 3.4. Let X be a nonempty compact convex subset of a normed vector space, let M : X → 2X be a multivalued map
with nonempty compact convex values. Suppose conditions (i), (ii) and (iii) of Theorem 3.1 and suppose that:
(iv) M is a continuous multivalued map and M(x)

⋂
S(x) 6= ∅ for all x ∈ X.

Then there exists (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄)
⋂
M(x̄), ȳ ∈ T (x̄), and R(x̄, ȳ, v) holds for all v ∈ T (x̄).

Proof. Let the relation Q be defined by

Q (x, y, ui) holds iff d(x,M(x)) ≤ d(u,M(x)).

It suffices to show that condition (iv) of Theorem 3.1 is satisfied. Suppose there exists a finite subset {x1, x2, . . . , xn} of X ,
x ∈ co {x1, x2, . . . , xn} and y ∈ Y such that Q (x, y, xj) does not hold for all j ∈ {1, 2, . . . , n}. Then

d(x,M(x)) > d(xj,M(x))
= inf
z∈M(x)

‖xj − z‖ = ‖xj − zj‖ for some zj ∈ M(x).
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Since x ∈ co {x1, x2, . . . , xn}, there exists λ1 ≥ 0, . . . , λn ≥ 0 with
∑n
j=1 λj = 1 such that x =

∑n
j=1 λjxj. By assumption,

M(x) is convex for each x ∈ X , x =
∑n
j=1 λjxj ∈ M(x).

d(x,M(x)) >
n∑
j=1

λj‖xj − zj‖

≥

∥∥∥∥∥ n∑
j=1

λjxj −
n∑
j=1

λjzj

∥∥∥∥∥ =
∥∥∥∥∥x− n∑

j=1

λjzj

∥∥∥∥∥
≥ d(x,M(x)).

This leads to a contradiction. Therefore, for each finite subset {x1, x2, . . . , xn} of X , any x ∈ co {x1, x2, . . . , xn} and y ∈ Y ,
there exists j ∈ {1, 2, . . . , n} such that

d(x,M(x)) ≤ d(xj,M(x)).

That is Q (x, y, xj) holds.
SinceM : X → 2X is a continuous map, it follows from Lemma 2.5 that for each u ∈ X

x→ d(x,M(x)) = inf
w∈M(x)

d(x, w)

and x→ d(u,M(x)) are continuous functions.

By the definition of Q , for each u ∈ X ,

{(x, y) ∈ X × Y : d(x,M(x)) ≤ d(u,M(x))} = {(x, y) ∈ X × Y : Q (x, y, u) holds} is a closed set in X × Y .

Hence, the set

{(x, y) ∈ X × Y : Q (x, y, u) does not hold} is open in X × Y .

Then by Theorem 3.1 that there exists (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄), d(x̄,M(x̄)) ≤ d(u,M(x̄)) holds for all
u ∈ S(x̄) and R(x̄, ȳ, v) holds for all v ∈ T (x̄). By (iv),M(x̄)

⋂
S(x̄) 6= ∅.

Take ū ∈ M(x̄)
⋂
S(x̄),

then d(x̄,M(x̄)) ≤ d(ū,M(x̄)) = 0 and hence d(x̄,M(x̄)) = 0.

SinceM(x̄) is a closed set, x̄ ∈ M(x̄)
⋂
cl S(x̄). �

Remark 3.3. Theorem 3.4 is an existence theorem of solution for common fixed point and variational relation problem.

As an application of Theorem 3.1, we study the following existence theorem of solution for vector saddle point.

Theorem 3.5. Let Z be a real t.v.s. and C be a nonempty closed convex cone in Z. Suppose conditions (i) and (ii) of Theorem 3.1
and suppose that:

(iii) h : X × Y → Z is a continuous function and for each x ∈ X, v→ h(x, v) is C-quasiconvex;
(iv) for each y ∈ Y , x→ h(x, y) is C-quasiconcave.

Then there exists (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄),

h(u, ȳ)− h(x̄, ȳ) ∈ −C for all u ∈ S(x̄)

and

h(x̄, v)− h(x̄, ȳ) ∈ C for all v ∈ T (x̄).

Proof. Let the relations Q and R be defined by

Q (x, y, u) holds iff h(u, y)− h(x, y) ∈ −C
R(x, y, v) holds iff h(x, v)− h(x, y) ∈ C .

Since h is continuous, it is easy to see that conditions (iii)(a) and (iv)(b) of Theorem 3.1 hold.
By the definitions of C-quasiconvex and C-quasiconcave, we see that conditions (iii)(b), (iii)(c) and (iv)(a) of Theorem 3.1

hold. Then Theorem 3.5 follows from Theorem 3.1. �

Theorem 3.5 can also be applied to study the following minimax theorem.

Theorem 3.6. Suppose conditions (i) and (ii) of Theorem 3.1 and suppose that:
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(iii) h : X × Y → R is a continuous function and for each x ∈ X, v→ h(x, v) is quasiconvex;
(iv) for each y ∈ Y , x→ h(x, y) is quasiconcave.

Then there exists (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄) and

min
v∈T (x̄)

max
u∈cl S(x̄)

h(u, v) = max
u∈cl S(x̄)

min
v∈T (x̄)

h(u, v) = h(x̄, ȳ).

Proof. By Theorem 3.1, there exists (x̄, ȳ) ∈ X × Y such that x̄ ∈ cl S(x̄), ȳ ∈ T (x̄) and

h(u, ȳ) ≤ h(x̄, ȳ) ≤ h(x̄, v) for all u ∈ S(x̄) and v ∈ T (x).

Hence

max
x∈cl S(x̄)

min
y∈T (x̄)

h(x, y) ≥ min
y∈T (x̄)

max
x∈cl S(x̄)

h(x, y).

Since

max
x∈cl S(x̄)

min
y∈T (x̄)

h(x, y) ≤ min
y∈T (x̄)

max
x∈cl S(x̄)

h(x, y)

is always true, we have

max
x∈cl S(x̄)

min
y∈T (x̄)

h(x, y) = min
y∈T (x̄)

max
x∈cl S(x̄)

h(x, y). �
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