English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6498/11670
Visitors : 25702246      Online Users : 91
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ir.ncue.edu.tw/ir/handle/987654321/12222

Title: Serotonergic Regulation of Blood Glucose Levels in the Crayfish, Procambarus Clarkii: Site of Action and Receptor Characterization
Authors: Lee, Chi-Ying;Yau, Shiou-Mei;Liau, Ching-Sheyen;Huang, Wen-Jr
Contributors: 生物學系
Date: 2000-05
Issue Date: 2012-07-03T04:02:24Z
Publisher: WILEY-LISS, INC.
Abstract: The present study investigated the site of action of 5-hydroxytryptamine (5-HT) and pharmacologically characterized the receptors involved in regulating blood glucose levels in the crayfish, Procambarus clarkii. Injection of 5-HT into intact animals increased glucose levels in a dose-dependent manner. In contrast, 5-HT failed to elicit a hyperglycemic response in eyestalk-ablated animals. Effects of several 5-HT receptor agonists and antagonists were examined. 5-CT, oxymetazoline (both 5-HT(1) receptor agonists) and alpha-methyl-5-HT (a 5-HT(2) receptor agonist), but not 1-phenylbiguanide, m-CPBG (both 5-HT(3) receptor agonists), or RS 67333 (a 5-HT(4) receptor agonist), induced hyperglycemic responses in a dose-dependent manner. In addition, 8-OH-DPAT (a 5-HT(1A) receptor agonist), L-694,247 (a 5-HT(1B/1D) receptor agonist), and DOI (a 5-HT(2A) receptor agonist) were effective in significantly increasing the glucose levels, whereas both BW 723C86 (a 5-HT(2B) receptor agonist) and m-CPP (a 5-HT(2C) receptor agonist) were ineffective. Finally, ketanserin (a 5-HT(2A) receptor antagonist), but not p-MPPF (a 5-HT(1A) receptor antagonist), GR 55562 (a 5-HT(1B/1D) receptor antagonist), SB 206553 (a 5-HT(2B/2C) receptor antagonist), or tropisetron (a 5-HT(3) receptor antagonist), was able to block 5-HT-induced hyperglycemia. The combined results support the hypothesis that 5-HT exerts its hyperglycemic effect by enhancing the release of hyperglycemic factor(s) from the eyestalks, and suggest that 5 HT-induced hyperglycemia is mediated by 5-HT(1)- and 5-HT(2)-like receptors.
Relation: Journal of Experimental Zoology, 286(6): 596-605
Appears in Collections:[生物學系] 期刊論文

Files in This Item:

File SizeFormat

All items in NCUEIR are protected by copyright, with all rights reserved.


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback