English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6491/11663
Visitors : 24513562      Online Users : 67
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ir.ncue.edu.tw/ir/handle/987654321/13777

Title: 靜電驅動式微結構薄膜阻尼效應之動態特性研究分析
The Study of Dynamic Analysis of the Electrostatic-Actuating Micro Structure with Squeeze Film Damping Effect
Authors: 劉晉嘉
Contributors: 工業教育與技術學系
Date: 2011-08
Issue Date: 2012-08-27T10:53:59Z
Publisher: 行政院國家科學委員會
Abstract: 微機電系統(Micro electro mechanical systems 簡稱MEMS)廣義的指元件尺寸或是運動範圍在微米等級的元件或系統,又稱微機械(Micromechanical)或微系統(Microsystems),是一項跨學科的研究領域,集合了物理學、光學、力學、電學、生物學和化學等多學科知識。而微致動器(micro actuator)則在微機電系統中發揮極重要的功能,它的基本功能是將非機械能(電能、光能、熱能等)輸入轉化為機械能(力、位移等)輸出。近年來,業者利用物理和化學效應使微結構系統產生微變形或是微位移,而研製出一些適合微機電系統應用之微致動器;其中,靜電力驅動是MEMS中應用最廣,也是最典型的動力驅動之一。對於靜電驅動的微結構而言,靜電力存在著固有非線性,與微結構的殘留應力效應(residual stress effect)、張應力效應(tensile sress effect)、雜散電場效應(fringing field effect)及擠壓薄膜阻尼效應(squeeze-film damping effect)等耦合在一起後形成多能量場耦合的非線性特性,使得研究分析相當複雜,因此並不適用一般的解析方法。本計畫將採用混合法,也就是微分轉換法與有限差分法的結合,針對微結構系統因受靜電驅動所產生之複雜耦合的非線性問題包含殘留應力效應、張應力效應、雜散電場效應及擠壓薄膜阻尼效應進行動態特性研究;同時,此計畫亦針對在直流與交流驅動電壓結合下之微結構系統的電極間距與吸附電壓(pull-in voltage)等參數進行動態特性研究。
Micro-electro-mechanical systems is that the size of component or the movement range is within micro grade, also called the Micromechanical or Microsystems. It is a cross-curricular research field, covering topics such as physics, optics, mechanics, electricity, biology and chemistry. The micro actuator is an important component of micro-electro-mechanical systems which function is to convert non-mechanical energy input into mechanical energy output. Recently, the physical and chemical effect have been used to cause micro deformation of the micro structure system in order to develop micro actuator that can be applied to micro-electro-mechanical systems. Electrostatic actuating is one of the most widely used actuating method in MEMS. The analytical modeling of the micro structure devices by electrostatic is problematic due to the complexity of the interactions between the electrostatic coupling effect, the fringing field effect, residual stress effect, the nonlinear electrostatic force and squeeze-film damping effect. Therefore, the dynamic behavior of the micro structure is not easily analyzed using traditional analytic methods. Accordingly, this study develops an efficient computational scheme in which the nonlinear governing equation of the coupled electrostatic force acting, residual stress and squeeze-film damping acting on the micro structure system is solved using a hybrid differential transformation and finite difference approximation method. Furthermore, the hybrid differential transformation and finite difference method is also applied to analyze the electrostatic gap, pull-in voltage of the dynamic behavior of the micro structure system by a combined DC and AC actuating load.
Relation: 國科會計畫:計畫編號:NSC100-2221-E167-010; 研究期間:100/08-101/07
Appears in Collections:[工業教育與技術學系] 國科會計畫

Files in This Item:

There are no files associated with this item.

All items in NCUEIR are protected by copyright, with all rights reserved.


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback