English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6491/11663
Visitors : 24521294      Online Users : 79
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ir.ncue.edu.tw/ir/handle/987654321/11066

Title: 機率神經網路之火力發電廠冷凝器故障診斷
Probabilistic Neural Network to Fault Diagnosis for the Condenser in Fossil-Fuel Power Plants
Authors: 魏忠必;洗鴻瑋;邱裕豐
Contributors: 電機工程系
Keywords: 類神經網路,機率神經網路,火力發電廠冷凝器,故障診斷
Neural network;Probabilistic neural network;Condenser in fossil-fuel power plant;Fault diagnosis
Date: 2006-06
Issue Date: 2012-06-05T03:53:47Z
Publisher: 國立勤益技術學院
Abstract: 本文提出以機率神經網路(Probabilistic neural network, PNN)應用於火力發電廠(Fossil-fuel power plants)冷凝器(Condenser)故障診斷之研究。利用機率神經網路之特性,使用已知的故障數據對機率類神經網路進行訓練後,即可對冷凝器的故障型態進行診斷。使用MATLAB撰寫機率神經網路程式,驗證本文所提機率神經網路對冷凝器故障診斷之準確性,並經過訓練後診斷冷凝器之故障樣本資料,分辨出故障型態,證明所提方法之準確性可達到100%。
This paper presents a Probabilistic Neural Network (PNN) for the condenser in Fossil-Fuel Power plants. Using the known data to train the probabilistic neural network. Then, input the samples of condenser to diagnose the fault type. In order to prove the accuracy of the PNN for fault diagnosis of condenser, using MATLAB to develop PNN program. The simulation can prove the proposed method is effective and accurate.
Relation: 第一屆生活科技研討會, 國立勤益技術學院, 2006年6月9日: 2056-2061
Appears in Collections:[電機工程學系] 會議論文

Files in This Item:

File SizeFormat
2050200316009.pdf141KbAdobe PDF798View/Open

All items in NCUEIR are protected by copyright, with all rights reserved.


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback