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Abstract In this paper, we first establish an existence theorem related with intersection
theorem, maximal element theorem and common fixed point theorem for multivalued maps
by applying an abstract maximal element principle proved by Lin and Du. Some new sta-
tionary point theorems, minimization problems, new fixed point theorems and a system of
nonconvex equilibrium theorem are also given.
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1 Introduction

In the proof of the fundamental theorem of Bishop and Phelps [3] on the density of the set
of support points of a closed convex subset of a Banach space, the existence of maximal
elements in certain partially ordered complete subsets of a normed linear space played a
central role. Subsequently, the existence of maximal elements was extended for various other
purposes; see [1, 5–7, 9, 10, 12, 13, 15–17] and references therein. It is well-known that the
famous Brézis–Browder’s maximal element principle [4] is a powerful tool in the fields of
applied mathematical analysis and nonlinear analysis. Various generalizations in different
directions of maximal element principle (MEP, for short) have been investigated by several
authors in the past. In 1990, Kang and Park [10] proved some maximal element theorems on
countably inductive quasi-ordered sets. Granas and Horvath [9] studied on a so-called
Cantor space and also obtained maximal element theorems and fixed point theorems which
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can be applied to Ekeland’s variational principle and their equivalent formulations in com-
plete metric spaces. Park [15] also gave generalized forms of Ekeland’s principle and its six
equivalents. In [12], the authors also obtained a vectorial version of Ekeland’s variational
principle and maximal element theorem, a nonconvex minimax theorem and nonconvex (vec-
torial) equilibrium theorems. However, few authors are concerned about a sufficient condition
for the existence of an upper bound for a nondecreasing sequence on a quasi-ordered set.
Motivated by this reason, Lin and Du [13] first introduced notions of sizing-up function and
µ-bounded quasi-ordered set to describe and establish abstract MEP, and then they estab-
lished several different versions of generalized Ekeland’s variational principle and MEP; for
more detail, see [7, 13].

It is well-known that the primitive Ekeland’s variational principle is equivalent to the
Caristi’s fixed point theorem, to the Takahashi’s nonconvex minimization theorem, to the
drop theorem, and to the petal theotrm; for detail, one can refer to [7, 9–12, 15, 18]. In 1983,
Dancš et al. [6] proved the following existence theorem of stationary points for a generated
dynamical system which is forceful tools in applied mathematical analysis.

Dancš–Hegedüs–Medvegyev’s principle [6] Let (X, d) be a complete metric space and
� : X → 2X a multivalued map with nonempty values. Suppose that the following conditions
are satisfied:

(1) for each x ∈ X , we have x ∈ �(x) and �(x) is closed;
(2) x , y ∈ X with y ∈ �(x) implies �(y) ⊆ �(x);
(3) for any {xn} ⊂ X with xn+1 ∈ �(xn) for each n∈N, we have limn→∞ d(xn, xn+1) = 0.

Then there exists v ∈ X such that �(v) = {v}.
Recently, Lin and Chuang [14] studied the existence theorem of variational disclusion and

inclusion problems in the Ekeland’s sense by using Dancš–Hegedüs–Medvegyev’s principle.
By these existence results, Lin and Chuang studied the existence results of some variants
of variational intersection and inclusion problems in the Ekeland’s sense and the existence
results of variants of set valued vectorial Ekeland’s variational principle. Their results and
approaches were different from any existence theorems for generalized variational inclusion
and disclusion problems. For details, see [14] and references therein.

In this paper, we establish an existence theorem related with intersection theorem, maxi-
mal element theorem and common fixed point theorem for multivalued maps by applying an
abstract maximal element principle proved by Lin and Du [7, 13]. Some new stationary point
Theorems, minimization problems, new fixed point theorems and a system of nonconvex
equilibrium theorem in metric spaces and uniform spaces are also given.

2 Preliminaries

The following notations related to binary relations on a nonempty set X will be used in this
paper. For subsets V , U of X × X , define

� = {(x, x) : x ∈ X} (the diagonal of X × X),

U [x] = {y ∈ X : (x, y) ∈ U } (the entourage of x ∈ X),

U−1 = {(x, y) ∈ X × X : (y, x) ∈ U }
and

U ◦ V = {(x, y) ∈ X × X : (z, y) ∈ U and (x, z) ∈ V for some z ∈ X}.
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A uni f orm space (X, U) is a nonempty set X endowed with a uniformity U and satisfies
the following conditions:

(u1) � ⊆ V for any V ∈ U ;
(u2) if V1, V2 ∈ U , then there exists W ∈ U such that W ⊂ V1 ∩ V2;
(u3) if V ∈ U , then there exists W ∈ U such that W ◦ W −1 ⊂ V ;
(u4) if V ∈ U and V ⊂ W ⊂ X × X , then W ∈ U .

Two points x and y of X are said to be V -close whenever (x, y) ∈ V and (y, x) ∈ V .
Denote by R and N the set of real numbers and the set of positive integers, respectively. A
sequence {xn}n∈N in X is called a Cauchy sequence for U ((U)- Cauchy sequence, for short) if
for any V ∈ U , there exists � ∈ N such that xn and xm are V -close for n, m ≥ �. A nonempty
subset C of X is said to be sequentially (U)-complete if every (U)-Cauchy sequence in C
converges. A uniformity U defines a unique topology τ(U) on X . A uniform space (X, U) is
said to be Hausdorff if and only if the intersection of all the V ∈ U reduces to the diagonal
� of X , that is, if (x, y) ∈ V for all V ∈ U implies x = y. This guarantees the uniqueness
of limits of sequences.

Let X be a nonempty set and “� ” a quasi-order (preorder or pseudo-order; that is, a
reflexive and transitive relation) on X . Then (X, �) is called a quasi-ordered set. A function
ϕ : X → (−∞,∞] is called to be �-nonincreasing (resp. strictly �-nonincreasing) if
x, y ∈ X with x � y implies ϕ(x) ≥ ϕ(y) (resp. ϕ(x) > ϕ(y)). An element v in X is called
a maximal element of X if there is no element x of X , different from v, such that v � x . Let
(X, d, �) be a metric space on which a quasi-order order � is defined. A sequence {xn}n∈N

is called nondecreasing (resp. nonincreasing) if xn � xn+1 (resp. xn+1 � xn) for each
n ∈ N. A nonempty subset M of X is said to be sequentially �-complete if every nonde-
creasing Cauchy sequence in M converges. Let D be a nonempty subset of a quasi-ordered
set (X, �) with a uniformity U on X . D is said to be sequentially (U, �)-complete if every
nondecreasing (U)-Cauchy sequence in D converges.

A point v in X is a fixed point of a multivalued map T : X → 2X if v ∈ T (v). The set of
fixed points of T is denoted by F(T ).

The notion of sizing-up function, first introduced in Lin and Du [7, 13], is given below,
and examples can be found in [7, 13].

Definition 2.1 [7, 13] Let X be a nonempty set. A function µ : 2X → [0,∞] defined on the
power set 2X of X is called si zing-up if it satisfies the following properties:

(µ1) µ(∅) = 0;
(µ2) µ(A) ≤ µ(B) if A ⊆ B.

Now, we introduce the concept of smart sizing-up function.

Definition 2.2 Let X be a nonempty set.

(a) A sizing-up function µ : 2X → [0,∞] is called smart if (µ3) holds, where

(µ3) µ({x, y}) > 0 for any x, y ∈ X with x �= y.

Example

(a) Let X be a nonempty set. Define µ : 2X → [0,∞] by

µ(A) =
{

0, if A = ∅;
1, if A �= ∅.

Then µ is a smart sizing-up function.
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(b) Let X be a finite set with �(X) ∈ N, where �(X) is the cardinal number of X . Define
µ : 2X → [0,∞] by

µ(A) = �(A) for each A ∈ 2X .

Then µ is a smart sizing-up function.
(c) Let (X, d) be a metric space. Then the function µd : 2X → [0,∞] defined by µd(A) :=

diam(A) (the diameter of A ⊂ X ) is a smart sizing-up function.
(d) Let X be a nonempty set and f : X → R be a function with f (x) �= f (y) if x �= y.

Then µ : 2X → [0,∞] defined by

µ(A) =
{

0, if A = ∅;
sup{| f (x) − f (y)| : x, y ∈ A}, if A �= ∅.

is a smart sizing-up function.

Definition 2.3 [7, 13] Let X be a nonempty set and µ : 2X → [0,∞] a sizing-up function.
A multivalued map T : X → 2X with nonempty values is said to be of t ype (µ) if for each
x ∈ X and ε > 0, there exists a y = y(x, ε) ∈ T (x) such that µ(T (y)) ≤ ε.

Definition 2.4 [7, 13] A quasi-ordered set (X, �) with a sizing-up function µ : 2X →
[0,∞], denoted by (X, �, µ), is said to be µ-bounded if every nondecreasing sequence
x1 � x2 � · · · � xn � xn+1 � · · · in X satisfying

lim
n→∞ µ({xn, xn+1, . . .}) = 0

has an upper bound.

3 Nonlinear existence theorems induced by an abstract MEP

The following abstract maximal element principle was established by Lin and Du in [7, 13].

Theorem 3.1 [7, 13] Let (X, �, µ) be a µ-bounded quasi-ordered set with a sizing-up func-
tion µ : 2X → [0,∞]. For each x ∈ X, let S : X → 2X be defined by S(x) = {y ∈ X :
x � y}. If S is of type (µ), then for each x0 ∈ X, there exists a nondecreasing sequence
x0 � x1 � x2 � · · · in X and v ∈ X such that

(i) v is an upper bound of {xn}∞n=0;
(ii) S(v) ⊆ ⋂∞

n=0 S(xn);
(iii) µ(

⋂∞
n=0 S(xn)) = µ(S(v)) = 0.

Applying Theorem3.1, we first establish the following existence theorem related with inter-
section theorem, maximal element theorem and common fixed point theorem for multivalued
maps.

Theorem 3.2 Let (X, �, µ) be a µ-bounded quasi-ordered set with a sizing-up function
µ : 2X → [0,∞]. For each x ∈ X, let S : X → 2X be defined by S(x) = {y ∈ X : x � y}.
Let � be any index set. For each j ∈ �, let Hj : X � X be a multivalued map with nonempty
values such that Hj (x) ∩ S(x) �= ∅ for all x ∈ X. If S is of type (µ) and assume further that
µ is smart, then for each x0 ∈ X, there exists a nondecreasing sequence x0 � x1 � x2 � · · ·
in X and v ∈ X such that
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(i) v is an upper bound of {xn}∞n=0;
(ii)

⋂∞
n=0 S(xn) = S(v) = {v};

(iii) µ(
⋂∞

n=0 S(xn)) = µ(S(v)) = 0.
(iv) v is a maximal element of X.
(v) v ∈ ⋂

j∈� Hj (v).

Proof By Theorem 3.1, for each x0 ∈ X , there exists a nondecreasing sequence x0 � x1 �
x2 � · · · in X such that the conclusions (i) and (iii) hold. Moreover, we have,

v ∈ S(v) ⊆
∞⋂

n=0

S(xn). (∗)

Now, we claim that
⋂∞

n=0 S(xn) = {v}. Suppose that there exists u ∈ ⋂∞
n=0 Sn(xn) with

u �= v. Thus, by (µ2) and (µ3), we have,

0 < µ({u, v}) ≤ µ

( ∞⋂
n=0

S(xn)

)
= 0,

which is a contradiction. Hence
⋂∞

n=1 S(xn) = {v}. The conclusion (ii) follows from (∗) and⋂∞
n=0 S(xn) = {v}. To see (iv), if v � w for some w ∈ X with w �= v, then xn � w for all

n ∈ N ∪ {0} or w ∈ ⋂∞
n=0 S(xn). By (µ2) and (µ3), it follows that

0 < µ({v,w}) ≤ µ

( ∞⋂
n=0

S(xn)

)
= 0,

which leads a contradiction. Hence v is a maximal element of X . Since S(v) ∩ Hj (v) �= ∅
for any j ∈ � and S(v) = {v}, we obtain v ∈ ⋂

j∈� Hj (v) and (v) is proved. ��

Theorem 3.3 Let (X, d) be a complete metric space and � : X → 2X a multivalued map
with nonempty values. Suppose that the following conditions are satisfied:

(i) for each x ∈ X, we have x ∈ �(x) and �(x) is closed;
(ii) x, y ∈ X wi th y ∈ �(x) implies �(y) ⊆ �(x);

(iii) for any {xn} ⊂X with xn+1 ∈ �(xn) for each n ∈ N, we have limn→∞ d(xn, xn+1) = 0.

Then there exists a quasi-order � and a smart sizing-up function µ : 2X → [0,∞] such that
(X, �, µ) is a µ-bounded quasi-ordered set.

Proof Let µd : 2X → [0,∞] be defined by µd(A) := diam(A) for A ⊂ X . Then µd is a
smart sizing-up function. Define a binary relation �(�) on X by

x �(�) y ⇐⇒ y ∈ �(x).

It is easy to see that �(�) is a quasi-order from conditions (i) and (ii) and S(x) = {y ∈ X :
x �(�) y} = �(x). We claim that S is of type (µd). Let x ∈ M and ε > 0 be given. Then
there exists n1 ∈ N, such that 1

2n1 < ε
4 . Define a function τ : X → R by

τ(x) = inf
y∈S(x)

[−d(x, y)].

Hence

0 ≤ d(x, y) ≤ −τ(x) for all y ∈ S(x). (3.1)
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Note that τ(u) > −∞ for some u ∈ X . Indeed, suppose to the contrary that τ(x) = −∞
for each x ∈ X . Take z1 ∈ X . Thus τ(z1) = inf y∈S(z1)[−d(z1, y)] < −1. Hence there
exists z2 ∈ S(z1) such that −d(z1, z2) < −1 or d(z1, z2) > 1. Since τ(z2) < −2, there
exists z3 ∈ S(z2) such that d(z2, z3) > 2. Continuing in the process, we obtain a sequence
{zn} ⊂ X , such that for each n ∈ N,

• zn+1 ∈ S(zn) = �(zn);
• d(zn, zn+1) > n.

So, we have limn→∞ d(zn, zn+1) = ∞ which contracts with the condition (iii). Therefore
there exists u ∈ X such that τ(u) > −∞. Let x1 = u. Choose x2 ∈ S(x1) such that

−d(x1, x2) ≤ τ(x1) + 1

2
.

Since S(x2) ⊆ S(x1) from (ii), we have

τ(x1) = inf
y∈S(x1)

[−d(x1, y)]
≤ inf

y∈S(x2)
[−d(x1, y)]

≤ inf
y∈S(x2)

[−d(x2, y) + d(x2, x1)]
= τ(x2) + d(x1, x2).

So τ(x2) > −∞. Let k ∈ N and assume that xk ∈ X is already known. Then, one can choose
xk+1 ∈ S(xk) such that

−d(xk, xk+1) ≤ τ(xk) + 1

2k
.

By induction, we obtain a nondecreasing sequence x1 �(�) x2 �(�) · · · in X such that
xn+1 ∈ S(xn) and

− d(xn, xn+1) ≤ τ(xn) + 1

2n
. (3.2)

By (iii), we have limn→∞ d(xn, xn+1) = 0. Then there exists n2 ∈ N, such that d(xn, xn+1) <
ε
8 whenever n ∈ N with n ≥ n2. On the other hand, since S(xn+1) ⊆ S(xn) for all n ∈ N, we
have,

τ(xn) = inf
y∈S(xn)

[−d(xn, y)]
≤ inf

y∈S(xn+1)
[−d(xn, y)]

≤ inf
y∈S(xn+1)

[−d(xn+1, y) + d(xn+1, xn)]
= τ(xn+1) + d(xn, xn+1).

By (3.2), we obtain

τ(xn+1) ≥ −2d(xn, xn+1) − 1

2n
, n ∈ N.

Let n3 = max{n1, n2}. Hence,

0 ≤ −τ(xn+1) <
ε

2
for all n ≥ n3.

123



J Glob Optim (2010) 46:261–271 267

Let yx = xn3+1. Thus yx ∈ S(x) and 0 ≤ −τ(yx ) < ε
2 . If S(yx ) is a singleton, then

µd(S(yx )) = 0 ≤ ε. Otherwise, if u, v ∈ S(yx ), by (3.1), we have

d(u, v) ≤ d(u, yx ) + d(yx , v)

≤ −2τ(yx )

< ε,

which implies µd(S(yx )) = diam(S(yx )) ≤ ε and S is of type (µd). Let z1 �(�) z2 �(�) · · ·
be a nondecreasing sequence in X satisfying limn→∞ µd({zn, zn+1, . . .}) = 0. Hence, {zn}
is a nondecreasing Cauchy sequence in X . By the completeness of X , there exists w ∈ X
such that zn → w as n → ∞. We want to prove that w is an upper bound of {zn}∞n=1. For
each n ∈ N, since zm ∈ S(zn) for all m ≥ n and zn → w as n → ∞, by the closedness of
S(zn), we have w ∈ S(zn). Hence zn �(�) w for all n ∈ N and w is an upper bound of {zn}.
Therefore (X, �(�), µd) is a µd -bounded quasi-ordered set. ��

Remark 3.1 The famous Dancš-Hegedüs–Medvegyev’s principle [6, 14] can be proved by
Theorem 3.3 and the conclusion (ii) of Theorem 3.2.

Using Theorem 3.1, we can also present a simple proof of generalized Altman’s princi-
ple [1] improved by Kang and Park [10] as follows. Please compare the following proof
with Kang and Park’s proof in [10]. Recall that an quasi-ordered set (X, �) is said to be
countably inductive (in short, a C I O set) if every nondecreasing sequence has an upper
bound (cf. [7, 8, 10]).

Theorem 3.4 [10,Theorem 4] Let (X, �) be a C I O set and � : X × X → (−∞,∞] a
function. Suppose that

(i) there exists a function c : X → R such that c(x) ≤ �(x, y) ≤ 0 for all x ∈ X and
y ∈ S(x) := {y ∈ X : x � y};

(ii) for any x ∈ X and ε > 0, there exists y = y(x, ε) ∈ S(x) such that −ε ≤ c(z) for all
z ∈ S(y).

Then for each x ∈ X, there exists v ∈ S(x) such that �(v, z) = 0 for all z ∈ S(v)

(i.e., v ∈ S(x) is a �-maximal element; see [10]).

Proof Define a sizing-up function µ� : 2X → [0,∞] by

µ�(A) =
{

0, if A = ∅;
sup{−�(x, y) : x ∈ A, y ∈ S(x)}, otherwise.

Then for any x ∈ X and ε > 0, there exists y = y(x, ε) ∈ S(x) such that

µ�(S(y)) = sup{−�(a, b) : a ∈ S(y), b ∈ S(a)}
≤ sup{−c(a) : a ∈ S(y)}
≤ ε.

Hence, S is of type (µ�). Since every C I O set is a µ�-bounded quasi-ordered set with respect
to any quasi-order � defined on X , by Theorem 3.1, for each x ∈ X ; there exists v ∈ X such
that x � v and µ�(S(v)) = 0. By the definition of µ� , for each x ∈ X , there exists v ∈ S(x)

such that �(v, z) = 0 for all z ∈ S(v). ��

123



268 J Glob Optim (2010) 46:261–271

4 Optimization problems and stationary point theorems in uniform spaces
and metric spaces

We now present an existence theorem for a µ-bounded quasi-ordered set.

Theorem 4.1 Let (X, �) be a quasi-ordered set, U a Hausdorff uniformity on X, κ : X →
(−∞,∞] a �-nonincreasing function and u ∈ X with κ(u) < ∞. Suppose M = {x ∈
X : u � x} is a sequentially (U, �)-complete subset of X. Define SM : M → 2M by
SM(x) = {y ∈ M : x � y}. Assume that SM(x) is closed for any x ∈ M and the following
conditions hold.

(H1) κ is bounded below on M;
(H2) for each V ∈ U , there exists δ = δ(V ) > 0, such that x, y ∈ M with x � y and

κ(x) < κ(y) + δ implies (x, y) ∈ V .

Then there exists a sizing-up function µ : 2M → [0,∞] such that

(a) SM is of type (µ);
(b) (M, �, µ) is a µ-bounded quasi-ordered set.

Proof Let D = {x ∈ X : κ(x) < ∞}. Since u ∈ D, D �= ∅. For each x ∈ M, since
κ is �-nonincreasing, κ(x) ≤ κ(u) < ∞. Hence M ⊂ D. For each x ∈ M, define
µ(x,κ) : 2M → [0,∞] by

µ(x,κ)(A) =
{

0, if A = ∅;
sup{∣∣κ(w) − inf z∈SM(x) κ(z)

∣∣ : w ∈ A}, otherwise.

Clearly, µ(x,κ) is a sizing-up function, for all x ∈ M. We first claim that SM is of type (µ(x,κ))

for all x ∈ M. Let x ∈ M and ε > 0 be given. Then there exists yx = y(x, ε) ∈ SM(x)

such that

κ(yx ) < inf
z∈SM(x)

κ(z) + ε.

For any a ∈ SM(yx ), since κ is � -nonincreasing, we have,

0 ≤ κ(a) − inf
z∈SM(x)

κ(z) ≤ κ(yx ) − inf
z∈SM(x)

κ(z) < ε,

which implies µ(x,κ)(SM(yx )) ≤ ε and hence SM is of type (µ(x,κ)). Next, we will verify
that for each x ∈ M, (M, �, µ(x,κ)) is a µ(x,κ)-bounded quasi-ordered set. Let x ∈ M
be given and let c1 � c2 � · · · � cn � cn+1 � · · · be a nondecreasing sequence in M
satisfying

0 = lim
n→∞ µ(x,κ)({cn, cn+1, . . .})

= lim
n→∞ sup

{∣∣∣∣κ(w) − inf
z∈SM(x)

κ(z)

∣∣∣∣ : w ∈ {cn, cn+1, · · · }
}

.

So it follows that limn→∞ κ(cn) = inf z∈SM(x) κ(z). Let V ∈ U and choose W ∈ U such
that W ◦ W −1 ⊂ V . Thus, by (H2), there exists δ = δ(W ) > 0, such that x , y ∈ M with
x � y, and κ(x) < κ(y) + δ implies (x, y) ∈ W . Let ζx := inf z∈SM(x) κ(z). Then there
exists n0 ∈ N such that ζx − 1

2 δ ≤ κ(cn) < ζx + 1
2 δ for all n ∈ N with n ≥ n0. For m, n ∈ N

with m ≥ n ≥ n0, we have,

κ(cn) − κ(cm) ≤ κ(cn) − ζx + 1

2
δ < δ,
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which implies (cn, cm) ∈ W and hence (cm, cn) ∈ W −1. Since W ◦ W −1 ⊂ V , we have
(cn, cm) ∈ V and (cm, cn) ∈ V for m ≥ n ≥ n0. Therefore, {cn}n∈N is a nondecreasing
(U)-Cauchy sequence in M. By the sequentially (U, �)-completeness of M, there exists
w ∈ M, such that cn → w as n → ∞. For each n ∈ N, since SM(cn) is closed and

cm ∈ SM(cm) ⊆ SM(cn) for all m ≥ n,

we obtain w ∈ SM(cn) or cn � w. So w is an upper bound of {cn}. Therefore for each
x ∈ M, (M, �, µ(x,κ)) is a µ(x,κ)-bounded quasi-ordered set. The proof is completed. ��
Theorem 4.2 Under the same hypothesis as in Theorem4.1, for each x ∈ M, there exists
vx ∈ M such that

(a) κ(vx ) = inf z∈SM(x) κ(z);
(b) SM(vx ) = {vx };
(c) vx is a maximal element of M.

Proof Applying Theorems 3.1 and 4.1, for each x ∈ M, there exists vx ∈ M such that x � vx

andµ(x,κ)(SM(vx )) = 0. Sincevx ∈ S(vx ),
∣∣κ(vx ) − inf z∈SM(x) κ(z)

∣∣ ≤ µ(x,κ)(SM (vx )) =
0. Therefore κ(vx ) = inf z∈SM(x) κ(z) and (a) is proved. To see (b), since SM(vx ) ⊆ SM(x)

and κ(vx ) ≤ κ(z) for all z ∈ SM(x), we have κ(vx ) < κ(z) + δ for all z ∈ SM(vx ) and
all δ > 0. Hence, by (H2), (vx , z) ∈ V for all z ∈ SM(vx ) and all V ∈ U . Since U is a
Hausdorff uniformity, SM(vx ) = {vx }. Finally, we prove conclusion (c). If vx � ξ for some
ξ ∈ M, then ξ ∈ SM(vx ) = {vx }. Hence vx = ξ and vx is a maximal element of M. ��
Theorem 4.3 Let (X, U) be a Hausdorff uniform space, ϕ : X → (−∞,∞] a l.s.c. function
and u ∈ X with ϕ(u) < ∞. Let M = {x ∈ X : ϕ(x) ≤ ϕ(u)} be a sequentially (U)-complete
subset of X, and T : X → 2M a multivalued map with nonempty values. Suppose that

(i) ϕ is bounded below on M;
(ii) for each x ∈ X, there exists yx ∈ T (x) such that ϕ(yx ) ≤ ϕ(x);

(iii) for each V ∈ U , there exists δ = δ(V ) > 0, such that x, y ∈ M with ϕ(y) ≤ ϕ(x) <

ϕ(y) + δ implies (x, y) ∈ V .

Then there exists v ∈ M such that

(1) ϕ(v) ≤ ϕ(u);
(2) v ∈ F(T );
(3) ϕ(v) = inf z∈M ϕ(z);

Proof Define a quasi-order �(ϕ) on X by

x �(ϕ) y ⇐⇒ ϕ(y) ≤ ϕ(x).

Then ϕ : X → (−∞,∞] is a �(ϕ) -nonincreasing function. Let SM : M → 2M be defined
by

SM(x) = {y ∈ M : x �(ϕ) y}
= {y ∈ M : ϕ(y) ≤ ϕ(x)}.

It follows from the lower semicontinuity of ϕ that SM(x) is closed for any x ∈ M. It is easy
to see that all the conditions of Theorem 4.2 are also satisfied. Therefore, by Theorem 4.2,
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there exists v = v(u) ∈ M = SM(u) such that the conclusions (1) and (3) hold. Let us prove
(2). By (ii), there exists zv ∈ T (v) such that ϕ(zv) ≤ ϕ(v). So we have

zv ∈ SM(v) = {v},
which implies v = zv ∈ T (v) or equivalently, v ∈ F(T ). The proof is completed. ��

The following conclusion is immediate from Theorem 4.3.

Theorem 4.4 Let (X, U), ϕ, u, M and conditions (i) and (i i i) be the same as in Theo-
rem4.3. If we assume that T : X → M is a single-valued map satisfying ϕ(T x) ≤ ϕ(x) for
all x ∈ X, then the conclusions of Theorem4.3 hold.

Remark 4.1 In [17], Valyi had proved a uniform space version of Dancš–Hegedüs–
Medvegyev’s principle and gave some applications. Note that Theorems 4.3 and 4.4 are
proved in this paper by applying Theorems 3.1 and 4.1 (or 4.2) without the detour of using
Dancš–Hegedüs–Medvegyev’s principle.

As another consequence of Theorem 4.3, we have the following existence theorem in
metric spaces.

Theorem 4.5 Let (X, d) be a complete metric space u ∈ X, f : X → (−∞,∞] be a l.s.c.
function and f (u) < ∞. Let M = {x ∈ X : f (x) ≤ f (u)} and T : X → 2M a multivalued
map with nonempty values. Suppose that

(i) f is bounded below on M;
(i i) for each x ∈ X, there exists yx ∈ T (x) such that f (yx ) ≤ f (x);

(i i i) for each ε > 0, there exists δ = δ(ε) > 0, such that x, y ∈ M with f (y) ≤ f (x) <

f (y) + δ implies d(x, y) < ε.

Then the conclusions of Theorem4.3 hold.

Proof It follows from the lower semicontinuity of f that M is closed in X , hence complete.
For each ε > 0, let

V (ε) = {(x, y) ∈ X × X : d(x, y) < ε}.
It is easy to see that the family Ud = {V (ε) : ε > 0} is a Hausdorff uniformity on X and M
is (Ud)-complete. Therefore the results follow from Theorem 4.3. ��

Finally, we establish a system of nonconvex equilibrium theorem in compact metric spaces.

Theorem 4.6 (System of nonconvex equilibrium theorem) Let I be a finite index set. For
each i ∈ I , let (Xi , di ) be a compact metric space and let X = ∏

i∈I Xi with the metric
d(x, y) = supi∈I di (xi , yi ), where x = (xi )i∈I , y = (yi )i∈I ∈ X. For each i ∈ I , suppose
that the function Fi : X × Xi → R satisfies the following assumptions:

(i) Fi (x, xi ) = 0 for all x = (xi )i∈I ∈ X;
(ii) Fi (x, zi ) ≤ Fi (x, yi ) + Fi (y, zi ) for all x, y, z ∈ X;

(iii) for each x ∈ X, yi → Fi (x, yi ) is l.s.c. and bounded below;
(iv) for each yi ∈ Xi , x → Fi (x, yi ) is u.s.c.

Then there exists x0 ∈ X such that for each i ∈ I , Fi (x0, yi ) ≥ 0 for all yi ∈ Xi .
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Proof Applying [7,Theorem 3.4], for each (n, i) ∈ N × I , there exists xn ∈ X such that
Fi (xn, yi ) + 1

n di (xn
i , yi ) ≥ 0 for all yi ∈ Xi . By the compactness of X , there exists a subse-

quence {xnk } of {xn} and x0 ∈ X such that xnk → x0 as k → ∞. For each i ∈ I , let yi ∈ Xi

be fixed. By (iv), we have

Fi (x0, yi ) ≥ lim sup
k→∞

Fi (xnk , yi ) + lim sup
k→∞

(
1

nk
di

(
xnk

i , yi
))

≥ lim sup
k→∞

(
Fi (xnk , yi ) + 1

nk
di

(
xnk

i , yi
)) ≥ 0.

Since yi ∈ Xi is arbitrary, Fi (x0, yi ) ≥ 0 for all yi ∈ Xi . ��
Remark 4.2 Theorem 4.6 generalizes and improves Propositions 3.2 and 3.3 in [2].
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