English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6491/11663
Visitors : 24751023      Online Users : 51
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ir.ncue.edu.tw/ir/handle/987654321/12447

Title: Wurtzite結構之AlxGa1-xN的結構特性及能帶性質的模擬分析
Numerical Analysis on Structural Characteristics and Band-Energy Properties for Wurtzite AlxGal-Xn
Authors: 劉柏挺;顏勝宏;郭艷光
Contributors: 物理學系
Keywords: 氮化鋁鎵;模擬分析;Wurtzite結構;品格常數;Vegard's law;偏異係數;彎曲係數;Al(subscript x);Numerical simulation;Wurtzite;Lattice constant;Vegard's law;Deviation parameter;Bowing parameter
Date: 2003-06
Issue Date: 2012-07-19T01:46:42Z
Publisher: 中華民國光學工程學會
Abstract: 三五族氮化物半導體最近已引起學界與業界廣泛的研究,因為其具有相當低的介電常數及寬範圍的能帶間隙,使得發射波長涵蓋整個可見光區及部分紫外線,再加上大部分的氮化物之晶體結構為直接能隙,因此發光效率較高並且具有優異的光學特性。本文以理論計算模擬分析具wurtzite結構的氮化鋁鎵三元氮化物的結構特性及能帶性質。發現基態的Al(下標 x)Ga(下標 1-x)N三元氮化物的晶格常數以最小能量計算的結果比由Vegard's law計算的值大,其晶格常數a的偏異係數δ=-0.056±0.004 Å,晶格常數α的偏異係數δ=-0.128±0.025 Å。此外,以此晶格常數的值計算其直接能帶間隙值,發現以最小能量所得到的晶格常數所計算的結果比Vegard's law所得到的品格常數所計算的結果小。以最小能量計算的直接能帶間隙的彎曲係數b=0.957±0.026 eV,此一數值與實驗所得到的值b=1.0 eV極為接近;而以Vegard's law計算的直接能帶間隙的彎曲保數b=0.298±0.040 eV,與Kuo等人以數值模擬所得到的值b=0.353±0.024 eV亦相當吻合。
Ⅲ-nitride semiconductors have attracted both academic and technological extensive research in recent years because they have many outstanding optical properties such as lower dielectric permittivity, wide range band-gap energy from the visible region to the near ultraviolet, and direct band-gap properties that give rise to high emitting performance. This article applies numerical simulation based on ab initio to calculate the structural characteristics and the band-energy properties for wurtzite Al(subscript x)Ga(subscript 1-x) N. From this research we find that the lattice constant of the Al(subscript x)Ga(subscript 1-x) in the ground state obtained from the minimizer energy is larger than that obtained from the Vegard's law. The deviation parameter δ is -0.056±0.004 Å for lattice constant a and is -0.128±0.025 Å for lattice constant c. In addition, we also calculate the direct band-gap energy based on those lattice constants obtained by this research. We find that the direct band-gap energy obtained with the lattice constant obtained from the minimizer energy is smaller than that obtained from the Vegard's law. The bowing parameter b is 0.957±0.026 eV under the situation of the minimizer energy, which is very close to b=1.0 eV obtained from experimental data. On the other hand, the bowing parameter is 0.298±0.040 eV under the situation of applying the Vegard's law, which is also close to b=0.353±0.024 eV obtained from Kuo et al. by numerical simulation.
Relation: 光學工程, 82: 150-158
Appears in Collections:[物理學系] 期刊論文

Files in This Item:

File SizeFormat
index.html0KbHTML499View/Open


All items in NCUEIR are protected by copyright, with all rights reserved.

 


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback