National Changhua University of Education Institutional Repository : Item 987654321/10340
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 6491/11663
造访人次 : 24515379      在线人数 : 81
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 进阶搜寻


题名: Waveguide- excited microstrip patch antennas—Theory and experiment
作者: Ho, Min-Hua;Michalski, K. A.;Hsu, C.-I G.
贡献者: 電子工程學系
日期: 1992-09
上传时间: 2012-05-22T06:29:18Z
出版者: IEEE
摘要: An arbitrarily shaped microstrip patch antenna excited through an arbitrarily shaped aperture in the mouth of a rectangular waveguide is investigated theoretically and experimentally. The metallic patch resides on a dielectric substrate grounded by the waveguide flange and may be covered by a dielectric superstrate. The substrate (and superstrate, if present) consists of one or more planar, homogeneous layers, which may
exhibit uniaxial anisotropy. The analysis is based on the space domain integral equation approach. More specifically, the Green's
functions for the layered medium and the waveguide are used to formulate a coupled set of integral equations for the patch current
and the aperture electric field. The layered medium Green's function is expressed in terms of Sommerfeld-type integrals and the waveguide Green's function in terms of Floquet series, which are both accelerated to reduce the computational effort. The coupled integral equations are solved by the method of moments using vector basis functions defined over triangular subdomains. The dominant mode reflection coefficient in the waveguide and the far-field radiation patterns are then found from the computed aperture field and patch current distributions. The radar cross section (RCS) of a plane-wave excited structure is obtained in a like manner. Sample numerical results are presented and are found to be in good agreement with measurements and with published data.
關聯: 16th Annual Antenna Applications Symposium, Allerton Park, University of Illinois, Sept. 1992
显示于类别:[電子工程學系] 會議論文


档案 大小格式浏览次数



DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈