Loading...
|
Please use this identifier to cite or link to this item:
http://ir.ncue.edu.tw/ir/handle/987654321/11853
|
Title: | 應用競爭性類神經網路融合數值資料與影像資訊於追蹤系統之研究 The Research of Applying Competitive Hopfield Neural Network to Fuse Quantity Data and Image Information to Tracking System |
Authors: | 鍾翼能;胡永柟 |
Contributors: | 電機工程學系 |
Keywords: | Quantity data and image information;Data association technique;Competitive Hopfield Neural Network |
Date: | 2010-08
|
Issue Date: | 2012-07-02T02:13:20Z
|
Publisher: | 行政院國家科學委員會 |
Abstract: | 雷達追蹤系統中,多目標追蹤(Multiple-Target Tracking, MTT)是不可缺少的重要技術。追蹤系統是否能夠正確的預估目標物的真實軌跡其中牽涉兩個問題:資料結合(Data Association technique)與變速度(Maneuvering)檢測。本研究提出運用競爭式類神經網路(Competitive Hopfield Neural Network, CHNN)特殊的運算架構,發展一資料相關結合運算的程序,以輔助雷達追蹤系統。本研究同時運用影像處理技術,考慮目標物的形態與外觀等,提高目標物被辨認的機率,降低預估的誤差。影像經前處理後,接著擷取目標物的特徵,並運用相似度函數進行影像特徵辨識,最後,以結構相似度(Structural Similarity, SSIM),求得目標物的影像數值資訊,同時配合CHNN 資料結合技術與適應性程序追蹤輔助架構,能更準確追蹤目標。經模擬結果顯示,本研究提出的演算法能在複雜的追蹤環境中,有效降低追蹤多個變速度目標時的追蹤誤差。 Multiple-target tracking (MTT) is a prerequisite step for radar surveillance systems. Data association is the key technique in a radar multiple -target tracking system. A new approach to data association using both quantity data and image information is investigated in this project. In order to combine two different attributes, a fusion algorithm based on the Competitive Hopfield Neural Network (CHNN) is developed to match between sensor measurements and existing target tracks. When target maneuvering problems are occurred, an adaptive multiple-model maneuvering estimator is applied. Based on the computation algorithm, we convince that this approach can successfully solve the multiple -target tracking problems and have better performance. |
Relation: | 計畫編號:NSC99-2221-E018-009; 研究期間:201008-201107 |
Appears in Collections: | [電機工程學系] 國科會計畫
|
Files in This Item:
File |
Size | Format | |
2050200712012.pdf | 144Kb | Adobe PDF | 460 | View/Open |
|
All items in NCUEIR are protected by copyright, with all rights reserved.
|