English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6487/11649
Visitors : 28592274      Online Users : 277
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ir.ncue.edu.tw/ir/handle/987654321/10101

Title: Computational Studies of the Interaction between Ruthenium Dyes and X- and X2-, X = Br, I, At. Implications for Dye-Sensitized Solar Cells
Authors: Hu, Ching-Han;Abu Md. Asaduzzaman;Georg Schreckenbach
Contributors: 化學系
Date: 2010-09
Issue Date: 2012-05-03T06:18:17Z
Publisher: American Chemical Society
Abstract: Quantum chemistry in the form of relativistic density functional theory (DFT) combined with a continuum solvation model has been applied to study the interaction of two prototypical ruthenium dyes (N3 and its chlorinated form) and redox mediators X− and X2−, X = Br, I, At, with a view at the elementary reactions within a dye-sensitized solar cell (DSSC). Along the series Br, I, and At, increasing bond lengths of X2, X2−, and X3− are found, as well as an increasing reducing power of the X−/X3− redox couple. Inner-sphere seven-coordinate complexes between the dye and the redox species do not exist; however, the dyes form outer-sphere complexes with the X− and X2− species. The thermodynamics of a recently proposed mechanism [J. Phys. Chem. C 2007, 111, 6561] involving a [dye+X−] intermediate are probed, and the existence of the intermediate and the elementary steps of the process are confirmed. The dye regeneration is thermodynamically more favorable for the N3 dye than its chlorinated counterpart. The regeneration of the neutral dye is favored for At, followed by the iodine and bromine systems (At > I > Br). This may be related to the observed superior performance in actual DSSCs of the iodide/triiodide redox couple over the alternative bromide/tribromide couple.
Relation: J. Phys. Chem. C, 114(35): 15165-15173
Appears in Collections:[化學系] 期刊論文

Files in This Item:

File SizeFormat

All items in NCUEIR are protected by copyright, with all rights reserved.


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback