English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6491/11663
Visitors : 24493041      Online Users : 69
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ir.ncue.edu.tw/ir/handle/987654321/11058

Title: 類神經學習向量量化網路之汽輪發電機組故障診斷
Neural Learning Vector Quantization Network for Steam Turbine-Generator Fault Diagnosis
Authors: 魏忠必;陳家湧
Contributors: 電機工程系
Keywords: 類神經網路;學習向量量化網路;汽輪發電機;故障診斷
Neural network;Learning vector quantization;Steam turbine-generator;Fault diagnosis
Date: 2006-03
Issue Date: 2012-06-05T03:52:14Z
Publisher: 銘傳大學;國際教育兼管理科學基金會
Abstract: 本文提出以類神經網路之學習向量量化網路(Learning Vector Quantization, LVQ)應用於汽輪 發電機組故障診斷(Steam Turbine-Generator Fault Diagnosis)之研究。利用學習向量量化網路之特性,用已知的故障數據對類神經網路進行訓練後,即可對汽輪發電機組的故障型態進行診斷。為驗證本文所提之LVQ對汽輪發電機故障診斷之準確性,使用MATLAB撰寫LVQ程式,並經過訓練後診斷新的樣本資料,分辨出故障型態,以證明所提方法之效率及準確性。
This paper presents a Neural Network Learning Vector Quantization (LVQ) for steam turbine-generator fault diagnosis. Using the known data to train the LVQ Network. Then, input the new samples to diagnose the fault type. In order to prove the accuracy of the LVQ for steam turbine-generator fault diagnosis, using MATLAB to develop LVQ program. The simulation can prove the proposed method is effective and accurate.
Relation: 2006國際學術研討會-人工智慧理論及其應用, 銘傳大學, 2006年3月18日: 246-254
Appears in Collections:[電機工程學系] 會議論文

Files in This Item:

File SizeFormat
2050200316002.pdf141KbAdobe PDF538View/Open


All items in NCUEIR are protected by copyright, with all rights reserved.

 


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback