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We apply an existence theorem of variational inclusion problem on metric spaces to study opti-
mization problems, set-valued vector saddle point problems, bilevel problems, and mathematical
programs with equilibrium constraint on metric spaces. We study these problems without any
convexity and compactness assumptions. Our results are different from any existence results of
these types of problems in topological vector spaces.

1. Introduction

Let (X, dX) and (Y, dY ) be twometric spaces, letZ be a real Hausdorff topological vector space
ordered by a nonempty pointed closed convex coneK inZwith nonempty interior, and letW
be a real Banach space ordered by a nonempty pointed closed convex coneC with nonempty
interior. Let G : X × Y � W , S : X × Y × X � Z, and P : X × Y � Z be multivalued maps.
Throughout this paper, we use these notations unless specified otherwise. In this paper, the
following vector mathematical programs with equilibrium constraint on metric spaces are
considered.

(MPEC-1) MinCG(x, y) is subject to (x, y) ∈ X × Y , and S(x, y, u) ∩ [K \ {0}] = ∅ for all u ∈ X.

(MPEC-2) MinCG(x, y) is subject to (x, y) ∈ X × Y , and S(x, y, u)/⊆K \ {0} for all u ∈ X.

If Z = R, K = [0,∞), and S is a real function, then problems (MPEC-1) and (MPEC-2)
are reduced to the following problem:

(MPEC-3) MinCG(x, y) is subject to (x, y) ∈ X × Y , and S(x, y, u) ≤ 0 for all u ∈ X.
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We also study the following bilevel problems.

(BL-1) MinCG(x, y) is subject to (x, y) ∈ X × Y , for y ∈ Y , x is a solution of problem
Q1(y): WMinKP(x, y) (i.e., for y ∈ Y , P(x, y) ∩ WMinKP(X, y)/= ∅), for x ∈ X,
and y is a solution of problem R1(x): WMaxKP(x, y). (i.e., for x ∈ X, P(x, y) ∩
WMaxKP(x, Y )/= ∅).

(BL-2) MincG(x, y) is subject to (x, y) ∈ X × Y , P(x, y)/⊆P(a, y) + int(K) for all a ∈ X, and
P(x, b)/⊆P(x, y) + int(K) for all b ∈ Y.

(BL-3) MincG(x, y) is subject to (x, y) ∈ X × Y , for x ∈ X, y is a solution of problem
Q2(x): MinR

m
+ P(x, y) and (i.e., for x ∈ X, P(x, y) ∩ MinR

m
+ P(x, Y )/= ∅), for y ∈

Y , x is a solution of problem R2(y): MaxR
m
+ P(x, y). (i.e., for y ∈ Y , P(x, y) ∩

MaxR
m
+ P(X, y)/= ∅).

If P : X × Y → Z is a single valued function, then (BL-2) is reduced to the following
problem.

(BL-4) MinCG(x, y) is subject to (x, y) ∈ X × Y , for y ∈ Y , and x is a solution of problem
and Q3(y): WMinKP(x, y); and for x ∈ X, y is a solution of problem R3(x):
WMaxKP(x, y).

Problem (BL-1) has applications in real world. Let X be the set of government’s
agricultural policies and let Y be the set of government’s industrial policies. For each
x ∈ X and y ∈ Y , let G(x, y) be the amount of money that the government uses to
promote agriculture and industrial developments, and let P(x, y) be the degree of industrial
development. We suppose that as the industry becomes more and more developed, the
losses from the agriculture sector rise accordingly. Therefore, the solution of problem (BL-
1) represents the government’s best policy to promote the development of the industry so
that the losses from agriculture sector will be as minimal as possible, while the amount of
money that the government uses to promote the policies can be the lowest possible.

Mathematical programwith equilibrium constraint and bilevel problem represent two
important classes of optimization problems which have been investigated in a large number
of articles and books. We find in the literatures that Luo et al. [1], Stein and Still [2], Stein
[3], Birbil et al. [4], Liou et al. [5], Lin and Still [6], Lin [7], as well asLin and Hsu [8]
have studied mathematical program with equilibrium constraint and bilevel problem on
topological vector spaces. As usual in linear and nonlinear optimization, these studies mainly
deal with optimality conditions and numerical methods to solve these problems and typically
the existence of feasible points is tacitly assumed. Besides, the domains of the functions they
consider are subsets of topological vector spaces and certain convexity assumptions on the
functions are needed. In this paper, we study these problemswith functions defined onmetric
spaces, so we do not need any convexity assumptions on the functions we consider. We study
the existence theorems of solutions for (MPEC-1), (MPEC-2), (BL-1), (BL-2), and (BL-3). To
the best of our knowledge, there is no result of these types of problems on metric space.

In this paper, we also study the following loose set-valued vector saddle point
problems.

(LSP-1) For each (u, v) ∈ X × Y , find (x, y) ∈ X × Y such that P(u, y) ∩ [P(x, v) + K]/= ∅,
P(x, y) ∩MinKP(X, y)/= ∅, and P(x, y) ∩MaxKP(x, Y )/= ∅.

(LSP-2) For each (u, v) ∈ X × Y , find (x, y) ∈ X × Y such that P(u, y) ⊆ P(x, v) + K,
P(x, y)/⊆P(x, y) +K, and P(x, y)/⊆P(x, y) +K for all x ∈ X \ {x} and all y ∈ Y \ {y}.
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If P : X × Y → Z is a map, then problems (LSP-1) and (LSP-2) are reduced to the
following vector saddle point problems (VSP).

(i) Find (x, y) ∈ X × Y such that P(x, y) ∈ MinKP(X, y) ∩MaxKP(x, Y ).

There are many results on loose saddle point problems, vector saddle point, and saddle
point problems (see, e.g., [9–17]). But to the best of our knowledge, there are no existence
theorems in the literatures for loose saddle point and vector saddle point problems for
functions defined on the product of metric spaces. We study the loose saddle point problems
and vector saddle point problems for functions defined on the product of metric spaces. We
do not assume any compact assumptions on the spaces and convexity assumptions on the
maps we consider. As for applications of our existence theorems on saddle point problems,
we study bilevel problems on metric spaces. We also study mathematical programs with
equilibrium constraint. Our results on mathematical programs with equilibrium constraint,
bilevel problems, loose saddle point problems, and vector saddle point problems are different
from any existence results of these types of problems in the literatures.

2. Preliminaries

LetX and Y be topological spaces (in short t.s.), T : X � Y be a multivalued map. T is said to
be u.s.c. (resp., l.s.c.) at x ∈ X if for every open setU in Y with T(x) ⊆ U (resp., T(x)∩U/= ∅),
there exists an open neighborhood V of x such that T(x′) ⊆ U (resp., T(x′) ∩ U/= ∅) for all
x′ ∈ V ; T is said to be u.s.c. (resp., l.s.c.) on X if T is u.s.c. (resp., l.s.c.) at every point of X;
T is continuous at x if T is both u.s.c. and l.s.c. at x; T is said to be closed if Gr(T)={(x, y) ∈
X × Y : y ∈ T(x), x ∈ X} is a closed set in X × Y ; T is said to be open if Gr(T) is an open set in
X × Y . For a subset A of topological space X, let cl(A) denote the closure of A.

Lemma 2.1 (see [18]). Let X and Y be topological spaces, and let T : X � Y be a multivalued map.
Then T is l.s.c. at x ∈ X if and only if for any y ∈ T(x) and any net {xα}α∈Λ in X converges to x,
there exists a net {yα}α∈Λ such that yα ∈ T(xα) for all α ∈ Λ and yα → y.

Lemma 2.2 (see [19]). Let X and Y be Hausdorff topological spaces, and let T : X � Y be a
multivalued map. (i) If T is an u.s.c. multivalued map with nonempty closed values, then T is closed;
(ii) if X is a compact set and T is an u.s.c. multivalued map with nonempty compact values, then
T(X) is compact.

Definition 2.3. LetA be a nonempty subset of a t.v.s. Z ordered by a nonempty pointed closed
convex coneK. An element a ∈ A is said to be a minimal (resp., maximal) point of A if
A ∩ (a − K) = {a} (resp., A ∩ (a + K) = {a}). Here, MinKA and MaxKA denote the sets of
minimal point of A and maximal point of A, respectively.

Definition 2.4. LetA be a nonempty subset of a t.v.s. Z ordered by a nonempty pointed closed
convex coneK with nonempty interior. An element a ∈ A is said to be a weakly minimal
(resp., weakly maximal) point of A if A ∩ (a − int(K)) = ∅ (resp., A ∩ (a + int(K)) = ∅). Here,
WMinKA and WMaxKA denote the sets of weakly minimal point of A and weakly maximal
point of A, respectively.

Theorem 2.5 (see [20]). Let Z be a Hausdorff t.v.s. ordered by a nonempty pointed closed convex
coneK with nonempty interior. If A is a nonempty compact subset of Z, then MinKA/= ∅ and
MaxKA/= ∅.
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Definition 2.6 (see [21]). Let K be pointed closed convex cone with nonempty interior in a
Banach space Z. Then K is called normal if there exists λ > 0 such that if x, y ∈ K and
y − x ∈ K, then ‖x‖ ≤ λ‖y‖. Here, it is called λ-normal pointed closed convex cone.

Theorem 2.7 (see [22]). Let (X, dX) be a complete metric space, and let Z be a Hausdorff t.v.s.. Let
F : X ×X � Z be a multivalued map. Assume that

(i) 0 ∈ F(x, x) for each x ∈ X,

(ii) for each x ∈ X, {y ∈ X : 0 ∈ F(x, y)} is a closed subset of X,

(iii) for each x, y, z ∈ X, if 0 ∈ F(x, y) and 0 ∈ F(y, z), then 0 ∈ F(x, z),

(iv) for each sequence {xn}n∈N
in X, if 0 ∈ F(xn, xn+1), then dX(xn, xn+1) → 0 as n → ∞.

Then there exists x ∈ X such that 0/∈F(x, y) for all y ∈ X \ {x}.

Theorem 2.8. Let (X, dX) be a complete metric space. Let G : X � W be a multivalued map with
nonempty values. Assume that

(i) G is closed,

(ii) for each sequence {(xn, yn)}n∈N
in X ×W , if yn ∈ G(xn) and yn − yn+1 ∈ C for all n ∈ N,

then dX(xn, xn+1) → 0 and ‖yn − yn+1‖ → 0 as n → ∞.

Then there exists x ∈ X such that G(x) ∩MinCG(X)/= ∅.

Proof. Let k0 ∈ C \ {0} be fixed. Clearly, Gr(G) is a complete metric space. Let F : Gr(G) ×
Gr(G) � R be defined by F((x1, y1), (x2, y2)) = {t ∈ R : y1 − y2 + tk0 ∈ C} for each
(x1, y1), (x2, y2) ∈ Gr(G). Clearly, 0 ∈ F((x, y), (x, y)) for each (x, y) ∈ Gr(G). For each
(x, y) ∈ Gr(G), we know that

{
(u, v) ∈ Gr(G) : 0 ∈ F

((
x, y

)
, (u, v)

)}
=
{
(u, v) ∈ Gr(G) : y − v ∈ C

}
. (2.1)

If {(un, vn)}n∈N
is a sequence in {(u, v) ∈ Gr(G) : 0 ∈ F((x, y), (u, v))} and (un, vn) →

(u, v) as n → ∞, then (un, vn) ∈ Gr(G) and y − vn ∈ C for all n ∈ N. Clearly, y − v ∈ C and
(u, v) ∈ Gr(G). By (ii), condition (iv) of Theorem 2.7 is satisfied. By Theorem 2.7, there exists
(x, y) ∈ Gr(G) such that y −y /∈C for all (x, y) ∈ Gr(G) \ {(x, y)}. Clearly, y ∈ G(X)∩ (y −C).
If y ∈ G(X) ∩ (y − C) and y /=y, then there exists x ∈ X such that y ∈ G(x) and y − y ∈ C.
Then (x, y) ∈ Gr(G) \ {(x, y)} and this implies that y − y /∈C. This leads to a contradiction.
Hence, G(X) ∩ (y − C) = {y}. This implies that G(x) ∩MinCG(X)/= ∅.

Example 2.9. Let W = R, X = (−∞, 0] ∪ {1}, C = [0,∞), and k0 = 1. Let G : X � W be
defined by G(x) := {−x} for each x ∈ X. Then by Theorem 2.8, there exists x ∈ X such that
G(x) ∩MincG(X)/= ∅.

Example 2.10. Let W = X = R, C = [0,∞), and k0 = 1. Let G : X � W be defined by
G(x) := {−x} for each x ∈ X. Clearly, G is closed. But condition (ii) of Theorem 2.8 does not
hold. Indeed, let {(xn, yn)} = {(n,−n)}n∈N

. Then yn ∈ G(xn) for all n ∈ N, and dX(xn, xn+1) = 1
and ‖yn−yn+1‖ = 1 for all n ∈ N. Furthermore, there is no x ∈ X such thatG(x)∩MincG(X)/= ∅.
Hence, condition (ii) of Theorem 2.8 is essential in Theorem 2.8.
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Theorem 2.11. Let X be a metric space. Let G : X � W be a multivalued map with nonempty
values. Assume that

(i) G(X) is a nonempty closed subset ofW,

(ii) for each sequence {yn}n∈N
in G(X), if yn − yn+1 ∈ C, then ‖yn − yn+1‖ → 0 as n → ∞.

Then there exists x ∈ X such that G(x) ∩MincG(X)/= ∅.

Proof. Let k0 ∈ C \ {0} be fixed. Clearly, G(X) is a complete metric space. Let F : G(X) ×
G(X) � R be defined by F(y1, y2) = {t ∈ R : y2 − y1 − tk0 ∈ −C} for each y1, y2 ∈ G(X).
Clearly, 0 ∈ F(y, y) for each y ∈ G(X). Besides, for each y1 ∈ G(X), let Ay1 := {y ∈ G(X) : 0 ∈
F(y1, y)}. ThenAy1 = {y ∈ G(X) : y−y1 ∈ −C} is a closed set. Next, for each y1, y2, y3 ∈ G(X),
if 0 ∈ F(y1, y2) and 0 ∈ F(y2, y3), then 0 ∈ F(y1, y3). By (ii), for each sequence {yn}n∈N

inG(X)
with 0 ∈ F(yn, yn+1), we have ‖yn − yn+1‖ → 0 as n → ∞. By Theorem 2.7, there exists x ∈ X
such that y ∈ G(x) ∩MincG(X)/= ∅.

Example 2.12. Let E = W = R, X = {−1} ∪ (0,∞), C = [0,∞), and k0 = 1. Let G : X � W be
defined by

G(x) :=

⎧
⎨

⎩

{1, 2} if x = −1,
{2x, 4} if x ∈ (0,∞).

(2.2)

Thus by Theorem 2.11, there exists x ∈ X such that Gx) ∩ MincG(X)/= ∅. Note that X is not
closed, not open, and not convex.

Example 2.13. Let X = {1, 2}, W = R
2, and C = R

2
+. Let G : X � W be defined by

G(x) :=

⎧
⎨

⎩

{(
y1, y2

) ∈ R
2 : y1 = 1, 0 ≤ y2 ≤ 2

}
if x = 1,

{(
y1, y2

) ∈ R
2 : y1 = 2, 0 ≤ y2 ≤ 1

}
if x = 2.

(2.3)

By Theorem 2.11, there exists x ∈ X such that G(x) ∩MincG(X)/= ∅. Indeed, x = 1.

Remark 2.14. Example 2.10 also shows that condition (ii) of Theorem 2.11 is essential in
Theorem 2.11. Next, the following result is a special case of Theorem 2.11. Note that it is
different from Theorem 2.5 since we do not assume that A is a compact set, but we assume
that W is a Banach space.

Corollary 2.15. Let A be a nonempty closed subset of W . Suppose that for each sequence {yn}n∈N
in

A if yn − yn+1 ∈ C, then ‖yn − yn+1‖ → 0 as n → ∞. ThenMincA/= ∅.

Proof. Let X be a singleton subset of W . Then X is a complete metric space. Let G : X � W
be defined by G(x) = A for each x ∈ X. By Theorem 2.11, there exists x ∈ X such that
G(x) ∩MincG(X)/= ∅ and this implies that MincA/= ∅.

Example 2.16. LetW = R
2 andA = C = R

2
+. It is easy to see that all conditions of Corollary 2.15

are satisfied. Hence, MincA/= ∅. Indeed, MincA = {(0, 0)}. Note thatA is not a compact subset
ofW .
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Corollary 2.17. Let W be a Banach space, and let C be a λ-normal pointed closed convex cone with
nonempty interior λ ∈ (0, 1). If A is a nonempty bounded closed subset ofW , thenMincA/= ∅.

Proof. Take any sequence {yn}n∈N
in A with yn − yn+1 ∈ C. This implies that (yn−k − yn+1) −

(yn−k−1 − yn+1) ∈ C, k = 1, 2, . . . , (n − 2). By assumption, we get

∥
∥yn − yn+1

∥
∥ ≤ λ

∥
∥yn−1 − yn+1

∥
∥ ≤ · · · ≤ λn−1

∥
∥y1 − yn+1

∥
∥. (2.4)

Since A is bounded, there exists M > 0 such that ‖yn − yn+1‖ ≤ λn−1M for all n ∈ N. This
implies that ‖yn − yn+1‖ → 0 as n → ∞ and Corollary 2.17 follows from Corollary 2.15.

Remark 2.18. Theorem 2.11 and Corollary 2.15 are equivalent.

Remark 2.19. From the above results and examples, we observe that if A ⊆ R
m is a closed set

and there exists a ∈ R such that A ⊆ a + R
m
+ , then MinR

m
+ A/= ∅. Indeed, for each sequence

{yn}n∈N
= {(y1

n, y
2
n, . . . , y

m
n )}n∈N

in A with yn − yn+1 ∈ R
m
+ , it is easy to see that, for each

j = 1, 2, . . . , m, {yj
n}n∈N

is a decreasing sequence in R and bounded from below. Then ‖yn −
yn+1‖ → 0 as n → ∞ and MinR

m
+ A/= ∅.

3. Saddle Point Problems

Theorem 3.1. Let (X, dX) and (Y, dY ) be two complete metric spaces. Assume that

(i) for each (x, y) ∈ X × Y , {(u, v) ∈ X × Y : P(x, v) ∩ [P(u, y) +K]/= ∅} is a closed set,
(ii) for each (x, y), (u, v), (a, b) ∈ X×Y , if P(x, v)∩[P(u, y)+K]/= ∅ and P(u, b)∩[P(a, v)+

K]/= ∅, then P(x, b) ∩ [P(a, y) +K]/= ∅,
(iii) for each sequence {(xn, yn)}n∈N

in X × Y , if P(xn, yn+1) ∩ [P(xn+1, yn) + K]/= ∅, then
dX(xn, xn+1) → 0 and dY (yn, yn+1) → 0 as n → ∞.

Then, for each (u, v) ∈ X × Y , there exists (x, y) ∈ X × Y such that P(u, y) ∩ [P(x, v) + K]/= ∅,
P(x, y) ∩MinKP(X, y)/= ∅, and P(x, y) ∩MaxKP(x, Y )/= ∅.

Proof. Let dX×Y ((x, y), (u, v)) = dX(x, u) + dY (y, v). Then (X × Y, dX×Y ) is a complete metric
space. Take any (u, v) ∈ X × Y . Define the set M := {(x, y) ∈ X × Y : P(u, y) ∩ [P(x, v) +
K]/= ∅}. Clearly, (M,dX×Y ) is a complete metric space. Let G : M × M � Z be defined
by G(x, y, u, v) = P(x, v) − P(u, y) − K. By Theorem 2.7, there exists (x, y) ∈ M such that
P(x, y) ∩ [P(x, y) + K] = ∅ for all (x, y) ∈ M \ {(x, y)}. By (ii) and the definition of M, it is
easy to see that P(x, y) ∩ [P(x, y) +K] = ∅ for all (x, y) ∈ X × Y \ {(x, y)}. Hence,

P
(
x, y

) ∩ [
P
(
x, y

)
+K

]
= ∅ ∀y ∈ Y \ {y},

P
(
x, y

) ∩ [
P
(
x, y

) −K
]
= ∅ ∀x ∈ X \ {x}.

(3.1)

Since P(x, y) is a nonempty compact set, by Theorem 2.5, there exist z1, z2 ∈ P(x, y) such that
z1 ∈ MinKP(x, y) and z2 ∈ MaxKP(x, y). Next, it is easy to see that P(x, Y ) ∩ [z2 +K] = {z2}
and P(X, y) ∩ [z1 −K] = {z1}. Therefore, z2 ∈ P(x, y) ∩MaxKP(x, Y )/= ∅ and z1 ∈ P(x, y) ∩
MinKP(X, y)/= ∅.
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Remark 3.2. If P is an u.s.c. multivalued map with nonempty compact values, then condition
(i) of Theorem 3.1 holds.

Example 3.3. Let X = [0, 1], Y = [1, 2], Z = R
2, and K = R

2
+. Let P : X × Y � Z be defined

by P(x, y) = {(x,−y)} for each (x, y) ∈ X × Y . By Theorem 3.1, for each (u, v) ∈ X × Y , there
exists (x, y) ∈ X × Y such that P(u, y) ∩ [P(x, v) + K]/= ∅, P(x, y) ∩ MinKP(X, y)/= ∅, and
P(x, y) ∩MaxKP(x, Y )/= ∅. Indeed, for each (u, v) ∈ X × Y , (x, y) = (0, 1).

In Theorem 3.1, if Y is singleton, then we have the following result.

Corollary 3.4. Let F : X � Z be a multivalued map with nonempty compact values. Assume that

(i) for each x ∈ X, {y ∈ X : F(x) ∩ [F(y) +K]/= ∅} is a closed set,
(ii) for each x, y, z ∈ X, if F(x) ∩ [F(y) + K]/= ∅ and F(y) ∩ [F(z) + K]/= ∅, then F(x) ∩

[F(z) +K]/= ∅,
(iii) for each sequence {xn}n∈N

in X, if F(xn) ∩ [F(xn+1) +K]/= ∅, then dX(xn, xn+1) → 0 as
n → ∞.

Then, for each u ∈ X, there exists x ∈ X such that F(u)∩ [F(x) +K]/= ∅ and F(x)∩MinKF(X)/= ∅.
Theorem 3.5. Assume that

(i) for each (x, y) ∈ X × Y , {(u, v) ∈ X × Y : P(x, v) ⊆ P(u, y) +K} is closed,
(ii) for each (x, y), (u, v), (a, b) ∈ X ×Y , if P(x, v) ⊆ P(u, y)+K and P(u, b) ⊆ P(a, v)+K,

then P(x, b) ⊆ P(a, y) +K,

(iii) for each sequence {(xn, yn)}n∈N
in X × Y , if P(xn, yn+1) ⊆ P(xn+1, yn) + K, then

dX(xn, xn+1) → 0 and dY (yn, yn+1) → 0 as n → ∞.

Then, for each (u, v) ∈ X × Y , there exists (x, y) ∈ X × Y such that P(u, y) ⊆ P(x, v) + K, and
P(x, y)/⊆P(x, y) +K for all (x, y) ∈ X × Y \ {(x, y)}.
Proof. Let dX×Y ((x, y), (u, v)) = dX(x, u) + dY (y, v). Take any (u, v) ∈ X × Y . Define the set
M = {(x, y) ∈ X × Y : P(u, y) ⊆ P(x, v) +K}. Clearly, (M,dX×Y ) is a complete metric space.
Let G : M ×M � Z be defined by G(x, y, u, v) = Z \ {P(x, v) − Z \ [P(u, y) +K]}. For each
(x, y) ∈ M, by (i), {(u, v) ∈ M : 0 ∈ G(x, y, u, v)} = {(u, v) ∈ M : P(x, v) ⊆ P(u, y) +K} is a
closed set. Then by Theorem 2.7, there exists (x, y) ∈ M such that P(x, y)/⊆P(x, y) +K for all
(x, y) ∈ M \ {(x, y)}.

Now, we want to show that P(x, y)/⊆P(x, y) + K for all (x, y) ∈ X × Y \ {(x, y)}. In
fact, we only need to consider that (x, y)/∈M. Suppose that P(x, y) ⊆ P(x, y) + K. By (ii)
and (x, y) ∈ M, (x, y) ∈ M and this is a contradiction. Therefore, P(x, y)/⊆P(x, y) +K for all
(x, y) ∈ X × Y \ {(x, y)}.
Remark 3.6. Condition (i) of Theorem 3.5 can be replaced by y � P(x, y) being l.s.c. and
x � P(x, y) being an u.s.c. multivalued map with nonempty compact values.

Example 3.7. Let X = {1, 2}, Y = [1, 2], Z = R
2, and K = R

2
+, and let P : X × Y � Z be defined

by

P
(
x, y

)
:=

⎧
⎨

⎩

{
(1, z) ∈ R

2 : y ≤ z ≤ 2
}

if x = 1,
{
(2, z) ∈ R

2 : y ≤ z ≤ 2
}

if x = 2.
(3.2)

This is an example for Theorem 3.5.
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Example 3.8. Let X = [0,∞), Y = (−∞, 0], Z = R
2, and K = R

2
+. Let P : X × Y � Z be defined

by P(x, y) = [x,∞) × [y,∞) for each (x, y) ∈ X × Y . By Theorem 3.5, for each (u, v) ∈ X × Y ,
there exists (x, y) ∈ X × Y such that P(u, y) ⊆ P(x, v) + K, and P(x, y)/⊆P(x, y) + K for all
(x, y) ∈ X × Y \ {(x, y)}. Indeed, (x, y) = (0, 0) for each (u, v) ∈ X × Y .

4. Bilevel Problems

Proposition 4.1. Let Q : X × Y � X × Y be defined by

Q(u, v) = A1(u, v) ∩ B1 ∩ C1, where

A1(u, v) :=
{(

x, y
) ∈ X × Y : P

(
u, y

) ∩ [P(x, v) +K]/= ∅},
B1 :=

{(
x, y

) ∈ X × Y : P
(
x, y

) ∩WMinKP
(
X, y

)
/= ∅},

C1 :=
{(

x, y
) ∈ X × Y : P

(
x, y

) ∩WMaxKP(x, Y )/= ∅}.

(4.1)

If P is a continuous multivalued map with nonempty compact values, thenQ is closed, and B1 ∩C1 is
a closed set.

Proof. Here, we only need to show that Q is closed. If {(uα, vα, xα, yα)}α∈Λ ⊆ Gr(Q) and
(uα, vα, xα, yα) → (u, v, x, y), for each α ∈ Λ, we have then

(1) P(uα, yα) ∩ [P(xα, vα) +K]/= ∅,
(2) P(xα, yα) ∩WMinKP(X, yα)/= ∅,
(3) P(xα, yα) ∩WMaxKP(xα, Y )/= ∅.

By (1), for each α ∈ Λ, there exists aα ∈ P(uα, yα)∩[P(xα, vα)+K] and bα ∈ P(xα, vα) such that
aα − bα ∈ K. Let L1 := {xα : α ∈ Λ}∪ {x}, L2 := {yα : α ∈ Λ}∪ {y}, L3 := {vα : α ∈ Λ}∪ {v}, and
L4 := {uα : α ∈ Λ}∪{u}. Then L1, L2, L3, and L4 are compact sets. By Lemma 2.2, P(L4×L2) and
P(L1 ×L3) are compact sets. Hence, we may assume that aα → a and bα → b. By Lemma 2.2,
a ∈ P(u, y) and b ∈ P(x, v). Clearly, a − b ∈ K and P(u, y) ∩ [P(x, v) +K]/= ∅. By (2), for each
α ∈ Λ, there exists dα ∈ P(xα, yα) ∩WMinKP(X, yα). By Lemma 2.2, P(L1 × L2) is a compact
set. Hence, we may assume that dα → d. By Lemma 2.2, d ∈ P(x, y) ⊆ P(X, y).

For each α ∈ Λ, P(X, yα) ∩ [dα − int(K)] = ∅. Take any p ∈ P(X, y). Then there exists
r ∈ X such that p ∈ P(r, y). There exists a net {pα}α∈Λ in Z such that pα ∈ P(r, yα) ⊆
P(X, yα) for all α ∈ Λ, and pα → p, pα−dα /∈ − int(K) for all α ∈ Λ. Therefore, p−d /∈ − int(K)
for all p ∈ P(X, y). That is, P(X, y)∩ [d− int(K)] = ∅. Hence, d ∈ P(x, y)∩WMinKP(X, y)/= ∅.
Similarly, we can prove that P(x, y) ∩ WMaxKP(x, Y )/= ∅. So, (u, v, x, y) ∈ Gr(Q) and Q is
closed.

Lemma 4.2. Let X and Y be topological spaces, and let G : X � Y be a multivalued map. Let
G−1 : G(X) � X be defined by G−1(y) := {x ∈ X : y ∈ G(x)} for each y ∈ G(X). If G−1 is an u.s.c.
multivalued map with nonempty compact values and A is a nonempty closed subset of X, then G(A)
is a closed subset of Y .

Proof. If y ∈ cl(G(A)), then there exist a net {yα}α∈Λ such that yα → y and a net {xα}α∈Λ in
A such that yα ∈ G(xα) for all α ∈ Λ. Hence, xα ∈ G−1(yα) for all α ∈ Λ. Let L = {yα : α ∈
Λ} ∪ {y}. Then L is a compact set and G−1(L) is a compact set. We may assume that xα → x.
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Since A is a closed set, x ∈ A. By Lemma 2.2, x ∈ G−1(y) and y ∈ G(x) ⊆ G(A). Therefore,
G(A) is a closed subset of Y .

Theorem 4.3. In Theorem 3.1, let G : X ×Y � W be a multivalued map with nonempty values, and
further assume that

(a) G−1 is an u.s.c. multivalued map with nonempty compact values,

(b) P is a continuous multivalued map with nonempty compact values,

(c) for each sequence {wn}n∈N
in G(X × Y ), if wn − wn+1 ∈ C, then ‖wn − wn+1‖ → 0 as

n → ∞.

Then there is a solution of problem (BL-1).

Proof. Let B1 and C1 be defined as in Proposition 4.1. By Theorem 3.1 and Proposition 4.1,
B1 ∩C1 is a nonempty closed subset of X ×Y . By Lemma 4.2, G(B1 ∩C1) is a nonempty closed
subset of W . By Theorem 2.11, there exists (x, y) ∈ B1 ∩ C1 such that G(x, y) ∩ MincG(B1 ∩
C1)/= ∅.

Example 4.4. In Example 3.3, let W = R
2, C = R

2
+, and G(x, y) := (x, y) + R

2
+ for each (x, y) ∈

X × Y . Clearly, G(X × Y ) = (0, 1) + R
2
+ is a closed subset of R

2. Besides, we have

G−1(u, v) := [0,min{u, 1}] × [1,min{v, 2}], (4.2)

and G−1 is an u.s.c. multivalued map with nonempty compact values. By Theorem 4.3, there
is a solution of problem (BL-1). Indeed, the solution set is {(0, 1)}.

The following theorem is similar to Theorem 4.3. Note that the conditions of Theorems
4.3 and 4.5 are different.

Theorem 4.5. In Theorem 3.1, let G : X × Y � W be a multivalued map, and further assume that

(a) G is an u.s.c. multivalued map with nonempty compact values,

(b) for each x, y, z ∈ X × Y , if G(x) ∩ [G(y) + K]/= ∅ and G(y) ∩ [G(z) + K]/= ∅, then
G(x) ∩ [G(z) +K]/= ∅,

(c) P is a continuous multivalued map with nonempty compact values,

(d) for each {(xn)}n∈N
in X × Y, if G(xn) ∩ [G(xn+1) +K]/= ∅, then dX×Y (xn, xn+1) → 0 as

n → ∞.

Then there is a solution of problem (BL-1).

Proof. Let B1 and C1 be defined as in Proposition 4.1. By Theorem 3.1 and Proposition 4.1,
B1 ∩ C1 is a nonempty closed subset of X × Y . Hence, (B1 ∩ C1, dX×Y ) is a complete metric
space. Now, for each (x, y) ∈ B1 ∩C1, letAx,y := {(u, v) ∈ B1 ∩C1 : G(x, y)∩ [G(u, v)+K]/= ∅}.
If (u, v) ∈ cl(Ax,y), then there exists a net {(uα, vα)}α∈Λ in Ax,y such that (uα, vα) → (u, v).
Then for each α ∈ Λ, there exists wα ∈ G(x, y) ∩ [G(uα, vα) + K]. Since G(x, y) is a compact
set, we may assume thatwα → w ∈ G(x, y). There exists tα ∈ G(uα, vα) such thatwα − tα ∈ K.
Let L = {(uα, vα) : α ∈ Λ} ∪ {(u, v)}. Clearly, L and G(L) are compact sets. Hence, we may
assume that tα → t. By Lemma 2.2, t ∈ G(u, v). Clearly, w − t ∈ K and this implies that
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G(x, y) ∩ [G(u, v) +K]/= ∅. Therefore, (u, v) ∈ Ax,y and Ax,y is a closed set. By Corollary 3.4,
there exists (x, y) ∈ B1 ∩ C1 such that G(x, y) ∩MincG(B1 ∩ C1)/= ∅.

Furthermore, we have the following result which is different from Theorems 4.3 and
4.5. In Theorem 4.6, W is a Hausdorff t.v.s., and X and Y are compact metric spaces. In
Theorems 4.3 and 4.5, W is a Banach space, and X and Y are complete metric spaces.

Theorem 4.6. In Theorem 3.1, let G : X × Y � W be a multivalued map, and further assume that

(a) G is an u.s.c. multivalued map with nonempty compact values,

(b) P is a continuous multivalued map with nonempty compact values,

(c) X and Y are compact.

Then there is a solution of problem (BL-1).

Proposition 4.7. Let Q : X × Y � X × Y be defined by

Q(u, v) := A2(u, v) ∩ B2 ∩ C2, where

A2(u, v) :=
{(

x, y
) ∈ X × Y : P

(
u, y

) ⊆ P(x, v) +K
}
,

B2 :=
{(

x, y
) ∈ X × Y : P

(
x, y

)
/⊆P(a, y) + int(K) ∀a ∈ X

}
,

C2 :=
{(

x, y
) ∈ X × Y : P(x, b)/⊆P(x, y) + int(K) ∀b ∈ Y

}
.

(4.3)

If P is a continuous multivalued map with nonempty compact values, thenQ is closed, and B2 ∩C2 is
a closed set.

Proof. Here, we only need to show that Q is closed. If {(uα, vα, xα, yα)}α∈Λ ⊆ Gr(Q) and
(uα, vα, xα, yα) → (u, v, x, y), then we have

(1) P(uα, yα) ⊆ P(xα, vα) +K,

(2) P(xα, yα)/⊆P(a, yα) + int(K) for all a ∈ X,

(3) P(xα, b)/⊆P(xα, yα) + int(K) for all b ∈ Y .

Take any z ∈ P(u, y); there exists a net {zα}α∈Λ such that zα ∈ P(uα, yα) for all α ∈ Λ
and zα → z. There exists wα ∈ P(xα, vα) such that zα −wα ∈ K. Let L1 := {xα : α ∈ Λ} ∪ {x},
L2 := {yα : α ∈ Λ} ∪ {y}, L3 := {vα : α ∈ Λ} ∪ {v}, and L4 := {uα : α ∈ Λ} ∪ {u}. Then
L1, L2, L3, and L4 are compact sets and P(L1 × L3) is a compact set. Hence, we may assume
that wα → w. By Lemma 2.2, w ∈ P(x, v). Clearly, z ∈ w + K. Hence, z ∈ P(x, v) + K, and
P(u, y) ⊆ P(x, v) +K.

Take any a ∈ X; there exists sα ∈ P(xα, yα) such that sα /∈ P(a, yα) + int(K). P(L1 × L2)
is a compact set, and we may assume that sα → s; By Lemma 2.2, s ∈ P(x, y). Take any
t ∈ P(a, y), there exists a net {tα}α∈Λ such that tα ∈ P(a, yα) for all α ∈ Λ and tα → t,
sα − tα /∈ int(K) for all α ∈ Λ. Clearly, s− t /∈ int(K) for all t ∈ P(a, y). Hence, P(x, y)/⊆P(a, y)+
int(K) for all a ∈ X. Similarly, P(x, b)/⊆P(x, y)+int(K) for all b ∈ Y . Therefore,Q is closed.

Applying Proposition 4.7 and following the similar argument as in the proof of
Theorems 4.3–4.6, we can get the following similar results.



Journal of Inequalities and Applications 11

Theorem 4.8. In Theorem 3.5, let G : X × Y � W be a multivalued map with nonempty values.
Further assume that conditions (a)–(c) of Theorem 4.3 (resp., conditions (a)–(d) of Theorem 4.5) are
satisfied. Then there is a solution of problem (BL-2).

Proposition 4.9. Let P : X × Y → R
m be a map with P(x, y) = (P1(x, y), P2(x, y), . . . , Pm(x, y)).

Let Q : X × Y � X × Y be defined by

Q(u, v) := A3(u, v) ∩ B3 ∩ C3, where

A3(u, v) :=
{(

x, y
) ∈ X × Y : P

(
u, y

) − P(x, v) ∈ K
}
,

B3 :=
{(

x, y
) ∈ X × Y : P

(
x, y

) ∈ MaxR
m
+ P(x, Y )

}
,

C3 :=
{(

x, y
) ∈ X × Y : P

(
x, y

) ∈ MinR
m
+ P

(
X, y

)}
.

(4.4)

Suppose that, for each i = 1, 2, . . . , m, Pi : X × Y → R is continuous, x → Pi(x, y) is one to one,
and y → Pi(x, y) is one to one. Then Q is closed, and B3 ∩ C3 is a closed set.

Proof. Let {(un, vn, xn, yn)}n∈N
⊆ Gr(Q) and (un, vn, xn, yn) → (u, v, x, y) as n → ∞. Then

P(un, yn) − P(xn, vn) ∈ R
m
+ , P(xn, b) − P(xn, yn)/∈R

m
+ for all b ∈ Y \ {yn}, and P(xn, yn) −

P(a, yn)/∈R
m
+ for all a ∈ X \ {xn}. Since P is continuous, P(u, y) − P(x, v) ∈ R

m
+ . Furthermore,

for each n ∈ N, we have

P
(
xn, yn

) − P
(
a, yn

)
/∈R

m
+ \ {0} ∀a ∈ X. (4.5)

Take any a ∈ X\{x}. There exists n0 ∈ N such that xn /=a for all n ≥ n0. Furthermore, for
each n ∈ N with n ≥ n0, there exists j = j(n) ∈ {1, 2, . . . , m} such that Pj(xn, yn)−Pj(a, yn) < 0.
Indeed, if not, there exists n ∈ N with n ≥ n0 such that Pj(xn, yn) − Pj(a, yn) ≥ 0 for all
j ∈ {1, 2, . . . , m}. Since n ≥ n0 and x → Pj(x, y) is one to one, Pj(xn, yn) − Pj(a, yn) > 0 for all
j ∈ {1, 2, . . . , m}. Hence, P(xn, yn) − P(a, yn) ∈ int(Rm

+ ). This leads to a contradiction.
Therefore, there exist k ∈ {1, 2, . . . , m}, and {xnt}t∈N

, {ynt}t∈N
of {xn}n∈N

, and {yn}n∈N
,

respectively, such that Pk(xnt , ynt) − Pk(a, ynt) < 0 for all t ∈ N. Suppose that P(x, y) −
P(a, y) ∈ R

m
+ . Then Pj(x, y) − Pj(a, y) ≥ 0 for all j ∈ {1, 2, . . . , m}, 0 ≤ Pk(x, y) − Pk(a, y) =

limt→∞[Pk(xnt , ynt) − Pk(a, ynt)] ≤ 0. Hence, Pk(x, y) = Pk(a, y). This leads to a contradiction
since x → Pk(x, y) is one to one. Therefore, P(x, y)−P(a, y)/∈R

m
+ for all a ∈ X\{x}. Similarly,

we have P(x, b) − P(x, y)/∈R
m
+ for all b ∈ Y \ {y}. Therefore, Q is closed.

Theorem 4.10. Let P : X × Y → R
m be a map with P(x, y) = (P1(x, y), P2(x, y), . . . , Pm(x, y)).

Let G : X × Y � W be a multivalued map with nonempty values. Further assume that

(i) for each i = 1, 2, . . . , m, Pi : X × Y → R is continuous, x → Pi(x, y) is one to one, and
y → Pi(x, y) is one to one,

(ii) for each (x, y), (u, v), (a, b) ∈ X×Y , if P(x, v)−P(u, y) ∈ R
m
+ and P(u, b)−P(a, v) ∈ R

m
+ ,

then P(x, b) − P(a, y) ∈ R
m
+ ,

(iii) for each sequence {(xn, yn)}n∈N
in X × Y with P(xn, yn+1) − P(xn+1, yn) ∈ R

m
+ ,

dX(xn, xn+1) → 0 and dY (yn, yn+1) → 0 as n → ∞,
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(iv) G−1 is an u.s.c. multivalued map with nonempty compact values,

(v) for each sequence {wn}n∈N
in G(X × Y ), if wn − wn+1 ∈ C, then ‖wn − wn+1‖ → 0 as

n → ∞.

Then there is a solution of problem (BL-3).

Proof. Applying Proposition 4.9 and following the similar argument as in the proof of
Theorem 4.3, we can get the proof of Theorem 4.10.

Remark 4.11. The conditions of Theorem 4.10 and Theorem 3.5 in Liou et al. [5] are different.
Note that Liou et al. [5] assumed that the feasible set Sp(x) is nonempty, and let the
considered multivalued map F be proper, lower semicontinuous, and weakly coercive on
Gr(Sp).

5. Equilibrium Problems and Mathematical Program with
Equilibrium Constraint on Complete Metric Spaces

Theorem 5.1. LetX and Y be a complete metric spaces, and letH : X×Y ×X � Z be a multivalued
map. Assume that

(i) for each (x, y) ∈ X × Y , 0 ∈ H(x, y, x),

(ii) for each (x, y) ∈ X × Y , {u ∈ X : 0 ∈ H(x, y, u)} is a closed subset of X,

(iii) for each x, u, a ∈ X and y, v ∈ Y , if 0 ∈ H(x, y, u) and 0 ∈ H(u, v, a), then 0 ∈
H(x, y, a),

(iv) for each sequence {(xn, yn)}n∈N
in X × Y with 0 ∈ H(xn, yn, xn+1), dX(xn, xn+1) → 0

and dY (yn, yn+1) → 0 as n → ∞.

Then there exists (x, y) ∈ X × Y such that 0/∈H(x, y, u) for all u ∈ X \ {x}.

Proof. LetG : X×Y ×X×Y � Z be defined byG(x, y, u, v) = H(x, y, u) for each (x, y, u, v) ∈
X × Y ×X × Y . Then Theorem 5.1 follows from Theorem 2.7.

Theorem 5.2. Let X and Y be a complete metric spaces, and let S : X ×Y ×X � Z be a multivalued
map. Assume that

(i) Z \ [K \ {0}] is a closed set; and for each (x, y) ∈ X × Y , S(x, y, x) = {0},
(ii) for each (x, y) ∈ X × Y , {u ∈ X : S(x, y, u) ∩K/= ∅} is a closed subset of X,

(iii) for each x, u, a ∈ X and y, v ∈ Y , if S(x, y, u) ∩ K/= ∅ and S(u, v, a) ∩ K/= ∅, then
S(x, y, a) ∩K/= ∅,

(iv) for each sequence {(xn, yn)}n∈N
in X × Y with S(xn, yn, xn+1) ∩K/= ∅, dX(xn, xn+1) → 0

and dY (yn, yn+1) → 0 as n → ∞,

(v) G is closed; and for each u ∈ X, (x, y) � S(x, y, u) is l.s.c.,

(vi) for each sequence {(xn, yn,wn)}n∈N
in Gr(G) with wn − wn+1 ∈ C, dX×Y ((xn, yn),

(xn+1, yn+1)) → 0 and ‖wn −wn+1‖ → 0 as n → ∞.

Then there is a solution of problem (MPEC-1).
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Proof. By Theorem 5.1, there exists (x, y) ∈ X×Y such that S(x, y, u)∩K = ∅ for all u ∈ X\{x}.
Since S(x, y, x) = {0}, S(x, y, u) ∩ [K \ {0}] = ∅ for all u ∈ X.

Let L1 = {(x, y) ∈ X×Y : S(x, y, u)∩[K\{0}] = ∅ for all u ∈ X}. Clearly, (x, y) ∈ L1 /= ∅.
If (x, y) ∈ cl(L1), then there exists a net {(xα, yα)}α∈Γ in L1 such that (xα, yα) → (x, y). Then,
for each u ∈ X, S(xα, yα, u) ∩ [K \ {0}] = ∅ for all α ∈ Γ. That is, S(xα, yα, u) ⊆ Z \ [K \
{0}] for all α ∈ Γ. Take any u ∈ X and any z ∈ S(x, y, u); there exists a net {zα}α∈Γ such
that zα ∈ S(xα, yα, u) ⊆ Z \ [K \ {0}] for all α ∈ Γ and zα → z. Clearly, z ∈ Z \ [K \ {0}].
Hence, S(x, y, u) ∩ [K \ {0}] = ∅ for all u ∈ X. Then L1 is a closed subset of a complete
metric space X × Y . Furthermore, (L1, dX×Y ) is a complete metric space. Let G1 = G|L1 . Then
Gr(G1) = {(x, y,w) ∈ X × Y ×W : (x, y) ∈ L1, w ∈ G(x, y)} is a closed subset of X × Y ×W .
By Theorem 2.8, there is a solution of problem (MPEC-1).

Theorem 5.3. Let X and Y be a complete metric spaces, and let S : X ×Y ×X � Z be a multivalued
map. Assume that

(i) for each (x, y) ∈ X × Y , S(x, y, x) = {0},
(ii) for each (x, y) ∈ X × Y , {u ∈ X : S(x, y, u) ⊆ K} is a closed subset of X,

(iii) for each x, u, a ∈ X and y, v ∈ Y , if S(x, y, u) ⊆ K and S(u, v, a) ⊆ K, then S(x, y, a) ⊆
K,

(iv) for each sequence {(xn, yn)}n∈N
in X × Y with S(xn, yn, xn+1) ⊆ K, dX(xn, xn+1) → 0

and dY (yn, yn+1) → 0 as n → ∞.,

(v) Z \ [K \ {0}] is a closed set,
(vi) for each u ∈ X, (x, y) � S(x, y, u) is an u.s.c. multivalued map with nonempty compact

values,

(vii) G is closed,

(viii) for each sequence {(xn, yn,wn)}n∈N
in Gr(G) with wn − wn+1 ∈ C, dX×Y ((xn, yn),

(xn+1, yn+1)) → 0 and ‖wn −wn+1‖ → 0 as n → ∞.

Then there is a solution of problem (MPEC-2).

Proof. LetH be defined byH(x, y, u) = Z \ [S(x, y, u)− [Z \K]] for each (x, y, u) ∈ X×Y ×X.
By Theorem 5.1 and condition (i), there exists (x, y) ∈ X × Y such that S(x, y, u)/⊆K \ {0} for
all u ∈ X.

Let L3 = {(x, y) ∈ X × Y : S(x, y, u)/⊆K \ {0} for all u ∈ X}. If (x, y) ∈ cl(L3),
then there exists a sequence {(xn, yn)}n∈N

in L3 such that (xn, yn) → (x, y). Let A =
{(xn, yn)}n∈N

∪ {(x, y)}. Then A is a compact set. For each n ∈ N, since (xn, yn) ∈ L3,
S(xn, yn, u)/⊆K \ {0} for all u ∈ X. For each u ∈ X and n ∈ N, there exists zn ∈ Z such
that zn ∈ S(xn, yn, u) and zn /∈K \ {0}. Then {zn}n∈N

⊆ S(A,u). By (vi), we may assume that
zn → z ∈ S(x, y, u). Since Z\[K\{0}] is a closed set, z ∈ Z\[K\{0}]. Hence, (x, y) ∈ L3 and
L3 is closed. Following the similar argument as in the last part of the proof of Theorem 5.2,
we get the proof of Theorem 5.3.
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