National Changhua University of Education Institutional Repository : Item 987654321/11786
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 6491/11663
造访人次 : 24503177      在线人数 : 68
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 进阶搜寻


题名: The Dual-Kalman Filtering and Neural Solutions to Maneuvering Estimation Problems
作者: Chung, Yi-Nung;Juang, Dend-Jyi;Hu, Kuo-Chang;Li, Ming-Liang;Chuang, Kai-Chih
贡献者: 電機工程學系
关键词: Maneuvering targets;Dual-Kalman filtering algorithm;Competitive hopfield neural network;Data association;Multiple-target tracking system
日期: 2010-07
上传时间: 2012-07-02T02:08:38Z
出版者: 中央研究院資訊科學研究所
摘要: Tracking maneuvering targets in a radar system is more complicated because the target accelerations cannot be directly measured. It may occur severe tracking error even diverge the estimates when the maneuvering situations are happened. In this paper, we develop a Dual-Kalman filtering algorithm to handle the maneuvering targets’ tracking problems. In this approach, two collaborative Kalman filters are devised which one for
pursuing the track estimation and the other for estimating the status of maneuver. Based on this approach, the most approximate target’s acceleration can be detected and estimated in real time. Moreover, it is also shown that one Competitive Hopfield Neural Network-based data association combined with a multiple-target tracking system demonstrates target tracking capability.
關聯: Journal of Information Science and Engineering, 26(4): 1479-1490
显示于类别:[電機工程學系] 期刊論文


档案 大小格式浏览次数



DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈